
M A N N I N G

Bruce Payette

SECOND EDITION

Covers PowerShell v 2

PRAISE FOR THE FIRST EDITION

The book on PowerShell, it has all the secrets.
—James Truher, PowerShell Program Manager, Microsoft

If all it had going for it was the authoritative pedigree of the writer, it might be worth it, but it’s also
well-written, well-organized, and thorough, which I think makes it invaluable as both a learning tool
and a reference.

—Slashdot.org

...an encyclopedic tome of PowerShell scripting bringing the reader through the basics with simple shell
scripts through powerful and flexible scripts any Windows systems administrator will find immediately
useful.

—ArsGeek.com

The nuances of PowerShell from the lead language designer himself! Excellent content and easy read-
ability!

—Keith Hill, Software Architect

[It gives you] inside information, excellent examples, and a colorful writing style.
—Marc van Orsouw (MOW), PowerShell MVP

There’s no better way to learn PowerShell than from someone on the core PowerShell team—and that’s
exactly what you get with this book.

—Joe Topjian, adminspotting.net

Where’s the 6 stars option? I haven’t enjoyed a software engineering book to the same extent for a long
time.

—T. Kirby Green, Technical Architect, SunGard

Consider this book the definitive reference for PowerShell. As one of the designers of the PowerShell
environment, the author knows all the ins and outs, back alleys, hidden rooms, and secret handshakes
the language offers, and isn’t afraid to grab you by the hand and drag you along (like it or not!) for the
tour of your life.

—Jase T. Wolfe, Amazon reader

I love this book!
—Scott Hanselman ComputerZen.com

http://books.slashdot.org/books/07/05/02/1345254.shtml
http://www.arsgeek.com/?p=1635

Windows PowerShell
in Action, Second Edition

BRUCE PAYETTE

M A N N I N G

Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

Manning Publications Co. Development Editor Cynthia Kane
20 Baldwin Road Copyeditor: Liz Welch
PO Box 261 Typesetter: Marija Tudor
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN 9781935182139
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

brief contents

Part 1 Learning PowerShell 1

1 Welcome to PowerShell 3

2 Foundations of PowerShell 36

3 Working with types 72

4 Operators and expressions 110

5 Advanced operators and variables 151

6 Flow control in scripts 198

7 PowerShell functions 236

8 Advanced functions and scripts 275

9 Using and authoring modules 322

10 Module manifests and metadata 361

11 Metaprogramming with scriptblocks and dynamic code 392

12 Remoting and background jobs 447

13 Remoting: configuring applications and services 502

14 Errors and exceptions 553

15 The PowerShell ISE and debugger 606
v

Part 2 Using PowerShell 661

16 Working with files, text, and XML 663

17 Extending your reach with .NET 719

18 Working with COM 760

19 Management objects: WMI and WS-MAN 797

20 Responding in real time with eventing 847

21 Security, security, security 888
vi BRIEF CONTENTS

contents

preface xix
acknowledgments xxi
about this book xxiii
about the cover illustration xxix

Part 1 Learning PowerShell 1

1 Welcome to PowerShell 3

1.1 What is PowerShell? 5
Shells, command lines, and scripting languages 6 ✦ Why a new
shell? Why now? 7 ✦ The last mile problem 8

1.2 Soul of a new language 9
Learning from history 9 ✦ Leveraging .NET 10

1.3 Brushing up on objects 11
Reviewing object-oriented programming 11 ✦ Objects in
PowerShell 13

1.4 Up and running with PowerShell 13
PowerShell 14 ✦ Starting PowerShell 14 ✦ The PowerShell
console host 14 ✦ The PowerShell Integrated Scripting
Environment 17 ✦ Command completion 20

1.5 Dude! Where’s my code? 22
Navigation and basic operations 22 ✦ Basic expressions and
variables 23 ✦ Processing data 25 ✦ Flow control
statements 30 ✦ Scripts and functions 31 ✦ Remoting and
the Universal Execution Model 32

1.6 Summary 35
vii

2 Foundations of PowerShell 36

2.1 Getting a sense of the PowerShell language 37

2.2 The core concepts 38
Command concepts and terminology 38 ✦ Commands and
cmdlets 38 ✦ Command categories 42

2.3 Aliases and elastic syntax 46

2.4 Parsing and PowerShell 50
How PowerShell parses 51 ✦ Quoting 51 ✦ Expression-
mode and command-mode parsing 54 ✦ Statement
termination 56 ✦ Comment syntax in PowerShell 58

2.5 How the pipeline works 60
Pipelines and streaming behavior 61 ✦ Parameters and
parameter binding 62

2.6 Formatting and output 64
The formatting cmdlets 64 ✦ The outputter cmdlets 67

2.7 Summary 70

3 Working with types 72

3.1 Type management in the wild, wild West 72
PowerShell: a type-promiscuous language 73 ✦ The type
system and type adaptation 75

3.2 Basic types and literals 77
String literals 77 ✦ Numbers and numeric literals 82

3.3 Collections: dictionaries and hash tables 85
Creating and inspecting hash tables 85 ✦ Modifying and
manipulating hash tables 88 ✦ Hash tables as reference
types 90

3.4 Collections: arrays and sequences 91
Collecting pipeline output as an array 91 ✦ Array
indexing 92 ✦ Polymorphism in arrays 92 ✦ Arrays as
reference types 93 ✦ Singleton arrays and empty arrays 94

3.5 Type literals 96
Type name aliases 96 ✦ Generic type literals 98 ✦ Accessing
static members with type literals 99

3.6 Type conversions 101
How type conversion works 101 ✦ PowerShell’s type-
conversion algorithm 104 ✦ Special type conversions in
parameter binding 107

3.7 Summary 109
viii CONTENTS

4 Operators and expressions 110

4.1 Arithmetic operators 112
The addition operator 113 ✦ The multiplication operator 116
Subtraction, division, and the modulus operator 117

4.2 The assignment operators 119
Multiple assignments 120 ✦ Multiple assignments with type
qualifiers 121 ✦ Assignment operations as
value expressions 123

4.3 Comparison operators 124
Scalar comparisons 125 ✦ Comparisons and case
sensitivity 127 ✦ Using comparison operators
with collections 129

4.4 Pattern matching and text manipulation 131
Wildcard patterns and the -like operator 132 ✦ Regular
expressions 133 ✦ The -match operator 134 ✦ The -replace
operator 137 ✦ The -join operator 139 ✦ The -split
operator 143

4.5 Logical and bitwise operators 148

4.6 Summary 150

5 Advanced operators and variables 151

5.1 Operators for working with types 152

5.2 The unary operators 154

5.3 Grouping and subexpressions 157
Subexpressions $(...) 159 ✦ Array subexpressions @(...) 160

5.4 Array operators 162
The comma operator 162 ✦ The range operator 165
Array indexing and slicing 167 ✦ Using the range
operator with arrays 170 ✦ Working with
multidimensional arrays 171

5.5 Property and method operators 173
The dot operator 174 ✦ Static methods and the double-colon
operator 177 ✦ Indirect method invocation 178

5.6 The format operator 179

5.7 Redirection and the redirection operators 181

5.8 Working with variables 184
Creating variables 185 ✦ Variable name syntax 186
Working with the variable cmdlets 188
Splatting a variable 193

5.9 Summary 196
CONTENTS ix

6 Flow control in scripts 198

6.1 The conditional statement 200

6.2 Looping statements 203
The while loop 203 ✦ The do-while loop 204 ✦ The for
loop 205 ✦ The foreach loop 207

6.3 Labels, break, and continue 212

6.4 The switch statement 215
Basic use of the switch statement 215 ✦ Using wildcard
patterns with the switch statement 216 ✦ Using regular
expressions with the switch statement 217 ✦ Processing files
with the switch statement 221 ✦ Using the $switch loop
enumerator in the switch statement 222

6.5 Flow control using cmdlets 223
The ForEach-Object cmdlet 223 ✦ The Where-Object
cmdlet 228

6.6 Statements as values 231

6.7 A word about performance 233

6.8 Summary 234

7 PowerShell functions 236

7.1 Fundamentals of PowerShell functions 237
Passing arguments using $args 237 ✦ Example functions:
ql and qs 239 ✦ Simplifying $args processing with multiple
assignment 240

7.2 Declaring formal parameters for a function 241
Mixing named and positional parameters 242 ✦ Adding type
constraints to parameters 243 ✦ Handling variable numbers of
arguments 245 ✦ Initializing function parameters with default
values 246 ✦ Handling mandatory parameters, v1-style 248
Using switch parameters to define command switches 248
Switch parameters vs. Boolean parameters 252

7.3 Returning values from functions 257
Debugging problems in function output 259 ✦ The return
statement 262

7.4 Using simple functions in a pipeline 263
Filters and functions 265 ✦ Functions with begin, process, and
end blocks 266

7.5 Managing function definitions in a session 267
x CONTENTS

7.6 Variable scoping in functions 269
Declaring variables 270 ✦ Using variable scope modifiers 272

7.7 Summary 273

8 Advanced functions and scripts 275

8.1 PowerShell scripts 276
Script execution policy 276 ✦ Passing arguments to
scripts 278 ✦ Exiting scripts and the exit statement 280
Scopes and scripts 281 ✦ Managing your scripts 284
Running PowerShell scripts from other applications 285

8.2 Writing advanced functions and scripts 287
Specifying script and function attributes 288 ✦ The
CmdletBinding attribute 289 ✦ The OutputType
attribute 293 ✦ Specifying parameter attributes 296
Creating parameter aliases with the Alias attribute 303
Parameter validation attributes 305

8.3 Dynamic parameters and dynamicParam 311
Steps for adding a dynamic parameter 312 ✦ When should
dynamic parameters be used? 314

8.4 Documenting functions and scripts 314
Automatically generated help fields 315 ✦ Creating manual help
content 315 ✦ Comment-based help 316 ✦ Tags used in
documentation comments 318

8.5 Summary 321

9 Using and authoring modules 322

9.1 The role of a module system 323
Module roles in PowerShell 324 ✦ Module mashups: composing
an application 324

9.2 Module basics 325
Module terminology 326 ✦ Modules are single-instance
objects 326

9.3 Working with modules 327
Finding modules on the system 327 ✦ Loading a module 331
Removing a loaded module 335

9.4 Writing script modules 337
A quick review of scripts 338 ✦ Turning a script into a
module 340 ✦ Controlling member visibility with Export-
ModuleMember 343 ✦ Installing a module 347 ✦ How
scopes work in script modules 348 ✦ Nested modules 350
CONTENTS xi

9.5 Binary modules 353
Binary modules versus snap-ins 354 ✦ Creating a binary
module 355 ✦ Nesting binary modules in script modules 357

9.6 Summary 360

10 Module manifests and metadata 361
10.1 Module folder structure 362

10.2 Module manifest structure 363

10.3 Production manifest elements 366
Module identity 368 ✦ Runtime dependencies 368

10.4 Construction manifest elements 370
The loader manifest elements 371 ✦ Module component
load order 374

10.5 Content manifest elements 375

10.6 Language restrictions in a manifest 376

10.7 Advanced module operations 378
The PSModuleInfo object 378 ✦ Using the PSModuleInfo
methods 382 ✦ The defining module versus the calling
module 384 ✦ Setting module properties from inside a script
module 388 ✦ Controlling when modules can be unloaded 388
Running an action when a module is removed 389

10.8 Summary 390

11 Metaprogramming with scriptblocks and dynamic code 392
11.1 Scriptblock basics 393

Invoking commands 394 ✦ The scriptblock literal 397
Defining functions at runtime 398

11.2 Building and manipulating objects 400
Looking at members 400 ✦ Using Add-Member to
extend objects 402 ✦ Adding note properties with
New-Object 409

11.3 Using the Select-Object cmdlet 410

11.4 Dynamic modules 412
Dynamic script modules 412 ✦ Closures in PowerShell 414
Creating custom objects from modules 417

11.5 Steppable pipelines 418
How steppable pipelines work 418 ✦ Creating a proxy command
with steppable pipelines 420

11.6 A closer look at the type-system plumbing 423
Adding a property 425 ✦ Shadowing an existing
property 427
xii CONTENTS

11.7 Extending the PowerShell language 428
Little languages 428 ✦ Adding a CustomClass keyword to
PowerShell 428 ✦ Type extension 433

11.8 Building script code at runtime 436
The Invoke-Expression cmdlet 436 ✦ The ExecutionContext
variable 437 ✦ The ExpandString() method 437 ✦ The
InvokeScript() method 438 ✦ Mechanisms for creating
scriptblocks 438 ✦ Creating functions using the function:
drive 439

11.9 Compiling code with Add-Type 440
Defining a new .NET class: C# 440 ✦ Defining a new enum at
runtime 442 ✦ Dynamic binary modules 443

11.10 Summary 445

12 Remoting and background jobs 447

12.1 Getting started with remoting 448
Commands with built-in remoting 448 ✦ The PowerShell
remoting subsystem 449 ✦ Enabling remoting 450
Additional setup steps for workgroup environments 451
Enabling remoting in the enterprise 452

12.2 Applying PowerShell remoting 454
Basic remoting examples 454 ✦ Adding concurrency to the
examples 455 ✦ Solving a real problem: multimachine
monitoring 457

12.3 Sessions and persistent connections 462
Additional session attributes 466 ✦ Using the New-PSSession
cmdlet 468 ✦ Interactive sessions 469 ✦ Managing
PowerShell sessions 472

12.4 Implicit remoting 473
Using implicit remoting 474 ✦ How implicit remoting
works 476

12.5 Background jobs in PowerShell 481
The job commands 483 ✦ Working with the job cmdlets 483
Working with multiple jobs 487 ✦ Starting jobs on remote
computers 489 ✦ Running jobs in existing sessions 492

12.6 Considerations when running commands remotely 493
Remote session startup directory 494 ✦ Profiles and
remoting 494 ✦ Issues running executables remotely 495
Reading and writing to the console 496 ✦ Remote output vs. local
output 497 ✦ Processor architecture issues 498

12.7 Summary 500
CONTENTS xiii

13 Remoting: configuring applications and services 502

13.1 Remoting infrastructure in depth 503
The PowerShell remoting protocol stack 503 ✦ Using the
WSMan cmdlets and providers 509 ✦ Authenticating the target
computer 511 ✦ Authenticating the connecting user 514
Addressing the remoting target 518 ✦ Windows version-specific
connection issues 520 ✦ Managing resource consumption 522

13.2 Building custom remoting services 527
Remote service connection patterns 527 ✦ Working with custom
configurations 530 ✦ Creating a custom configuration 531
Access controls and endpoints 533 ✦ Constraining a PowerShell
session 535 ✦ Creating a constrained execution environment 543

13.3 Summary 551

14 Errors and exceptions 553

14.1 Error handling 554
ErrorRecords and the error stream 555 ✦ The $error variable and
–ErrorVariable parameter 560 ✦ Determining if a command had
an error 564 ✦ Controlling the actions taken on an error 566

14.2 Dealing with errors that terminate execution 569
The trap statement 570 ✦ The try/catch/finally statement 575
The throw statement 578

14.3 Debugging with the host APIs 580
Catching errors with strict mode 582 ✦ The Set-StrictMode
cmdlet in PowerShell v2 584 ✦ Static analysis of scripts 589

14.4 Capturing session output 593
Starting the transcript 593 ✦ What gets captured in the
transcript 595

14.5 PowerShell and the event log 597
The EventLog cmdlets 597 ✦ Examining the PowerShell
event log 603

14.6 Summary 605

15 The PowerShell ISE and debugger 606

15.1 The PowerShell ISE 607
Controlling the ISE pane layout 607 ✦ Using the ISE
editor 610 ✦ Executing commands in the ISE 614
Considerations when running scripts in the ISE 616

15.2 Using multiple PowerShell tabs 618
Local in-memory session tabs 619 ✦ Remote session tabs in
PowerShell ISE 619
xiv CONTENTS

15.3 Extending the ISE 622
The $psISE variable 622 ✦ Using the Options property 624
Managing tabs and files 625 ✦ Working with text panes 629
Adding a custom menu 633

15.4 PowerShell script debugging features 638
The Set-PSDebug cmdlet 638 ✦ Nested prompts and the
Suspend operation 643

15.5 The PowerShell v2 debugger 647
The graphical debugger 648

15.6 Command-line debugging 652
Working with breakpoint objects 653 ✦ Setting breakpoints
on commands 656 ✦ Setting breakpoints on variable
assignment 657 ✦ Debugger limitations and issues 658

15.7 Summary 659

Part 2 Using PowerShell 661

16 Working with files, text, and XML 663

16.1 PowerShell and paths 664
Providers and the core cmdlets 664 ✦ Working with
PSDrives 665 ✦ Working with paths that contain
wildcards 667 ✦ Suppressing wildcard processing
in paths 668 ✦ The -LiteralPath parameter 670
The Registry provider 671

16.2 File processing 672
Reading and writing files 674 ✦ Writing files 679 ✦ All
together now—reading and writing 680 ✦ Performance caveats
with Get-Content 680

16.3 Processing unstructured text 681
Using System.String to work with text 681 ✦ Using hashtables to
count unique words 684 ✦ Using regular expressions to
manipulate text 686 ✦ Searching files with the Select-String
cmdlet 688

16.4 XML structured text processing 693
Using XML as objects 693 ✦ Adding elements to an XML
object 695 ✦ Loading and saving XML files 697
Processing XML documents in a pipeline 701 ✦ Processing
XML with XPath 702 ✦ A hint of XLinq 709 ✦ Rendering
objects as XML 711

16.5 Summary 717
CONTENTS xv

17 Extending your reach with .NET 719

17.1 Using .NET from PowerShell 720
.NET basics 720 ✦ Working with assemblies 721 ✦ Finding
types 725 ✦ Creating instances of types 727 ✦ Defining new
types with Add-Type 729 ✦ Working with generic types 739

17.2 PowerShell and the internet 740
Retrieving a web page 740 ✦ Processing an RSS feed 742

17.3 PowerShell and graphical user interfaces 743
PowerShell and WinForms 744 ✦ Creating a winforms
module 750
PowerShell and Windows Presentation Foundation 753

17.4 Summary 759

18 Working with COM 760

18.1 Working with COM in PowerShell 761
Creating COM objects 761 ✦ Identifying and locating COM
classes 762

18.2 Automating Windows with COM 764
Exploring with the Shell.Application class 765 ✦ Managing
browser windows using COM 767 ✦ A browser window
management module 770

18.3 Working with the WScript.Shell class 777

18.4 Using COM to manage applications 779
Looking up a word using Internet Explorer 779 ✦ Using
Microsoft Word to do spell checking 781

18.5 The WSH ScriptControl class 783
Embedding VBScript code in a PowerShell script 784
Embedding JScript code in a PowerShell script 785

18.6 Working with the Windows Task Scheduler 786
Getting started with the Schedule.Service class 786 ✦ Listing
running tasks 787 ✦ Creating a new scheduled task 788
Credentials and scheduled tasks 789 ✦ Viewing the life cycle
of a task 792

18.7 Issues with COM 793
64-bit vs. 32-bit issues 793 ✦ Threading model problems 793
Interop assemblies, wrappers, and typelibs 793

18.8 Summary 795

19 Management objects: WMI and WS-MAN 797

19.1 Working with WMI in PowerShell 798
Exploring WMI 798 ✦ The WMI infrastructure 799
xvi CONTENTS

19.2 The WMI cmdlets 801
The WMI cmdlet common parameters 802 ✦ The Get-WmiObject
cmdlet 804 ✦ The Set-WmiInstance cmdlet 813 ✦ The
Invoke-WmiMethod cmdlet 819 ✦ The Remove-WmiObject
cmdlet 822

19.3 The WMI object adapter 824
The WMI type accelerators 825 ✦ Putting modified WMI objects
back 828

19.4 Exploring WS-Man 830
The WS-Man cmdlets 831 ✦ Using Get-WSManInstance to
retrieve management data 832 ✦ Updating resources using
Set-WSManInstance 840 ✦ Invoking methods with
Invoke-WSManAction 841

19.5 Summary 845

20 Responding in real time with eventing 847

20.1 Foundations of event handling 848

20.2 Synchronous events 849
Synchronous eventing in GUIs 850 ✦ Delegates and
delegation 850

20.3 Asynchronous events 853
Subscriptions, registrations, and actions 854 ✦ The eventing
cmdlets 854

20.4 Working with asynchronous .NET events 855
Writing a timer event handler 856 ✦ Managing event
subscriptions 859

20.5 Asynchronous event handling with scriptblocks 860
Automatic variables in the event handler 860 ✦ Dynamic
modules and event handler state 862

20.6 Queued events and the Wait-Event cmdlet 863

20.7 Working with WMI events 866
WMI event basics 866 ✦ Class-based WMI event
registration 867 ✦ Query-based WMI event
registrations 871

20.8 Engine events 875
Predefined engine events 875 ✦ Generating events in functions
and scripts 876

20.9 Remoting and event forwarding 877
Handling remote EventLog events 879 ✦ Serialization issues with
remote events 880

20.10 How eventing works 882
CONTENTS xvii

20.11 Summary 885

21 Security, security, security 888
21.1 Introduction to security 889

What security is and what it isn’t 889 ✦ Security: perception and
reality 890

21.2 Security modeling 891
Introduction to threat modeling 891 ✦ Classifying threats using
the STRIDE model 892 ✦ Security basics: threats, assets, and
mitigations 893

21.3 Securing the PowerShell environment 897
Secure by default 897 ✦ Enabling scripting with execution
policy 898

21.4 Signing scripts 904
How public key encryption and one-way hashing work 904
Signing authorities and certificates 905 ✦ Self-signed
certificates 905 ✦ Using a certificate to sign a script 909
Enabling strong private key protection 913 ✦ Using the PFX file
to sign a file 915

21.5 Writing secure scripts 916

21.6 Using the SecureString class 916
Creating a SecureString object 917 ✦ The SecureString
cmdlets 918 ✦ Working with credentials 919 ✦ Avoiding
Invoke-Expression 923

21.7 Summary 926

index 929

appendix A Comparing PowerShell to other languages

appendix B Examples

appendix C PowerShell Quick Reference

appendix D Additional PowerShell topics

Appendixes are available for download from
www.manning.com/WindowsPowerShellinActionSecondEdition
xviii CONTENTS

preface

Well, it’s been a wild ride since the first edition of this book was released. At that
time, PowerShell had just shipped and had a fairly limited scope of influence. Things
have changed a lot. PowerShell now ships in the box with Windows (at least Win-
dows 7 and Server 2008 R2). The number of PowerShell users is now in the hundreds
of thousands, if not millions (this is not a formal estimate—I just looked at some of
the download counters for PowerShell-related tools and went from there).

One of the biggest events from my perspective was the release of PowerShell version
2 in July of 2009. Obviously it was time for a sequel to the book. I put together a short
proposal and estimate of the amount of work needed to update the book. The initial
estimate was for a few months of work—a couple of new chapters, a few updates here
and there, and we’re good to go. Wow, was I ever wrong about that! PowerShell v2
was a really big release.

When you are in the middle of something, working heads down, you tend to lose
perspective of the overall project—that old forest/trees problem. It wasn’t until I was
preparing a talk for MMS (Microsoft Management Summit) that I realized just how
BIG it was. In a one-hour talk, we barely had time to list all of the new stuff, much
less describe it in detail. But describing it in detail was exactly what I needed to do and
that’s why this book took a great deal longer to write than anticipated. It’s also much
bigger than I had expected or wanted. At one point it was double the size of the first
edition. So we cut some stuff that was no longer as relevant with PowerShell v2, moved
some stuff into the online appendixes, and capped the book at about 1000 pages.

So why write the book in the first place? The answer is the same now as it was
then—I wanted the PowerShell community to have a way to see “inside the box” and
have a more intimate insight into the goals and motivations behind PowerShell.
Although PowerShell draws heavily from existing technologies, it combines them in
xix

novel ways. This kind of novelty leads to misunderstandings which then turn into
urban myths, like PowerShell does X because its designers were kitten-eating aliens.
(Trust me—we’re not.)

As we showed our work to the world I found that there were a number of questions
that were being asked over and over again. These questions would usually arise as a
result of some prior language experience that the user had. Typically a simple expla-
nation was all it took to clear up the confusion. Unfortunately we couldn’t keep
answering these questions over and over on a one-by-one basis; that just couldn’t scale.
There needed to be a way to gather this information together in one place. The book
was my attempt to address that problem, and the second edition continues on with
this goal.

I continue to be amazed at just how much power comes out of the synergy of the
various technologies underlying PowerShell. We see this in our own internal uses of
PowerShell at Microsoft as well as in what the community has done with it. And so
a second goal of this book was to try and foster that creativity by conveying just how
capable PowerShell is.

And finally, this is the book I wanted to read. I love programming languages and
the best books are the ones that explain not only what but also why. Look at the books
that continue to sell year after year: Kernighan and Ritchie’s The C Programming Lan-
guage, Stroustrup’s book on C++, and Ousterhout’s book on TCL. The TCL book in
particular describes a very early version of the TCL language, has never been updated,
and yet it continues to sell. Why? Because these books give the reader something more
than just technical detail. They convey a sense of the overall design and some element
of the intent of the designer. (Let me know if I succeeded, okay?)
xx PREFACE

acknowledgments

First and foremost, this book is for my wife Tina. I could not have done it without
her patience, support, and encouragement. She kept me fed and sane, and she even
read early drafts of material about which she knows nothing. Now that’s support! She
also contributed the Gnome picture in chapter 21 and the bird-watching information
and pictures in chapter 2. And I can now recognize the call of the California quail.

Thanks to my parents for their love and support over the years. Yes, I am finally
done with the second edition!

Of course, there wouldn’t be a PowerShell book without a PowerShell product in
the first place and PowerShell wouldn’t exist without the vision of its chief architect
Jeffrey Snover. He was kind enough to do extensive reviews of both editions of the
book. The book, like the product, has benefited greatly from his insight and sugges-
tions.

PowerShell v2 would also not have been possible without the continued efforts on
the part of Kenneth Hansen, lead Program Manager of the PowerShell team. Kenneth
provided most of the day-to-day leadership during the Version 2/Windows 7 release
cycle. He continues to be one of the strongest advocates for the customer that I’ve seen
at Microsoft.

I’d like to thank the following PowerShell team members who took time to review
specific chapters: Jason Shirk, who implemented most (all?) of the advanced function
features in v2, reviewed chapters 7 and 8. Refaat Issa and Lucio Silveira, who were
responsible for the design (Refaat) and implementation (Lucio) of the ISE, reviewed
chapter 15 which covers the ISE.

To all of the MEAP readers and reviewers, many thanks for your feedback. I’ve
incorporated as much of it as possible (boy, I make a lot of typos). In particular, I’d
like to thank the following: Peter Johnson, Jonathan Medd, Sam Abraham, Andrew
xxi

Tearle, Keith Hill, Richard Siddaway, Paul Grebenc, Kirk Freiheit, Tony Niemann,
Amos Bannister, Jeff Copeland, Marcus Baker, Massimo Perga, Tomas Restrepo,
Jason Zions, Oisin Grehan, Kanwal Khipple, Brandon Shell, Bernd Schandl, and
Matthew Reynolds. Thanks to all of you for your patience. This book took way, way
too long to complete.

Finally, special thanks to all of the people who piled on at the end of the project
to finally get it done: Cynthia Kane, my development editor, who is still talking to me
(I think), even after all of the missed deadlines; also Liz Welch, Mary Piergies, Tiffany
Taylor, and everyone else at Manning who helped get this book out the door. All I
can say is thanks, and thanks again.

And more super-special thanks to three of our wonderful PowerShell MVPs who
helped enormously with the final reviews. Marco Shaw was the technical proofreader
who read the chapters during production. Jeffrey Hicks, a fine author in his own right,
helped with the last set of “author” reviews. And Aleksandar Nikolić went above and
beyond the call, turning around reviewed chapters stunningly quickly, and then
reviewing the reviews! Dude, you’re a lifesaver!
xxii ACKNOWLEDGMENTS

about this book

Windows PowerShell is the next-generation scripting environment created by Micro-
soft. It’s designed to provide a unified solution for Windows scripting and automa-
tion, able to access the wide range of technologies such as .NET, COM, and WMI
through a single tool. Since its release in 2006, PowerShell has become the central
component of any Windows management solution. In addition, due to PowerShell’s
comprehensive support for .NET, it also has broad application potential outside of the
system administration space. PowerShell can be used for text processing, general
scripting, build management, creating test frameworks, and so on.

This book was written by one of the principal creators of PowerShell to enable users
to get the most out of the PowerShell environment. Using many examples, both small
and large, this book illustrates the features of the language and environment and shows
how to compose those features into solutions, quickly and effectively.

Note that, because of the broad scope of the PowerShell product, this book has a
commensurately broad focus. It was not designed as a cookbook of pre-constructed
management examples, like how to deal with Active Directory or how to script
Exchange. Instead it provides information about the core of the PowerShell runtime
and how to use it to compose solutions the “PowerShell Way.” After reading this book,
the PowerShell user should be able to take any example written in other languages like
C# or Visual Basic and leverage those examples to build solutions in PowerShell.

Who should read this book?

This book is designed for anyone who wants to learn PowerShell and use it well.
Rather than simply being a book of recipes to read and apply, this book tries to give
xxiii

the reader a deep knowledge about how PowerShell works and how to apply it. As a
consequence, all users of PowerShell should read this book.

So, if you’re a Windows sysadmin, this book is for you. If you’re a developer and
you need to get things done in a hurry, if you’re interested in .NET, or just if you like
to experiment with computers, PowerShell is for you and this book is for you.

Roadmap

The book is divided into two major parts plus four appendixes (which are available
online from the publisher’s website). The two parts of the book are “Learning Power-
Shell” and “Using PowerShell.”

Part 1, “Learning PowerShell,” is a comprehensive tour of the PowerShell language
and runtime. The goal is to introduce new PowerShell users to the language as well
as to provide experienced users with a deep insight into how and why things are the
way they are.

In part 1, we look at all aspects of the PowerShell language including the syntax,
the type system, and so on. Along the way we present examples showing how each fea-
ture works. Because the goal of the first part of the book is to focus on the individual
features of the environment, most of the examples are quite small and are intended to
be entered in an interactive session. The second part of this book focuses on larger
examples that bring the individual features together to build larger applications.

Chapter 1 begins with some history and the rationale for why PowerShell was cre-
ated in the first place. It then proceeds through a quick tour of the features of the envi-
ronment. The remaining chapters in part 1 cover each element of the language,
starting with basic PowerShell concepts in chapter 2.

Chapter 3 introduces the PowerShell type system and discusses its relationship to
.NET. This chapter also presents the syntax for each of the PowerShell literal data types.

The discussion of operators and expressions (PowerShell has lots of these) begins in
chapter 4 which covers the basic arithmetic, comparison, and assignment operators.
It also covers the wildcard and regular expression pattern matching operators.

Chapter 5 continues the discussion of operators with the advanced operations for
working with arrays (indexing, slicing) and objects (properties and methods). It also
covers output redirection and the formatting operator, and introduces PowerShell
variables.

Chapter 6 covers the PowerShell language constructs like if statements and loops.
Chapter 7 introduces programming in PowerShell and covers basic functions, vari-

able scoping, and other programming-related topics.
Chapter 8 builds on the material in chapter 7, covering advanced function meta-

data, scripting, and how to create in-line documentation for scripts and functions.
Chapter 9 covers the basics of how to use PowerShell modules and how to create

your own basic modules.
xxiv ABOUT THIS BOOK

Chapter 10 looks at more advanced module features covering module manifests
and how to use them to add information like a version number, dependences, and
nested modules.

Chapter 11 builds on the material in chapters 7–10, introducing advanced pro-
gramming techniques like object construction and extensions. It also covers first-class
functions (scriptblocks) and shows how to extend the PowerShell language itself using
these features.

Chapter 12 introduces PowerShell remoting, starting with basic configuration and
setup. It then covers the various forms of remoting (interactive and non-interactive)
and how to apply these techniques.

Chapter 13 explores remoting and the underlying protocols in more detail. Creation
of custom remoting endpoints, including constrained endpoints, is included as well.

Chapter 14 covers the PowerShell Integrated Scripting Environment (ISE). This
coverage includes basic editor operation and the debugger (graphics and command
line), and looks briefly at the ISE extension model which allows you to do things like
add custom menu items to the ISE.

Chapter 15 completes part 1, covering the various features available in PowerShell
for handling errors and debugging scripts.

In part 2 of the book, “Using PowerShell,” we shift our focus from individual fea-
tures towards combining those features into larger examples. This part of the book
looks at applying PowerShell in specific technology areas and problem domains.

We begin in chapter 16 looking at how PowerShell can be used to attack the kind
of text processing tasks that have traditionally been the domain of languages like Perl.
This chapter begins with basic string processing, then introduces file processing
(including handling binary files), and finishes up with a section on working with XML
documents.

Then, in chapter 17, we look at how we can explore and apply the vast capabilities
of the .NET framework. We cover locating, exploring, and instantiating types in the
.NET framework, including generic types. Then we look at a number of applications
using these types, including network programming and graphical programming with
WinForms and WPF.

In chapter 18 we look at how to work with COM objects. This includes using the
application automation models to script applications like Microsoft Word with
PowerShell.

Chapter 19 covers Windows Management Instrumentation (WMI) and Web Ser-
vices for Management (WS-Man). We look at how to use WMI from the command
line and in scripts to inspect, update, and manage a Windows system.

Chapter 20 looks at the asynchronous eventing subsystem in PowerShell. Eventing
allows PowerShell scripts to respond to external events in real time—an important
characteristic in systems automation.
ABOUT THIS BOOK xxv

Finally, in chapter 21, we introduce the security features in PowerShell along with
a general discussion of security. This is a very important chapter to read. Like all pow-
erful scripting tools (Perl, Python, and so on), PowerShell can be used to create mal-
ware-like virus and worm programs. The PowerShell runtime contains a number of
features to allow you to deploy it in a manner that minimizes these risks.

In addition, there are four appendixes, available online from the publisher’s website
at www.manning.com/WindowsPowerShellinActionSecondEdition.

Appendix A compares and contrasts PowerShell with other languages that the
reader may already know. This appendix tries to highlight similarities and the impor-
tant differences with each of the languages.

Appendix B includes more examples showing how to apply PowerShell to solve
problems. While it’s by no means a complete management cookbook, it does show
what can be done with PowerShell and how to do it.

Appendix C is a PowerShell quick reference that condenses much of the content
of the book into a relatively short quick-reference document. Finally, appendix D con-
tains information about a number of additional, less commonly used features and
techniques in PowerShell.

Code conventions

Because PowerShell is an interactive environment, we show a lot of example com-
mands as the user would type them, followed by the responses the system generates.
Before the command text there is a prompt string that looks like this: PS (2) >. Fol-
lowing the prompt, the actual command is displayed. PowerShell’s responses follow
on the next few lines. Because PowerShell doesn’t display anything in front of the out-
put lines, you can distinguish output from commands by looking for the prompt
string. These conventions are illustrated as follows:

PS (1) > get-date

Sunday, October 08, 2006 11:24:42 PM

Sometimes commands will span multiple lines. In this case subsequent lines of user
input will be preceded by >> as shown:

PS (2) > 1..3 |
>> foreach {"+" * $_}
>>
+
++
+++
PS (4) >

Note that the actual prompt sequence you see in your PowerShell session will be
somewhat different than what is shown in the book. The prompt display is user-
controllable by redefining the “prompt” function (see appendix A section 1.8 for
xxvi ABOUT THIS BOOK

more information). For this book, a prompt sequence was chosen that includes com-
mand numbers to make it easier to follow the examples.

Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

Source code downloads

Source code for all working examples in this book is available for download from the pub-
lisher’s website at www.manning.com/WindowsPowerShellinActionSecondEdition.

Author Online

Purchase of Windows PowerShell in Action, Second Edition includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the author and from other
users. To access the forum and subscribe to it, point your web browser to www
.manning.com/WindowsPowerShellinActionSecondEdition. This page provides
information on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s website as long as the book is in print.

About the author

Bruce Payette is one of the founding members of the Windows PowerShell team. He
is co-designer of the PowerShell language along with Jim Truher and the principal
author of the language implementation. He joined Microsoft in 2001 working on
Interix, the POSIX subsystem for Windows, then moved to help found the Power-
Shell project shortly after that. Prior to joining Microsoft, he worked at various com-
panies including Softway (the creators of Interix) and MKS (producers of the MKS
Toolkit) building UNIX tools for Windows. He lives in Bellevue, Washington, with
his wife, many computers, and two extremely over-bonded codependent cats.

About the title

By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cognitive
science, the things people remember are things they discover during self-motivated
exploration.
ABOUT THIS BOOK xxvii

www.manning.com/WindowsPowerShellinActionSecondEdition
www.manning.com/WindowsPowerShellinActionSecondEdition

Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an In Action book is that it is example driven. It
encourages the reader to try things out, to play with new code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers are busy.
They use books to do a job or solve a problem. They need books that allow them to jump
in and jump out easily and learn just what they want just when they want it. They need
books that aid them in action. The books in this series are designed for such readers.
xxviii ABOUT THIS BOOK

about the cover illustration

The figure on the cover of Windows PowerShell in Action, Second Edition is a “Mufti,”
the chief of religion or the chief scholar who interpreted the religious law and whose
pronouncements on matters both large and small were binding to the faithful. The
illustration is taken from a collection of costumes of the Ottoman Empire published
on January 1, 1802, by William Miller of Old Bond Street, London. The title page is
missing from the collection and we have been unable to track it down to date. The
book’s table of contents identifies the figures in both English and French, and each
illustration bears the names of two artists who worked on it, both of whom would no
doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market
in the “Garage” on West 26th Street in Manhattan. The seller was an American based
in Ankara, Turkey, and the transaction took place just as he was packing up his stand
for the day. The Manning editor did not have on his person the substantial amount
of cash that was required for the purchase and a credit card and check were both
politely turned down. With the seller flying back to Ankara that evening the situation
was getting hopeless. What was the solution? It turned out to be nothing more than
an old-fashioned verbal agreement sealed with a handshake. The seller simply pro-
posed that the money be transferred to him by wire and the editor walked out with
the bank information on a piece of paper and the portfolio of images under his arm.
Needless to say, we transferred the funds the next day, and we remain grateful and
impressed by this unknown person’s trust in one of us. It recalls something that might
have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
xxix

ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago—brought back to life by the pictures from this collection.
xxx ABOUT THE COVER ILLUSTRATION

1
P A R T
Learning PowerShell

The first part of this book focuses primarily on the PowerShell language and its
runtime environment. We’ll cover the complete syntax for PowerShell in detail: the
various kinds of conditional and loop statements, the operators, and the syntax for
defining functions and modules. We’ll look at how to configure and use PowerShell
remoting to do remote access.

C H A P T E R 1

Welcome to PowerShell

1.1 What is PowerShell? 5
1.2 Soul of a new language 9
1.3 Brushing up on objects 11

1.4 Up and running with PowerShell 13
1.5 Dude! Where’s my code? 22
1.6 Summary 35
Space is big. Really big! You just won’t believe how vastly hugely mind-bogglingly
big it is. I mean you may think it’s a long way down the road to the chemist, but
that’s just peanuts compared to space!

Don’t Panic.
 —Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Welcome to Windows PowerShell, the new command and scripting language from
Microsoft. We begin this chapter with two quotes from The Hitchhiker’s Guide to the
Galaxy. What do they have to do with a new scripting language? In essence, where a
program solves a particular problem or problems, a programming language can solve
any problem, at least in theory. That’s the “big, really big” part. The “Don’t Panic” bit
is, well—don’t panic. Although PowerShell is new and different, it’s been designed to
leverage what you already know, making it easy to learn. It’s also designed to allow
you to learn it a bit at a time. Starting at the beginning, here’s the traditional “Hello
world” program in PowerShell:

"Hello world."
3

As you can see, no panic needed. But “Hello world” by itself isn’t very interesting.
Here’s something a bit more complicated:

dir $env:windir*.log | Select-String -List error |
Format-Table path,linenumber –AutoSize

Although this is more complex, you can probably still figure out what it does. It
searches all the log files in the Windows directory, looking for the string “error”, and
then prints the full name of the matching file and the matching line number. “Useful,
but not very special,” you might think, because you can easily do this using cmd.exe
on Windows or bash on UNIX. So what about the “big, really big” thing? Well, how
about this example?

([xml](New-Object net.webclient).DownloadString(
"http://blogs.msdn.com/powershell/rss.aspx"
)).rss.channel.item | Format-Table title,link

Now we’re getting somewhere. This script downloads the RSS feed from the Power-
Shell team blog and then displays the title and a link for each blog entry.

NOTE RSS stands for Really Simple Syndication. This is a mechanism
that allows programs to download blogs automatically so they can be
read more conveniently than in the browser.

By the way, you weren’t expected to figure out this example yet. If you did, you can
move to the head of the class!

Finally, one last example:

[void][reflection.assembly]::LoadWithPartialName(
 "System.Windows.Forms")
$form = New-Object Windows.Forms.Form
$form.Text = "My First Form"
$button = New-Object Windows.Forms.Button
$button.text="Push Me!"
$button.Dock="fill"
$button.add_click({$form.close()})
$form.controls.add($button)
$form.Add_Shown({$form.Activate()})
$form.ShowDialog()

This script uses the Windows Forms library (Win-
Forms) to build a graphical user interface (GUI)
that has a single button displaying the text “Push
Me!” The window this script creates is shown in
figure 1.1.

Figure 1.1 When you run the code from the example,

this window will be displayed. If you don’t see it, it may

be hidden behind another window.
4 CHAPTER 1 WELCOME TO POWERSHELL

When you click the button, it closes the form and exits the script. With this you go
from "Hello world" to a GUI application in less than two pages.

Now let’s come back down to Earth for a minute. The intent of chapter 1 is to set
the stage for understanding PowerShell—what it is, what it isn’t, and, almost as
important, why the PowerShell team made the decisions they made in designing the
PowerShell language. Chapter 1 covers the goals of the project, along with some of
the major issues the team faced in trying to achieve those goals. By the end of the
chapter you should have a solid base from which to start learning and using Power-
Shell to solve real-world problems. All theory and no practice is boring, so the chap-
ter concludes with a number of small examples to give you a feel for PowerShell. But
first, a philosophical digression: while under development, from 2002 until just
before the first public release in 2006, the codename for this project was Monad. The
name Monad comes from The Monadology by Gottfried Wilhelm Leibniz, one of the
inventors of calculus. Here’s how Leibniz defined the Monad:

The Monad, of which we shall here speak, is nothing but a simple substance,
which enters into compounds. By “simple” is meant “without parts.”

—From The Monadology by Gottfried Wilhelm Leibniz (translated
 by Robert Latta)

In The Monadology, Leibniz described a world of irreducible components from which
all things could be composed. This captures the spirit of the project: to create a tool-
kit of simple pieces that you compose to create complex solutions.

1.1 WHAT IS POWERSHELL?
What is PowerShell, and why was it created? PowerShell is the new command-line/
scripting environment from Microsoft. The overall goal for this project was to provide
the best shell scripting environment possible for Microsoft Windows. This statement
has two parts, and they’re equally important, because the goal wasn’t just to produce a
good generic shell environment but rather to produce one designed specifically for the
Windows environment. Although drawing heavily from existing command-line shell
and scripting languages, the PowerShell language and runtime were designed from
scratch to be an optimal environment for the modern Windows operating system.

Historically, the Windows command line has been weak. This is mainly the result
of Microsoft’s early focus on computing for the average user, who is considered nei-
ther particularly technical nor particularly interested in computers. Most of the devel-
opment effort for Windows was put into improving the graphical environment for
the nontechnical user, rather than creating an environment for the computer profes-
sional. Although this was certainly an enormously successful commercial strategy for
Microsoft, it has left some segments of the community underserved.
WHAT IS POWERSHELL? 5

In the next couple of sections, I’ll go over some of the other environmental forces
that led to the creation of PowerShell. By environmental forces, I mean the various
business pressures and practical requirements that needed to be satisfied. But first
let’s refine our definitions of shell and scripting.

1.1.1 Shells, command lines, and scripting languages

In the previous section, I called PowerShell a command-line shell. You may be asking,
what’s a shell? And how is that different from a command interpreter? What about
scripting languages? If you can script in a shell language, doesn’t that make it a script-
ing language? In answering these questions, let’s start with shells.

Defining what a shell is can be a bit tricky, especially at Microsoft, because pretty
much everything at Microsoft has something called a shell. Windows Explorer is a
shell. Visual Studio has a component called the shell. Heck, even the Xbox has some-
thing they call a shell.

Historically, the term shell describes the piece of software that sits over an operating
system’s core functionality. This core functionality is known as the operating system ker-
nel (shell…kernel…get it?). A shell is the piece of software that lets you access the func-
tionality provided by the operating system. Windows Explorer is properly called a shell
because it lets you access the functionality of a Windows system. For our purposes,
though, we’re more interested in the traditional text-based environment where the user
types a command and receives a response. In other words, a shell is a command-line
interpreter. The two terms can be used for the most part interchangeably.

Scripting languages vs. shells

If this is the case, then what is scripting and why are scripting languages not shells? To
some extent, there’s no difference. Many scripting languages have a mode in which
they take commands from the user and then execute those commands to return
results. This mode of operation is called a Read-Evaluate-Print loop, or REPL. Not all
scripting languages have these interactive loops, but many do. In what way is a script-
ing language with a Read-Evaluate-Print loop not a shell? The difference is mainly in
the user experience. A proper command-line shell is also a proper user interface. As
such, a command line has to provide a number of features to make the user’s experi-
ence pleasant and customizable. The features that improve the user’s experience
include aliases (shortcuts for hard-to-type commands), wildcard matching so you
don’t have to type out full names, and the ability to start other programs without hav-
ing to do anything special such as calling a function to start the program. Finally,
command-line shells provide mechanisms for examining, editing, and re-executing
previously typed commands. These mechanisms are called command history.

If scripting languages can be shells, can shells be scripting languages? The answer
is, emphatically, yes. With each generation, the UNIX shell languages have grown
increasingly powerful. It’s entirely possible to write substantial applications in a mod-
ern shell language, such as bash or zsh. Scripting languages characteristically have an
6 CHAPTER 1 WELCOME TO POWERSHELL

advantage over shell languages, in that they provide mechanisms to help you develop
larger scripts by letting you break a script into components, or modules. Scripting lan-
guages typically provide more sophisticated features for debugging your scripts. Next,
scripting language runtimes are implemented in a way that makes their code execu-
tion more efficient, so that scripts written in these languages execute more quickly
than they would in the corresponding shell script runtime. Finally, scripting language
syntax is oriented more toward writing an application than toward interactively issu-
ing commands.

In the end, there’s no hard-and-fast distinction between a shell language and a
scripting language. Some of the features that make a good scripting language result in
a poor shell user experience. Conversely, some of the features that make for a good
interactive shell experience can interfere with scripting. Because PowerShell’s goal is
to be both a good scripting language and a good interactive shell, balancing the trade-
offs between user experience and scripting authoring was one of the major language
design challenges.

1.1.2 Why a new shell? Why now?

In the early 2000s, Microsoft commissioned a study to identify areas where it could
improve its offerings in the server space. Server management, and particularly com-
mand-line management of Windows systems, was called out as a critical area for
improvement. Some might say that this is like discovering that water is wet, but the
important point is that people cared about the problem. When the survey team com-
pared the command-line manageability of a Windows system to a UNIX system,
Windows was found to be limited, and this was a genuine pain point with customers.

There are a couple of reasons for the historically weak Windows command line.
First, as mentioned previously, limited effort had been put into improving the com-
mand line. The average desktop user doesn’t care about the command line, so it
wasn’t considered important. Second, when writing GUIs, you need to access what-
ever you’re managing through programmer-style interfaces called application pro-
gramming interfaces (APIs). APIs are almost universally binary (especially on
Windows), and binary interfaces aren’t command-line friendly.

Managing Windows through objects

Another factor that drove the need for a new shell model is that, as Windows
acquired more and more subsystems and features, the number of issues we had to
think about when managing a system increased dramatically. To help us deal with this
increase in complexity, the manageable elements were factored into structured data
objects. This collection of management objects is known internally at Microsoft as the
Windows management surface.

NOTE Microsoft wasn’t the only company that was running into issues
due to increased complexity. Pretty much everyone in the industry was
WHAT IS POWERSHELL? 7

having this problem. This led to the Distributed Management Task
Force (dmtf.org), an industry organization, creating a standard for man-
agement objects called the Common Information Model (CIM). Micro-
soft’s implementation of this standard is called the Windows
Management Instrumentation (WMI). Chapter 19 covers PowerShell’s
support for WMI.

Although this factoring addressed overall complexity and worked well for graphical
interfaces, it made it much harder to work with using a traditional text-based shell
environment.

Finally, as the power of the PC increased, Windows began to move off the desktop
and into the corporate datacenter. In the corporate datacenter, we had a large number
of servers to manage, and the graphical point-and-click management approach that
worked well for one machine didn’t scale. All these elements combined to make it
clear that Microsoft could no longer ignore the command line.

1.1.3 The last mile problem

Why should you care about command-line management and automation? Because it
helps to solve the IT professional’s version of the last mile problem. The last mile prob-
lem is a classical problem that comes from the telecommunications industry. It goes
like this: The telecom industry can effectively amortize its infrastructure costs across
all its customers until it gets to the last mile, where the service is finally run to an
individual location. Installing service across this last mile can’t be amortized because it
serves only a single location. Also, what’s involved in servicing any particular location
can vary significantly. Servicing a rural farmhouse is different and significantly more
expensive than running service to a house on a city street.

In the IT industry, the last mile problem is figuring out how to manage each IT
installation effectively and economically. Even a small IT environment has a wide
variety of equipment and applications. One approach to solving this is through con-
sulting: IT vendors provide consultants who build custom last mile solutions for each
end user. This, of course, has problems with recurring costs and scalability (it’s great
for the vendor, though). A better solution for end users is to empower them to solve
their own last mile problems. We do this by providing a toolkit to enable end users to
build their own custom solutions. This toolkit can’t merely be the same tools used to
build the overall infrastructure—the level of detail required is too great. Instead, we
need a set of tools with a higher level of abstraction. This is where PowerShell comes
in—its higher-level abstractions allow us to connect the various bits of your IT envi-
ronment together more quickly and with less effort.

Now that you grasp the environmental forces that led to the creation of Power-
Shell—the need for command-line automation in a distributed object-based operat-
ing environment—let’s look at the form the solution took.
8 CHAPTER 1 WELCOME TO POWERSHELL

1.2 SOUL OF A NEW LANGUAGE

The title of this section was adapted from Tracey Kidder’s Soul of a New Machine, one
of the best nontechnical technical books ever written. Kidder’s book described how
Data General developed a new 32-bit minicomputer, the Eclipse, in a single year. At
that time, 32-bit minicomputers weren’t just new computers; they represented a
whole new class of computers. It was a bold, ambitious project; many considered it
crazy. Likewise, the PowerShell project wasn’t just about creating a new shell lan-
guage. It required developing a new class of object-based shell languages—and we
were told more than a few times that we were crazy.

In this section, I’ll cover some of the technological forces that shaped the develop-
ment of PowerShell.

1.2.1 Learning from history

In section 1.1.2, I described why Microsoft needed to improve the command line.
Now let’s talk about how the company decided to improve it. In particular, let’s talk
about why Microsoft created a new language. This is certainly one of the most com-
mon questions people ask about PowerShell (right after “What, are you guys nuts?”).
People ask, “Why not just use one of the UNIX shells?” or “Why not extend the exist-
ing Windows command line?”

In practice, the team did start with an existing shell language. The original Power-
Shell grammar was based on the shell grammar for the POSIX standard shell defined
in IEEE Specification 1003.2. The POSIX shell is a mature command-line environ-
ment available on a huge variety of platforms, including Microsoft Windows. It’s
based on a subset of the UNIX Korn shell, which is itself a superset of the original
Bourne shell. Starting with the POSIX shell gave Microsoft a well-specified and stable
base. Then we had to consider how to accommodate the differences that properly
supporting the Windows environment would entail. The PowerShell team wanted to
have a shell optimized for the Windows environment in the same way that the UNIX
shells are optimized for this UNIX environment.

To begin with, traditional shells deal only with strings. Even numeric operations
work by turning a string into a number, performing the operation, and then turning
it back into a string. Given that a core goal for PowerShell was to preserve the struc-
ture of the Windows data types, the PowerShell team couldn’t simply use the POSIX
shell language as is. This factor impacted the language design more than any other.
Next, the team wanted to support a more conventional scripting experience where,
for example, expressions could be used as you’d normally use them in a scripting lan-
guage such as VBScript, Perl, or Python. With a more natural expression syntax, it
would be easier to work with the Windows management objects. Now the team just
had to decide how to make those objects available to the shell.
SOUL OF A NEW LANGUAGE 9

1.2.2 Leveraging .NET

One of the biggest challenges in developing any computer language is deciding how
to represent data in that language. For PowerShell, the key decision was to leverage
the .NET object model. .NET is a unifying object representation that’s being used
across all the groups at Microsoft. It was a hugely ambitious project that took years to
come to fruition. With this common data model, all the components in Windows
can share and understand each other’s data.

One of .NET’s most interesting features for PowerShell is that the .NET object
model is self-describing. By this, I mean that the object itself contains the information
that describes the object’s structure. This is important for an interactive environment,
as you need to be able to look at an object and see what you can do with it. For exam-
ple, if PowerShell receives an event object from the system event log, the user can
inspect the object to see that it has a data stamp indicating when the event was gener-
ated.

Traditional text-based shells facilitate inspection because everything is text. Text is
great—what you see is what you get. Unfortunately, what you see is all you get. You
can’t pull off many interesting tricks with text until you turn it into something else.
For example, if you want to find out the total size of a set of files, you can get a direc-
tory listing, which looks something like the following:

02/26/2004 10:58 PM 45,452 Q810833.log
02/26/2004 10:59 PM 47,808 Q811493.log
02/26/2004 10:59 PM 48,256 Q811630.log
02/26/2004 11:00 PM 50,681 Q814033.log

You can see where the file size is in this text, but it isn’t useful as is. You have to extract
the sequence of characters starting at column 32 (or is it 33?) until column 39,
remove the comma, and then turn those characters into numbers. Even removing the
comma might be tricky, because the thousands separator can change depending on
the current cultural settings on the computer. In other words, it may not be a
comma—it may be a period. Or it may not be present at all.

It would be easier if you could just ask for the size of the files as a number in the first
place. This is what .NET brings to PowerShell: self-describing data that can be easily
inspected and manipulated without having to convert it to text until you need to.

Choosing to use the .NET object model also brings an additional benefit in that it
allows PowerShell to directly use the extensive libraries that are part of the .NET
Framework. This brings to PowerShell a breadth of coverage rarely found in a new
language. Here’s a simple example that shows the kinds of things .NET brings to the
environment. Say you want to find out what day of the week December 13, 1974
was. You can do this in PowerShell as follows:

PS (1) > (Get-Date "December 13, 1974").DayOfWeek
Friday
10 CHAPTER 1 WELCOME TO POWERSHELL

In this example, the Get-Date command returns a .NET object, which has a property
that will calculate the day of the week corresponding to that date. The PowerShell
team didn’t need to create a library of date and time manipulation routines for Power-
Shell—they got them for free by building on top of .NET. And the same DateTime
objects are used throughout the system. For example, say you want to find out which
of two files is newer. In a text-based shell, you’d have to get a string that contains the
time each file was updated, convert those strings into numbers somehow, and then
compare them. In PowerShell, you can simply do this:

PS (6) > (dir data.txt).lastwritetime -gt
>> (dir hello.ps1).lastwritetime
>>
True

You use the dir command to get the file information objects and then compare the
last write time of each file. No string parsing is needed.

Now that you’re sold on the wonders of objects and .NET, let’s make sure we’re
all talking about the same thing when we use words like object, member, method, and
instance. The next section discusses the basics of object-oriented programming.

1.3 BRUSHING UP ON OBJECTS

Because the PowerShell environment uses objects in almost everything it does, it’s
worth running through a quick refresher on objects and how they’re used in program-
ming. If you’re comfortable with this material, feel free to skip most of this section,
but do please read the section on objects and PowerShell.

There’s no shortage of “learned debate” (also known as bitter feuding) about what
objects are and what object-oriented programming is all about. For our purposes,
we’ll use the simplest definition. An object is a unit that contains both data (proper-
ties) and the information on how to use that data (methods). Let’s look at a simple
example. In this example, you’re going to model a lightbulb as an object. This object
would contain data describing its state—whether it’s off or on. It would also contain
the mechanisms or methods needed to change the on/off state. Non-object-oriented
approaches to programming typically put the data in one place, perhaps a table of
numbers where 0 is off and 1 is on, and then provide a separate library of routines to
change this state. To change its state, the programmer would have to tell these rou-
tines where the value representing a particular light bulb was. This process could
be complicated and is certainly error prone. With objects, because both the data and
the methods are packaged as a whole, the user can work with objects in a more direct
and therefore simpler manner, allowing many errors to be avoided.

1.3.1 Reviewing object-oriented programming

That’s the basics of what objects are. Now, what’s object-oriented programming? Well,
it deals mainly with how you build objects. Where do the data elements come from?
Where do the behaviors come from? Most object systems determine the object’s
BRUSHING UP ON OBJECTS 11

capabilities through its type. In the lightbulb example, the type of the object is (sur-
prise) LightBulb. The type of the object determines what properties the object has
(for example, IsOn) and what methods it has (for example, TurnOn and TurnOff).

Essentially, an object’s type is the blueprint for what an object looks like and how
you use it. The type LightBulb would say that it has one data element—IsOn—and
two methods—TurnOn() and TurnOff(). Types are frequently further divided into
two subsets:

• Types that have an actual implementation of TurnOn() and TurnOff(). These
are typically called classes.

• Types that only describe what the members of the type should look like but not
how they work. These are called interfaces.

The pattern IsOn/TurnOn()/TurnOff() could be an interface implemented by a
variety of classes such as LightBulb, KitchenSinkTap, or Television. All these
objects have the same basic pattern for being turned on and off. From a programmer’s
perspective, if they all have the same interface (that is, the same mechanism for being
turned on and off), once you know how to turn one of these objects on or off, you
can use any type of object that has that interface.

Types are typically arranged in hierarchies with the idea that they should reflect
logical taxonomies of objects. This taxonomy is made up of classes and subclasses. A
sample taxonomy is shown in figure 1.2.

In this taxonomy, Book is the parent class, Fiction and Non-fiction are sub-
classes of Book, and so on. Although taxonomies organize data effectively, designing a
good taxonomy is hard. Frequently, the best arrangement isn’t immediately obvious.
In figure 1.2, it might be better to organize by subject matter first, instead of the
Novel/Short-Story Collection grouping. In the scientific world, people spend entire
careers categorizing items. Because categorizing well isn’t easy, people also arrange
instances of objects into collections by containment instead of by type. A library con-
tains books, but it isn’t itself a book. A library also contains other things that aren’t
books, such as chairs and tables. If at some point you decide to re-categorize all of the
books in a library, it doesn’t affect what building people visit to get a book—it only

Book

Non-

fiction
History

Short-story

collection

Mystery

Historical

Fiction

Novel

Figure 1.2 This diagram shows

how books can be organized in a

hierarchy of classes, just as object

types can be organized into classes.
12 CHAPTER 1 WELCOME TO POWERSHELL

changes how you find a book once you reach that building. If the library moves to a
new location, you have to learn where it is. Once inside the building, however, your
method for looking up books hasn’t changed. This is usually called a has-a relation-
ship—a library has-a bunch of books. Now let’s see how these concepts are used in
the PowerShell environment.

1.3.2 Objects in PowerShell

Earlier I said that PowerShell is an object-based shell as opposed to an object-oriented
language. What do I mean by object-based? In object-based scripting, you typically
use objects somebody else has already defined for you. Although it’s possible to build
your own objects in PowerShell, it isn’t something that you need to worry about—at
least not for most basic PowerShell tasks.

Returning to the light bulb example, PowerShell would probably use the Light-
Bulb class like this:

$lb = Get-LightBulb –Room bedroom
$lb.TurnOff()

Don’t worry about the details of the syntax for now—we’ll cover that later. The key
point is that you usually get an object foo by saying

Get-Foo –Option1 –Option2 bar

rather than saying something like

new Foo()

as you would in an object-oriented language.
PowerShell commands, called cmdlets, use verb-noun pairs like Get-Date. The

Get-* verb is used universally in the system to get at objects. Note that we didn’t
have to worry about whether LightBulb is a class or an interface, or care about where
in the object hierarchy it comes from. You can get all the information about the
member properties of an object through the Get-Member cmdlet (see the pattern?),
which will tell you all about an object’s properties.

But enough talk! By far the best way to understand PowerShell is to use it. In the
next section, you’ll get up and going with PowerShell, and we’ll quickly tour through
the basics of the environment.

1.4 UP AND RUNNING WITH POWERSHELL

In this section, we’ll look at the things you need to know to get going with Power-
Shell as quickly as possible. This is a brief introduction intended to provide a taste of
what PowerShell can do and how it works. We’ll begin with how to download and
install PowerShell and how to start it once it’s installed. Then we’ll cover the basic for-
mat of commands, command-line editing, and how to use command completion
with the Tab key to speed up command entry. Once you’re up and running, you’ll
learn what you can do with PowerShell.
UP AND RUNNING WITH POWERSHELL 13

NOTE The PowerShell documentation package also includes a short
Getting Started guide that will include up-to-date installation informa-
tion and instructions. You may want to take a look at this as well.

1.4.1 PowerShell

How you get PowerShell depends on what operating system you’re using. If you’re
using Windows 7 or Windows Server 2008 R2, you have nothing to do—it’s already
there. All Microsoft operating systems beginning with Windows 7 include Power-
Shell as part of the system. If you’re using Windows Server 2008, PowerShell was
included with this operating system but as an optional component that will need to
be turned on before you can use it. For earlier Microsoft operating systems, you’ll
have to download and install the PowerShell package on your computer. For details
about supported platforms, go to the PowerShell page on the Microsoft website:
http://microsoft.com/powershell.

This page contains links to the appropriate installers as well as documentation
packages and other relevant materials. Alternatively, you can go to Microsoft Update
and search for the installer there. Once you’ve located the installer, follow the
instructions to install the package.

1.4.2 Starting PowerShell

Now let’s look at how you start PowerShell running. PowerShell follows a model
found in many modern interactive environments. It’s composed of two main parts:

• The PowerShell engine, which interprets the commands

• A host application that passes commands from the user to the engine

Although there’s only one PowerShell engine, there can be many hosts, including
hosts written by third parties. In PowerShell v1, Microsoft provided only one basic
PowerShell host based on the old-fashioned Windows console. Version 2 intro-
duced a much more modern host environment, called the PowerShell Integrated
Scripting Environment (PowerShell ISE). We’ll look at both of these hosts in the
next few sections.

1.4.3 The PowerShell console host

To start an interactive PowerShell session using the console host, choose Start > All
Programs > Accessories > Windows PowerShell > Windows PowerShell. PowerShell
will start, and you’ll see a screen like the one shown in figure 1.3.

This window looks a lot like the old Windows command window (except that it’s
blue and very pale yellow instead of black and white). Now type the first command
most people type: dir. This produces a listing of the files on your system, as shown
in figure 1.4.
14 CHAPTER 1 WELCOME TO POWERSHELL

As you’d expect, the dir command prints a listing of the current directory to standard
output.

NOTE Let’s stop for a second and talk about the conventions we’re
going to use in examples. Because PowerShell is an interactive environ-
ment, we’ll show a lot of example commands as the user would type
them, followed by the responses the system generates. Code font is
used to distinguish examples from the rest of the text. Before the com-
mand text, there will be a prompt string that looks like PS (2) >. Fol-
lowing the prompt, the actual command will be displayed and then
PowerShell’s responses will follow on the next few lines. PowerShell
doesn’t display anything in front of the output lines, so you can distin-
guish output from commands by looking for the prompt string. These
conventions are illustrated in figure 1.5.

Figure 1.3 When you start an interactive PowerShell session, the first thing

you see is the PowerShell logo and then the prompt. As soon as you see the

prompt, you can begin entering commands.

Figure 1.4 At the prompt, type dir and press Enter. PowerShell

will then execute the dir command and display a list of files in the

current directory.
UP AND RUNNING WITH POWERSHELL 15

Command editing in the console

Typing in commands is all well and good, but you also want to be able to edit and
rerun commands. Command-line editing works the same way in the PowerShell con-
sole window as it does for cmd.exe. The available editing features and keystrokes are
listed in table 1.1.

These key sequences let you create and edit commands effectively at the command
line. In fact, they’re not part of PowerShell at all. These command-line editing fea-
tures are part of the Windows console subsystem, so they’re the same across all con-
sole applications.

Users of cmd.exe or any modern UNIX shell will also expect to be able to do
command completion. Because this component is common to both host environ-
ments, we’ll cover how it works in its own section.

Now let’s leap into the 21st century and look at a modern shell environment: the
PowerShell ISE.

Table 1.1 Command editing features

Keyboard sequence Editing operation

Left/right arrows Moves the editing cursor left and right through the current
command line.

Ctrl-left arrow, Ctrl-right arrow Holding the Ctrl key down while pressing the left and right
arrow keys moves the editing cursor through the current
command line one word at a time, instead of one character
at a time.

Home Moves the editing cursor to the beginning of the current
command line.

End Moves the editing cursor to the end of the current com-
mand line.

Up/down arrow Moves up and down through the command history.

Insert key Toggles between character insert and character overwrite
modes.

Delete key Deletes the character under the cursor.

Backspace key Deletes the character to the left of the cursor.

PS (1) > 1+2+3+4

10

PS (2) >

User enters

“1+2+3+4”

Next prompt

PowerShell

outputs the

result: 10

First prompt

Figure 1.5 This diagram illustrates the con-

ventions we’re using for showing examples in

this book. The code that the user enters ap-

pears to the right of the prompt. Any output

generated by that command is shown on the

following lines.
16 CHAPTER 1 WELCOME TO POWERSHELL

1.4.4 The PowerShell Integrated Scripting Environment

Starting with v2, PowerShell includes a modern integrated environment for working
with PowerShell: the Integrated Scripting Environment (ISE). To start the Power-
Shell ISE, choose Start > All Programs > Accessories > Windows PowerShell > Win-
dows PowerShellISE. PowerShell will start, and you’ll see a screen like that shown in
figure 1.6.

You can see that, by default, the window is divided into three parts: the command
entry area at the bottom, the output window in the middle, and an editor at the top.
As you did in the console window, let’s run the dir command. Type dir into the
bottom pane, and press Enter. The command will disappear from the bottom pane
and reappear in the middle pane, followed by the output of the command, as shown
in figure 1.7.

Because the ISE is a real Windows application, it follows all of the Windows
Common User Access (CUA) guidelines. The left and right arrows work as expected.
The up and down arrows will move you through the history of commands that
you’ve entered.

Something that requires special mention is how Ctrl-C works. By default, this is the
key sequence for copying into the clipboard in Windows. It’s also the way to interrupt
a running command in most shells. As a result, the ISE has to treat Ctrl-C in a special
way. When something is selected, Ctrl-C copies the selection. If there’s a command
running and there’s no selection, then the running command will be interrupted.

There’s also another way to interrupt a running command. You may have noticed
the two buttons immediately above the command entry pane—the ones that look

Figure 1.6 The PowerShell Integrated Scripting Environment
UP AND RUNNING WITH POWERSHELL 17

like the play and stop buttons on a media player. As you might expect, the green
“play” button will run a command just like if you press Enter. If there’s a command
running, the play button is disabled (grayed out) and the red “stop” button is
enabled. Clicking this button will stop the currently running command.

Using the editor pane

The topmost pane in the ISE is a script editor that understands the PowerShell lan-
guage. This editor will do syntax highlighting as you type in script text. It will also let
you select a region and either press the play button above the pane or press the F8 key
to execute the part of the script you want to test out. If nothing is selected in the win-
dow, then the whole script will be run. If you’re editing a script file, the ISE will ask if
you want to save the file before running it.

Another nice feature of the ISE editor is the ability to have multiple files open at
once, each in individual tabs, as shown in figure 1.8.

And finally, in addition to offering multiple editor tabs, the ISE allows you to have
multiple session tabs, as shown in figure 1.9. In this figure you can see that there are
four session tabs and, within each tab, there can be multiple editor tabs. This makes
the ISE a powerful way to organize your work and easily multitask between different
activities.

Figure 1.7 This figure shows running the dir command in the PowerShell ISE. The

command is entered in the bottom pane and the result of the command is shown in

the output pane in the middle.
18 CHAPTER 1 WELCOME TO POWERSHELL

Figure 1.8 This figure shows using multiple tabs in the ISE editor. Each new file

that’s opened gets its own tab. Files can be opened from the File menu or by

using the psedit command in the command window, as shown.

Figure 1.9 This figure shows how multiple session tabs are displayed in the ISE.

Note that each session tab has its own set of editor tabs.
UP AND RUNNING WITH POWERSHELL 19

These are the basic concepts in the ISE. But the ISE isn’t just a tool for writing, test-
ing, and debugging PowerShell scripts. It’s also scriptable by PowerShell. This means
that you can use scripts to manipulate the contents of buffers, create new tabs and
menu items, and so forth. This allows you to use the ISE as part of your application
in much the same way that the Emacs editor was a component of custom applica-
tions. There are some limitations to this in the first version of the ISE—the Power-
Shell team didn’t have time to do everything they wanted (there’s never enough time),
but the result is still powerful. You’ll see more of this later on.

NOTE Okay, so why is this an “ISE” instead of an “IDE” like Visual
Studio? The big difference is that the ISE is intended for interactive use
of PowerShell, not just the creation of PowerShell applications. One of
the biggest differences between the two approaches is the lack of a proj-
ect system in the ISE.

1.4.5 Command completion

One of the most useful editing features in PowerShell is command completion, also
called tab completion. Although cmd.exe does have tab completion, PowerShell’s
implementation is significantly more powerful. Command completion allows you to
partially enter a command, then press the Tab key, and have PowerShell try to fill in
the rest of the command. By default, PowerShell will do tab completion against the
file system, so if you type a partial filename and then press Tab, the system matches
what you’ve typed against the files in the current directory and returns the first
matching filename. Pressing Tab again takes you to the next match, and so on. Pow-
erShell also supplies the powerful capability of tab completion on wildcards (see
chapter 4 for information on PowerShell wildcards). This means that you can type

PS (1) > cd c:\pro*files<tab>

and the command is expanded to

PS (2) > cd 'C:\Program Files'

PowerShell will also do tab completion on partial cmdlet names. If you enter a cmdlet
name up to the dash and then press the Tab key, the system will step through the
matching cmdlet names.

So far, this isn’t much more interesting than what cmd.exe provides. What’s sig-
nificantly different is that PowerShell also does completion on parameter names. If
you enter a command followed by a partial parameter name and press Tab, the sys-
tem will step through all of the possible parameters for that command.

PowerShell also does tab completion on variables. If you type a partial variable
name and then press Tab, PowerShell will complete the name of the variable.

Finally, PowerShell does completion on properties in variables. If you’ve used the
Microsoft Visual Studio development environment, you’ve probably seen the
20 CHAPTER 1 WELCOME TO POWERSHELL

IntelliSense feature. Property completion is kind of a limited IntelliSense capability at
the command line. If you type something like

PS (1) > $a="abcde"
PS (2) > $a.len<tab>

the system expands the property name to

PS (2) > $a.Length

Again, the first Tab returns the first matching property or method. If the match is a
method, an open parenthesis is displayed

PS (3) > $a.sub<tab>

which produces

PS (3) > $a.Substring(

Note that the system corrects the capitalization for the method or property name to
match how it was actually defined. This doesn’t impact how things work. PowerShell
is case insensitive by default whenever it has to match against something. (There are
operators that allow you to do case-sensitive matching, which are discussed in chapter 3.)

Version 2 of PowerShell introduced an additional tab completion feature (sug-
gested by a PowerShell user, no less). PowerShell remembers each command you
type. You can access previous commands using the arrow keys or show them using
the Get-History command. A new feature was added to allow you to do tab com-
pletion against the command history. To recall the first command containing the
string “abc”, type the # sign, followed by the pattern of the command you want to
find, and then press the Tab key:

PS (4) > #abc<tab>

This will expand the command line to

PS (4) > $a="abcde"

You can also select a command from the history by number. To do so, type the # sign,
followed by the number of the command to run, and press Tab:

PS (5) > #2<tab>

And this should expand to

PS (5) > $a="abcde"

NOTE The PowerShell tab completion mechanism is user extendable.
Although the path completion mechanism is built into the executable,
features such as parameter and property completion are implemented
through a shell function that users can examine and modify. The name
of this function is TabExpansion. Chapter 7 describes how to write
and manipulate PowerShell functions.
UP AND RUNNING WITH POWERSHELL 21

1.5 DUDE! WHERE’S MY CODE?
Okay, enough talk, let’s see some more example code! First, we’ll revisit the dir exam-
ple. This time, instead of simply displaying the directory listing, you’ll save it into a
file using output redirection just like in other shell environments. In the following
example, you’ll use dir to get information about a file named somefile.txt in the root
of the C: drive. Using redirection, you direct the output into a new file, c:\foo.txt,
and then use the type command to display what was saved. Here’s what this looks
like:

PS (2) > dir c:\somefile.txt > c:\foo.txt
PS (3) > type c:\foo.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/17/2004 3:32 AM 0 somefile.txt
PS (4) >

As you can see, commands work more or less as you’d expect.

NOTE Okay, nobody has a file named somefile.txt in the root of their
C: drive (except me). For the purpose of this example, just choose any
file that does exist and the example will work fine, though obviously
the output will be different.

Let’s go over some other things that should be familiar to you.

1.5.1 Navigation and basic operations

The PowerShell commands for working with the file system should be pretty familiar
to most users. You navigate around the file system with the cd command. Files are
copied with the copy or cp commands, moved with the move and mv commands, and
removed with the del or rm commands. Why two of each command, you might ask?
One set of names is familiar to cmd.exe/DOS users and the other is familiar to
UNIX users. In practice they’re actually aliases for the same command, designed to
make it easy for people to get going with PowerShell. One thing to keep in mind,
however, is that although the commands are similar they’re not exactly the same as
either of the other two systems. You can use the Get-Help command to get help
about these commands. Here’s the output of Get-Help for the dir command:

PS (1) > Get-Help dir

NAME
 Get-ChildItem

SYNOPSIS
 Gets the items and child items in one or more specified locations.
22 CHAPTER 1 WELCOME TO POWERSHELL

SYNTAX
 Get-ChildItem [-Exclude <string[]>] [-Force] [-Include <string[]>]
 [-Name] [-Recurse] [[-Path] <string[]>] [[-Filter] <string>]
 [<CommonParameters>]

 Get-ChildItem [-Exclude <string[]>] [-Force] [-Include <string[]>]
 [-Name] [-Recurse] [[-Filter] <string>] [-LiteralPath] <string[]>
 [<CommonParameters>]

DETAILED DESCRIPTION
 The Get-Childitem cmdlet gets the items in one or more specified
 locations. If the item is a container, it gets the items inside the
 container, known as child items. You can use the Recurse parameter
 to get items in all child containers.

 A location can be a file system location, such as a directory,
 or a location exposed by another provider, such as a registry
 hive or a certificate store.

RELATED LINKS
 About_Providers
 Get-Item
 Get-Alias
 Get-Location
 Get-Process

REMARKS
 To see the examples, type: "get-help Get-ChildItem -examples".
 For more information, type: "get-help Get-ChildItem -detailed".
 For technical information, type: "get-help Get-ChildItem -full".

The PowerShell help subsystem contains information about all of the commands pro-
vided with the system and is a great way to explore what’s available. You can even use
wildcard characters to search through the help topics (v2 and later). Of course, this is
the simple text output. The PowerShell ISE also includes help in the richer Windows
format and will even let you select an item and then press F1 to view the help for the
item. Finally, by using the –Online option to Get-Help, you can view the help text
for a command or topic using a web browser.

NOTE Get-Help -Online is the best way to get help because the
online documentation is constantly being updated and corrected,
whereas the local copies are not.

1.5.2 Basic expressions and variables

In addition to running commands, PowerShell can evaluate expressions. In effect, it
operates as a kind of calculator. Let’s evaluate a simple expression:

PS (4) > 2+2
4

DUDE! WHERE’S MY CODE? 23

Notice that as soon as you typed the expression, the result was calculated and displayed.
It wasn’t necessary to use any kind of print statement to display the result. It’s impor-
tant to remember that whenever an expression is evaluated, the result of the expression
is output, not discarded. We’ll explore the implications of this in later sections.

Here are a few more examples of PowerShell expressions:

PS (5) > (2+2)*3
12
PS (6) > (2+2)*6/2
12
PS (7) > 22/7
3.14285714285714

You can see from these examples that PowerShell supports most of the basic arithme-
tic operations you’d expect, including floating point.

NOTE PowerShell supports single and double precision floating
points, as well as the .NET decimal type. See chapter 3 for more details.

Because I’ve already shown you how to save the output of a command into a file
using the redirection operator, let’s do the same thing with expressions:

PS (8) > (2+2)*3/7
1.71428571428571
PS (9) > (2+2)*3/7 > c:\foo.txt
PS (10) > type c:\foo.txt
1.71428571428571

Saving expressions into files is useful; saving them in variables is more useful:

PS (11) > $n = (2+2)*3
PS (12) > $n
12
PS (13) > $n / 7
1.71428571428571

Variables can also be used to store the output of commands:

PS (14) > $files = dir
PS (15) > $files[1]
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Document
 s and Settings\brucepay

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/25/2006 10:32 PM Desktop

In this example, you extracted the second element of the collection of file informa-
tion objects returned by the dir command. You were able to do this because you
saved the output of the dir command as an array of objects in the $files variable.

NOTE Collections in PowerShell start at 0, not 1. This is a character-
istic we’ve inherited from .NET. This is why $files[1] is extracting
the second element, not the first.
24 CHAPTER 1 WELCOME TO POWERSHELL

Given that PowerShell is all about objects, the basic operators need to work on more
than just numbers. So, for example, you can also use the plus sign (+) to add or con-
catenate strings as follows:

PS (16) > "hello" + " world"
hello world

In this case, the + operator adds the two strings together to produce a new, longer
string. You can also mix and match argument types. You can add a number to a string
and PowerShell will take care of turning the number into a string and then concate-
nating the two strings. Here’s how this looks:

PS (17) > "a number: " + 123
a number: 123

The + operator also works with the object arrays we mentioned earlier. You can create
an array of numbers simply by typing the numbers you want in the collection sepa-
rated by a comma. You can then add these collections using the + operator as follows:

PS (18) > 1,2 + 3,4
1
2
3
4

As with strings, the + operator adds the two arguments together to produce a new,
longer array. You can even add an array to a string:

PS (19) > "Numbers: " + 1,2,3,4
Numbers: 1 2 3 4

And again, PowerShell takes care of turning the array into a string and then append-
ing it to the argument on the right-hand side. These examples only scratch the sur-
face of what can be done with the PowerShell operators. Chapters 5 and 6 cover these
features in detail.

1.5.3 Processing data

As you’ve seen in the preceding sections, you can run commands to get information,
perform some basic operations on this information using the PowerShell operators,
and then store the results in files and variables. Now let’s look at some additional ways
you can process this data. First you’ll see how to sort objects and how to extract prop-
erties from those objects. Then we’ll look at using the PowerShell flow-control state-
ments to write scripts that use conditionals and loops to do more sophisticated
processing.

Sorting objects

First let’s sort the list of file information objects returned by dir. Because you’re sort-
ing objects, the command you’ll use is Sort-Object. For convenience, you’ll use the
DUDE! WHERE’S MY CODE? 25

shorter alias sort in these examples. Start by looking at the default output, which
shows the files sorted by name:

PS (16) > cd c:\files
PS (17) > dir
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:54 PM 66 d.txt

The output shows the basic properties on the file system objects sorted by the name
of the file. Now, let’s run it through sort:

PS (18) > dir | sort
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:54 PM 66 d.txt

Granted, it’s not very interesting. Sorting an already sorted list by the same property
gives you the same result. Let’s do something a bit more interesting. Let’s sort by
name in descending order:

PS (19) > dir | sort -Descending
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:54 PM 66 d.txt
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:55 PM 98 a.txt

So there you have it—files sorted by name in reverse order. Now let’s sort by some-
thing other than the name of the file: file length. You may remember from an earlier
section how hard it would be to sort by file length if the output were just text.

Sort on UNIX

On a UNIX system, the sort command looks like
ls -l | sort -n -k 5

which, though pithy, is pretty opaque. Here’s what it’s doing. The -n option tells the
sort function that you want to do a numeric sort. -k tells you which field you want
to sort on.
26 CHAPTER 1 WELCOME TO POWERSHELL

In PowerShell, when you use the Sort-Object cmdlet, you don’t have to tell it to
sort numerically—it already knows the type of the field, and you can specify the sort
key by property name instead of a numeric field offset. The result looks like this:

PS (20) > dir | sort -Property length
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:54 PM 66 d.txt
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:56 PM 102 c.txt

This illustrates what working with pipelines of objects gives you:

• You have the ability to access data elements by name instead of using substring
indexes or field numbers.

• By having the original type of the element preserved, operations execute cor-
rectly without you having to provide additional information.

Now let’s look at some other things you can do with objects.

Selecting properties from an object

In this section, we’ll introduce another cmdlet for working with objects: Select-
Object. This cmdlet allows you to select a subrange of the objects piped into it and
to specify a subset of the properties on those objects.

Say you want to get the largest file in a directory and put it into a variable:

PS (21) > $a = dir | sort -Property length -Descending |
>> Select-Object -First 1
>>
PS (22) > $a
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:56 PM 102 c.txt

(continued)

(The sort utility considers space-separated bits of text to be fields.) In the output of
the ls -l command, the field containing the length of the file is at offset 5, as
shown in the following:
-rw-r--r-- 1 brucepay brucepay 5754 Feb 19 2005 index.html
-rw-r--r-- 1 brucepay brucepay 204 Aug 19 12:50 page1.htm

You need to set things up this way because ls produces unstructured strings. You
have to tell sort how to parse those strings before it can sort them.
DUDE! WHERE’S MY CODE? 27

From this you can see that the largest file is c.txt.

NOTE You’ll notice the secondary prompt >> in the previous exam-
ple. The first line of the command ended in a pipe symbol. The Power-
Shell interpreter noticed this, saw that the command was incomplete,
and prompted for additional text to complete the command. Once the
command is complete, you type a second blank line to send the com-
mand to the interpreter. If you just want to cancel the command, you
can press Ctrl-C at any time to return to the normal prompt.

Now say you want only the name of the directory containing the file and not all the
other properties of the object. You can also do this with Select-Object. As with the
Sort-Object cmdlet, Select-Object takes a -Property parameter (you’ll see this
frequently in the PowerShell environment—commands are consistent in their use of
parameters):

PS (23) > $a = dir | sort -Property length -Descending |
>> Select-Object -First 1 -Property directory
>>
PS (24) > $a

Directory

C:\files

You now have an object with a single property.

Processing with the ForEach-Object cmdlet

The final simplification is to get just the value itself. I’ll introduce a new cmdlet that
lets you do arbitrary processing on each object in a pipeline. The ForEach-Object
cmdlet executes a block of statements for each object in the pipeline:

PS (25) > $a = dir | sort -Property length -Descending |
>> Select-Object -First 1 |
>> ForEach-Object { $_.DirectoryName }
>>
PS (26) > $a
C:\files

This shows that you can get an arbitrary property out of an object and then do arbi-
trary processing on that information using the ForEach-Object command. Com-
bining those features, here’s an example that adds up the lengths of all the objects in a
directory:

PS (27) > $total = 0
PS (28) > dir | ForEach-Object {$total += $_.length }
PS (29) > $total
308
28 CHAPTER 1 WELCOME TO POWERSHELL

In this example, you initialize the variable $total to 0, and then add to it the length
of each file returned by the dir command and finally display the total.

Processing other kinds of data

One of the great strengths of the PowerShell approach is that once you learn a pattern
for solving a problem, you can use this same pattern over and over again. For exam-
ple, say you want to find the largest three files in a directory. The command line
might look like this:

PS (1) > dir | sort -Descending length | select -First 3
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:54 PM 66 d.txt

Here, the dir command retrieved the list of file information objects, sorted them in
descending order by length, and then selected the first three results to get the three
largest files.

Now let’s tackle a different problem. You want to find the three processes on the
system with the largest working set size. Here’s what this command line looks like:

PS (2) > Get-Process | sort -Descending ws | select -First 3
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1294 43 51096 81776 367 11.48 3156 OUTLOOK
 893 25 55260 73340 196 79.33 5124 iexplore
 2092 64 42676 54080 214 187.23 988 svchost

This time you run Get-Process to get data about the processes on this computer
and sort on the working set instead of the file size. Otherwise, the pattern is identical
to the previous example. This command pattern can be applied over and over again.
For example, to get the three largest mailboxes on an Exchange mail server, the com-
mand might look like this:

Get-MailboxStatistics | sort –descending TotalItemSize | select –First 3

Again the pattern is repeated except for the Get-MailboxStatistics command and
the property to filter on.

Even when you don’t have a specific command for the data you’re looking for and
have to use other facilities such as WMI, you can continue to apply the pattern. Say
you want to find the three drives on the system that have the most free space. To do
this you need to get some data from WMI. Not surprisingly, the command for this is
Get-WmiObject. Here’s how you’d use this command:

PS (4) > Get-WmiObject –Class Win32_LogicalDisk |
>> sort -Descending freespace | select -First 3 |
DUDE! WHERE’S MY CODE? 29

>> Format-Table -AutoSize deviceid, freespace
>>
deviceid freespace
-------- ---------
C: 97778954240
T: 31173663232
D: 932118528

Once again, the pattern is almost identical. The Get-WmiObject command returns a
set of objects from WMI. You pipe these objects into sort and sort on the
freespace property, and then use Select-Object to extract the first three.

NOTE Because of this ability to apply a command pattern over and
over, most of the examples in this book are deliberately generic. The
intent is to highlight the pattern of the solution rather than show a spe-
cific example. Once you understand the basic patterns, you can effec-
tively adapt them to solve a multitude of other problems.

1.5.4 Flow-control statements

Pipelines are great, but sometimes you need more control over the flow of your script.
PowerShell has the usual script flow-control statements found in most programming
languages. These include the basic if statements, a powerful switch statement, and
various loops like a while loop, for and foreach loops, and so on. Here’s an exam-
ple showing use of the while and if statements:

PS (1) > $i=0
PS (2) > while ($i++ -lt 10) { if ($i % 2) {"$i is odd"}}
1 is odd
3 is odd
5 is odd
7 is odd
9 is odd
PS (3) >

This example uses the while loop to count through a range of numbers, printing out
only the odd numbers. In the body of the while loop is an if statement that tests to
see whether the current number is odd, and then writes out a message if it is. You can
do the same thing using the foreach statement and the range operator (..), but
much more succinctly:

PS (3) > foreach ($i in 1..10) { if ($i % 2) {"$i is odd"}}
1 is odd
3 is odd
5 is odd
7 is odd
9 is odd

The foreach statement iterates over a collection of objects, and the range operator is
a way to generate a sequence of numbers. The two combine to make looping over a
sequence of numbers very clean.
30 CHAPTER 1 WELCOME TO POWERSHELL

Of course, because the range operator generates a sequence of numbers and num-
bers are objects like everything else in PowerShell, you can implement this using
pipelines and the ForEach-Object cmdlet:

PS (5) > 1..10 | foreach { if ($_ % 2) {"$_ is odd"}}
1 is odd
3 is odd
5 is odd
7 is odd
9 is odd

These examples only scratch the surface of what you can do with the PowerShell
flow-control statements (just wait until you see the switch statement!). The com-
plete set of control structures is covered in detail in chapter 6 with lots of examples.

1.5.5 Scripts and functions

What good is a scripting language if you can’t package commands into scripts? Power-
Shell lets you do this by simply putting your commands into a text file with a .ps1
extension and then running that command. You can even have parameters in your
scripts. Put the following text into a file called hello.ps1:

param($name = "bub")
"Hello $name, how are you?"

Notice that the param keyword is used to define a parameter called $name. The para-
meter is given a default value of "bub". Now you can run this script from the Power-
Shell prompt by typing the name as .\hello. You need the .\ to tell PowerShell to get
the command from the current directory (chapter 21 explains why this is needed).

NOTE Before you can run scripts on a machine in the default config-
uration, you’ll have to change the PowerShell execution policy to allow
scripts to run. See Get-Help –Online about_execution_policies
for detailed instructions.

The first time you run this script, you won’t specify any arguments:

PS (1) > .\hello
Hello bub, how are you?

You see that the default value was used in the response. Run it again, but this time
specify an argument:

PS (2) > .\hello Bruce
Hello Bruce, how are you?

Now the argument is in the output instead of the default value. Sometimes you just
want to have subroutines in your code. PowerShell addresses this need through func-
tions. Let’s turn the hello script into a function. Here’s what it looks like:

PS (3) > function hello {
>> param($name = "bub")
DUDE! WHERE’S MY CODE? 31

>> "Hello $name, how are you"
>> }
>>

The body of the function is exactly the same as the script. The only thing added is the
function keyword, the name of the function, and braces around the body of the
function. Now run it, first with no arguments as you did with the script:

PS (4) > hello
Hello bub, how are you

and then with an argument:
PS (5) > hello Bruce
Hello Bruce, how are you

Obviously the function operates in the same way as the script except that PowerShell
didn’t have to load it from a disk file so it’s a bit faster to call. Scripts and functions are
covered in detail in chapter 7.

1.5.6 Remoting and the Universal Execution Model

In the previous sections, you’ve seen the kinds of things you can do with PowerShell
on a single computer. But the computing industry has long since moved beyond a
one-computer world. Being able to manage groups of computers, without having to
physically visit each one, is critical in the modern IT world. To address this, Power-
Shell v2 introduced built-in remote execution capabilities (remoting) and the Univer-
sal Execution Model—a fancy term that just means that if it works locally, then it
should work remotely.

NOTE At this point you should be asking “If this is so important why
wasn’t it in v1?” In fact it was planned from shortly before day one of
the PowerShell project. But, to make something universal, secure, and
simple is, in fact, very hard.

The core of PowerShell remoting is the Invoke-Command command, which, again for
convenience, has a much shorter alias: icm. This command allows you to invoke a
block of PowerShell script on the current computer, on a remote computer, or on a
thousand remote computers. Let’s see some of this in action. The example scenario will
be to check the version of the Microsoft Management Console (MMC) host program
installed on a computer. You might need to do this because you want to install an MMC
extension (called a snap-in) on a set of machines and this snap-in requires a minimum
version of the MMC host. You can do this locally by using the Get-Command command
(gcm) to retrieve information about mmc.exe, the executable for the MMC host:

PS (1) > (gcm mmc.exe).FileVersionInfo.ProductVersion
6.1.7069.0

This is a simple one-line command, and it shows that version 6.1 of mmc.exe is
installed on the local machine. Now let’s run it on a remote machine. (We’ll assume
32 CHAPTER 1 WELCOME TO POWERSHELL

that your target machine names are stored in the variables $m1 and $m2.) Let’s check
the version on the first machine. Run the same command as before, but this time
enclose it in braces as an argument to icm. Also give the icm command the name of
the host to execute on:

PS {2) > icm $m1 {
>> (gcm mmc.exe).FileVersionInfo.ProductVersion
>> }
>>
6.0.6000.16386

Oops—this machine has an older version of mmc.exe. Okay, let’s try machine 2.
Run exactly the same command, but pass in the name of the second machine this
time:

PS {3) > icm $m2 {
>> (gcm mmc.exe).FileVersionInfo.ProductVersion
>> }
>>
6.1.7069.0

This machine is up to date. At this point you’ve addressed the need to physically go to
each machine but you’re still executing the commands one at a time. Let’s fix that too
by putting the machines to check into a list. You’ll use an array variable for this exam-
ple, but this list could come from a file, an Excel spreadsheet, a database, or a web ser-
vice. First, run the command with the machine list:

PS {4) > $mlist = $m1,$m2
PS {5) > icm $mlist {
>> (gcm mmc.exe).FileVersionInfo.ProductVersion
>> }
>>
6.0.6000.16386
6.1.7069.0

You get same the same results as last time but as a list instead of one at a time. In prac-
tice, most of your machines are probably up to date, so you really only care about the
ones that don’t have the correct version of the software. You can use the where com-
mand to filter out the machines you don’t care about:

PS {6) > icm $mlist {
>> (gcm mmc.exe).FileVersionInfo.ProductVersion
>> } | where { $_ -notmatch '6\.1' }
>>
6.0.6000.16386

This returns the list of machines that have out-of-date mmc.exe versions. There’s
still a problem, though: you see the version number but not the computer’s name.
Obviously you’ll need this too if you’re going to update those machines. To address
DUDE! WHERE’S MY CODE? 33

this, PowerShell remoting automatically adds the name of the originating computer
to each received object using a special property called PSComputerName.

Now let’s jump ahead a bit and see how much effort it’d be to produce a nice
table of computer names and version numbers. You’ll run the remote command
again, use where to filter the results, extract the fields you want to display using the
select command, and finally format the report using the Format-Table command.
For the purpose of this example, you’ll add the machine lists together so you know
you’ll get two records in your report. Here’s what the command looks like:

PS {7) > icm ($mlist + $mlist) {
>> (gcm mmc.exe).FileVersionInfo.ProductVersion } |
>> where { $_ -notmatch '6\.1' } |
>> select @{n="Computer"; e={$_.PSComputerName}},
>> @{n="MMC Version"; e={$_}} |
>> Format-Table -auto
>>

Computer MMC Version
-------- -----------
brucepaydev07 6.0.6000.16386
brucepaydev07 6.0.6000.16386

Although the command may look a bit scary, you were able to produce your report
with little effort. And the techniques you used for formatting the report can be used
over and over again. This example shows how easily PowerShell remoting can be used
to expand the reach of your scripts to cover one, hundreds, or thousands of comput-
ers all at once. But sometimes you just want to work with a single remote machine
interactively. Let’s see how to do that.

The Invoke-Command command is the way to programmatically execute Power-
Shell commands on a remote machine. When you want to connect to a machine so
you can interact with it on a one-to-one basis, you use the Enter-PSSession com-
mand. This command allows you to start an interactive one-to-one session with a
remote computer. Running Enter-PSSession looks like this:

PS (11) > Enter-PSSession server01

[server01]: PS > (gcm mmc.exe).FileVersionInfo.ProductVersion
6.0.6000.16386
[brucepaydev07]: PS > Get-Date

Sunday, May 03, 2009 7:40:08 PM

[server01]: PS > exit
PS (12) >

As shown here, when you connect to the remote computer, your prompt changes to
indicate that you’re working remotely. Otherwise, once connected, you can pretty
much interact with the remote computer the same way you would with a local
machine. When you’re done, exit the remote session with the exit command, and
34 CHAPTER 1 WELCOME TO POWERSHELL

this pops you back to the local session. This brief introduction covers some powerful
techniques, but we’ve only begun to cover all the things remoting lets you do.

At this point, we’ll end our “Cook’s tour” of PowerShell. We’ve only breezed over
the features and capabilities of the environment. There are many other areas of Pow-
erShell that we haven’t covered here, especially in v2, which introduced advanced
functions and scripts, modules, eventing support, and many more features. In
upcoming chapters, we’ll explore each of the elements discussed here in detail and a
whole lot more.

1.6 SUMMARY

This chapter covered what PowerShell is and, just as important, why it is. We also
took a whirlwind tour through some simple examples of using PowerShell interac-
tively. Here are the key points that we covered:

• PowerShell is the new command-line/scripting environment from Microsoft.
Since its introduction with Windows Server 2008, PowerShell has rapidly
moved to the center of Microsoft server and application management technolo-
gies. Many of the most important server products, including Exchange, Active
Directory, and SQL Server, now use PowerShell as their management layer.

• The Microsoft Windows management model is primarily object based, through
.NET, COM, and WMI. This required Microsoft to take a novel approach to
command-line scripting, incorporating object-oriented concepts into a com-
mand-line shell. PowerShell uses the .NET object model as the base for its type
system but can also access other object types like WMI.

• PowerShell is an interactive environment with two different host applications:
the console host PowerShell.exe and the graphical host powershell_
ise.exe. It can also be “hosted” in other applications to act as the scripting
engine for those applications.

• Shell operations like navigation and file manipulation in PowerShell are similar
to what you’re used to in other shells.

• The way to get help about things in PowerShell is to use the Get-Help com-
mand (or by selecting text and pressing F1 in the ISE).

• PowerShell is sophisticated with a full range of calculation, scripting, and text
processing capabilities.

• PowerShell v2 introduced a comprehensive set of remoting features to allow you
to do scripted automation of large collections of computers.

In the following chapters, we’ll look at each of the PowerShell features we showed you
here in much more detail. Stay tuned!
SUMMARY 35

C H A P T E R 2

Foundations of PowerShell

2.1 Getting a sense of the

PowerShell language 37
2.2 The core concepts 38
2.3 Aliases and elastic syntax 46

2.4 Parsing and PowerShell 50
2.5 How the pipeline works 60
2.6 Formatting and output 64
2.7 Summary 70
“Begin at the beginning,” the king said
“and then go on till you come to the end, then stop.”

 —Lewis Carroll, Alice in Wonderland

Vizzini: Inconceivable!

Inigo: You keep on using that word. I do not think it means what
you think it means.

 —William Goldman, The Princess Bride

This chapter introduces the foundational concepts underlying the PowerShell lan-
guage and its environment. We’ll cover language details that are specific to PowerShell
and look at how the interpreter parses the commands we type. This chapter also cov-
ers the various types of commands you’ll encounter along with the anatomy and
operation of the pipeline itself. We’ll look at the basic syntax for expressions and com-
mands, including how to add comments to scripts and how arguments and parame-
ters are handled. Finally, we’ll close the chapter with a discussion of how the
formatting and output subsystem works in PowerShell.
36

The chapter presents many examples that aren’t completely explained. If you
don’t understand everything when you read the examples, don’t worry—we’ll revisit
the material in later chapters. In this chapter, we just want to cover the core con-
cepts—we’ll focus on the details in subsequent chapters.

2.1 GETTING A SENSE OF THE POWERSHELL LANGUAGE

Before digging too deep into PowerShell concepts and terminology, let’s capture some
first impressions of the language: what does the PowerShell language look and feel
like? Birdwatchers have to learn how to distinguish hundreds of species of fast-
moving little brown birds (or LBBs, as they’re known). To understand how they do
this, I consulted with my wife, the “Master Birder.” (The only bird I can identify is a
chicken, preferably stuffed and roasted.) Birdwatchers use something called the GISS
principle, which stands for General Impression, Size, and Shape. It’s that set of char-
acteristics that allow us to determine what we’ve seen even though we’ve had only a
very brief or distant glance. Take a look at the silhouettes shown in figure 2.1. The
figure shows the relative sizes of four birds and highlights the characteristic shape of
each one. This is more than enough information to recognize each bird.

What does this have to do with computers (other than to prove we aren’t the only
ones who make up strange acronyms)? In essence, the GISS principle also works well
with programming languages. The GISS of the PowerShell syntax is that it’s like any
of the C programming language descendents with specific differences such as the fact
that variables are distinguished by a leading dollar ($) sign.

NOTE PowerShell uses the at symbol (@) in a few places, has $_ as a
default variable, and uses & as the function call operator. These ele-
ments lead people to say that PowerShell looks like Perl. In practice, at
one point, we did use Perl as a root language, and these elements stem

Figure 2.1 This figure illustrates the GISS principle—the general impression, size, and

shape of some common birds. Even without any detail, the basic shape and size is enough

for most people to identify these birds. This same principle can be applied when learning

programming languages; a sense of the overall shape of the language allows you to iden-

tify common coding patterns in the language.
GETTING A SENSE OF THE POWERSHELL LANGUAGE 37

from that period. Later on, the syntax was changed to align more with
C#, but we kept these elements because they worked well. In Perl ter-
minology, they contributed significantly to the “whipupitude quo-
tient” of the language. In fact, the language that PowerShell looks most
like is PHP. (This wasn’t deliberate. It’s a case of parallel evolu-
tion—great minds thinking alike, and all that.) But don’t let this fool
you; semantically, PowerShell and PHP are quite different.

2.2 THE CORE CONCEPTS

The core PowerShell language is based on the IEEE standard POSIX 1003.2 grammar
for the Korn shell. This standard was chosen because of its maturity and long history
as a successful basis for modern shells like bash and zsh. The language design team
(Jim Truher and I) deviated from this standard where necessary to address the specific
needs of an object-based shell. We also deviated in areas where we wanted to make it
easier to write sophisticated scripts. Originally, Perl idioms were appropriated for
some of the advanced scripting concepts such as arrays and hash tables. As the project
progressed, it became clear that aligning PowerShell syntax with C# was more appro-
priate. If nothing else, this would facilitate migrating code between PowerShell and
C#. The major value this brings is that PowerShell code can be migrated to C# when
necessary for performance improvements, and C# examples can be easily converted to
PowerShell. This second point is important—the more examples you have in a new
language, the better off you are.

2.2.1 Command concepts and terminology

As with any piece of new technology, PowerShell has its own terminology, although
we’ve tried to stick to existing terms as much as we could. Consequently, much of the
terminology used in PowerShell will be familiar if you’ve used other shells in the
Linux or Windows world. But because PowerShell is a new kind of shell, there are a
number of terms that are different and a few new terms to learn. In this section, we’ll
go over the PowerShell-specific concepts and terminology for command types and
command syntax.

2.2.2 Commands and cmdlets

Commands are the fundamental part of any shell language; they’re what you type to
get things done. As you saw in the previous chapter, a simple command looks like
this:

command –parameter1 –parameter2 argument1 argument2

A more detailed illustration of the anatomy of this command is shown in figure 2.2.
This figure calls out all the individual elements of the command.
38 CHAPTER 2 FOUNDATIONS OF POWERSHELL

All commands are broken down into the command name, the parameters specified to
the command, and the arguments to those parameters.

NOTE The distinction between parameter and argument may seem a
bit strange from a programmer’s perspective. But if you’re used to lan-
guages such as Python and Visual Basic that allow for keyword param-
eters, PowerShell parameters correspond to the keywords, and
arguments correspond to the values.

The first element in the command is the name of the command to be executed. The
PowerShell interpreter looks at this name and determines what has to be done. It
must figure out not only which command to run but which kind of command to run.
In PowerShell, there are four categories of commands: cmdlets, shell function com-
mands, script commands, and native Windows commands. (We’ll cover the different
categories in detail in the following sections.) Following the command name come
zero or more parameters and/or arguments. A parameter starts with a dash, followed
by the name of the parameter. An argument, on the other hand, is the value that will
be associated with, or bound to, a specific parameter. Let’s look at an example:

PS (1) > Write-Output -InputObject Hello
Hello

In this example, the command is Write-Output, the parameter is -InputObject,
and the argument is Hello.

What about the positional parameters mentioned in figure 2.1? When a Power-
Shell command is created, the author of that command specifies information that
allows PowerShell to determine which parameter to bind an argument to, even if the
parameter name itself is missing. For example, the Write-Output command has
been defined so that the first parameter is -InputObject. This lets you write

PS (2) > Write-Output Hello
Hello

instead of having to specify -InputObject. The piece of the PowerShell interpreter
that figures all of this out is called the parameter binder. The parameter binder is

command -parameter1 -parameter2 arg1 arg2

Command
name

Parameter with
argument

Switch parameter
Positional
argument

Figure 2.2 The anatomy of a basic

command. It begins with the name of

the command, followed by some num-

ber of parameters. These may be switch

parameters that take no arguments,

regular parameters that do take argu-

ments, or positional parameters, where

the matching parameter is inferred by the

argument’s position on the command line.
THE CORE CONCEPTS 39

smart—it doesn’t require that you specify the full name of a parameter as long as you
specify enough for it to uniquely distinguish what you mean. This means you can
write any of the following

PS (3) > Write-Output -input Hello
Hello
PS (4) > Write-Output -IN Hello
Hello
PS (5) > Write-Output -i Hello
Hello

and the parameter binder still does the right thing. (Notice that it doesn’t matter
whether you use uppercase or lowercase letters either.)

What else does the parameter binder do? It’s in charge of determining how to
match the types of arguments to the types of parameters. Remember that PowerShell
is an object-based shell. Everything in PowerShell has a type. For this to work seam-
lessly, PowerShell has to use a fairly complex type-conversion system to correctly put
things together, a subject that’s covered in chapter 3. When you type a command at
the command line, you’re really typing strings. What happens if the command
requires a different type of object? The parameter binder uses the type converter to
try to convert that string into the correct type for the parameter.

Here’s a simple example. Let’s use the Get-Process command to get the process
with the process ID 0. Instead of passing it the number 0, put the argument in quotes
to force the argument to be a string. This means that the -id parameter, which
requires a number, will be passed a string instead:

PS (7) > Get-Process -Id "0"

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 28 0 0 Idle

When you attempt to run this command, the parameter binder detects that -id
needs a number, not a string, so it takes the string “0” and tries to convert it into a
number. If this succeeds, the command continues, as you see in the example. What
happens if it can’t be converted? Let’s try it:

PS (8) > Get-Process -Id abc
Get-Process : Cannot bind parameter 'Id'. Cannot convert value "abc"
to type "System.Int32". Error: "Input string was not in a correct
format."
At line:1 char:16
+ Get-Process -Id <<<< abc
PS (9) >

You get an error message explaining that the type conversion failed. We’ll discuss this
in more detail in chapter 3 when we talk about types. Because we’ve introduced the
use of quotation marks, let’s see one more example. What happens if the argument
40 CHAPTER 2 FOUNDATIONS OF POWERSHELL

you want to pass to the command starts with a dash? This is where the quotes come
in. Let’s use Write-Output to print out the string “-InputObject”:

PS (1) > Write-Output -InputObject "-InputObject"
-InputObject

And it works as desired. Alternatively, you could type this:

PS (2) > Write-Output "-InputObject"
-InputObject

The quotes keep the parameter binder from treating the quoted string as a parameter.
Another, less frequently used way of doing this is by using the special “end-of-

parameters” parameter, which is two hyphens back to back (--). Everything after this
sequence will be treated as an argument, even if it looks like a parameter. For exam-
ple, using -- you can also write out the string -InputObject without using quotes:

PS (3) > Write-Output -- -InputObject
 -InputObject

The -- sequence tells the parameter binder to treat everything after it as an argument,
even if it looks like a parameter. This is a convention adopted from the UNIX shells
and is standardized in the POSIX Shell and Utilities specification.

The final element of the basic command pattern is the switch parameter. These are
parameters that don’t require an argument. They’re usually either present or absent
(so obviously they can’t be positional). A good example of this is the -Recurse
parameter on the dir command. This switch tells the dir command to display files
from a specified directory as well as all its subdirectories:

PS (1) > dir -Recurse -Filter c*d.exe c:\windows
 Directory: Microsoft.PowerShell.Core\FileSystem::C:\windows\
 system32

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/10/2004 12:00 PM 102912 clipbrd.exe
-a--- 8/10/2004 12:00 PM 388608 cmd.exe

PS (2) >

As you can see, the -Recurse switch takes no arguments.

NOTE Although it’s almost always the case that switch parameters
don’t take arguments, it’s possible to specify arguments to them. We’ll
save discussion of when and why you might do this for section 7.2.6,
which focuses on scripts (shell functions and scripts are the only time
you need this particular feature, so we’ll keep you in suspense for the
time being).
THE CORE CONCEPTS 41

Now that we’ve covered the basic anatomy of the command line, let’s go over the
types of commands that PowerShell supports.

2.2.3 Command categories

As we mentioned earlier, there are four categories of commands in PowerShell: cmd-
lets, functions, scripts, and native Win32 executables.

Cmdlets

The first category of command is a cmdlet (pronounced “command-let”). Cmdlet is a
term that’s specific to the PowerShell environment. A cmdlet is implemented by a
.NET class that derives from the Cmdlet base class in the PowerShell Software Devel-
opers Kit (SDK).

NOTE Building cmdlets is a developer task and requires the Power-
Shell SDK. This SDK is freely available for download from Microsoft
and includes extensive documentation along with many code samples.
Our goal is to coach you to effectively use and script in the PowerShell
environment, so we’re not going to do much more than mention the
SDK in this book. We’ll look at how to write inline cmdlets when we
come to the Add-Type cmdlet in later chapters.

This category of command is compiled into a dynamic link library (DLL) and then
loaded into the PowerShell process, usually when the shell starts up. Because the com-
piled code is loaded into the process, it’s the most efficient category of command to
execute.

Cmdlets always have names of the form Verb-Noun, where the verb specifies the
action and the noun specifies the object to operate on. In traditional shells, cmdlets
correspond most closely to what’s usually called a built-in command. In PowerShell,
though, anybody can add a cmdlet to the runtime, so there isn’t any special class of
built-in commands. Cmdlets have the most support in version 1 of PowerShell: full
online help support, localization, and the best parameter binding support. (Power-
Shell v2 expands this support to fully include scripts and functions; see appendix D.)

In listing 2.1, you can see the C# source code for a simple cmdlet. This cmdlet
just copies its input to its output. If -Parameter1 is specified, its argument will be
used as a prefix on the output string. We included this example to show you the basic
structure of a cmdlet. There are a couple of important things to note in this listing.
The first is the way the parameters are declared using the Parameter attribute. This
information is used by the PowerShell runtime to automatically determine the
parameters for the cmdlet. The cmdlet author doesn’t have to write any code to do
parameter parsing; the runtime takes care of all this work. Another thing to note is
the ValueFromPipeline=true notation. This indicates that this parameter may be
42 CHAPTER 2 FOUNDATIONS OF POWERSHELL

fulfilled by values coming from the pipeline. (We’ll discuss what this means when we
talk about pipelines later in this chapter.)

[Cmdlet("Write", "InputObject")]
public class MyWriteInputObjectCmdlet : Cmdlet
{
 [Parameter]
 public string Parameter1;

 [Parameter(Mandatory = true, ValueFromPipeline=true)]
 public string InputObject;

 protected override void ProcessRecord()
 {
 if (Parameter1 != null)
 WriteObject(Parameter1 + ":" + InputObject);
 else
 WriteObject(InputObject);
 }
}

If you aren’t a programmer, this listing probably won’t mean much to you. It’s just here
to show the basic pattern used by PowerShell commands. (When we get to advanced
functions in chapter 8, you may want to come back and look at this example again.)

Functions

The next type of command is a function. This is a named piece of PowerShell script
code that lives in memory while the interpreter is running and is discarded on exit. (See
chapter 7 for more information on how you can load functions into your environ-
ment.) Functions consist of user-defined code that’s parsed once when defined. This
parsed representation is preserved so it doesn’t have to be reparsed every time it’s used.

Functions in PowerShell version 1 could have named parameters like cmdlets but
were otherwise fairly limited. In version 2, this was fixed, and scripts and functions now
have the full parameter specification capabilities of cmdlets. Notice, though, that the
same basic structure is followed for both types of commands. The section in the script
that begins with the process keyword (line 4 of listing 2.2) corresponds to the Pro-
cessRecord method shown in listing 2.1. This allows functions and cmdlets to have
the same streaming behavior. (See section 2.5.1 for more information on streaming.)

function Write-InputObject
{
 param($Parameter1)
 process {
 if ($Parameter1)

Listing 2.1 C# source code for a simple cmdlet

Class declaration

Marks parameter

Takes pipeline
input

Process block

Listing 2.2 Source code for a simple shell function command

Parameters

Process scriptblock
THE CORE CONCEPTS 43

 {
 "${Parameter1}:$_"
 } else {
 "$_"
 }
 }
}

Scripts

A script command is a piece of PowerShell code that lives in a text file with a .ps1
extension. These script files are loaded and parsed every time they’re run, making
them somewhat slower than functions to start (although once started, they run at the
same speed). In terms of parameter capabilities, shell function commands and script
commands are identical. An example of a script is shown in listing 2.3. The astute
observer will notice that the only difference between this example and the previous
function example is that the function keyword, the function name, and the braces
enclosing the body are missing. This is because they aren’t necessary anymore. A
script takes its name from the name of the file and is delimited by the file itself, so no
braces are needed.

param($Parameter1)
process {
 if ($Parameter1)
 {
 "${Parameter1}:$_"
 } else {
 "$_"
 }
}

Native commands (applications)

The last type of command is called a native command. These are external programs
(typically executables) that can be executed by the operating system.

NOTE Choosing names for things is always difficult, and the term
native command does sound a bit strange. We had originally called
external executables legacy commands, but the feedback was that legacy
was perceived as being a negative term. On the other hand, simply call-
ing them executables wasn’t suitable, because this class of command
also includes cmd.exe batch files. In the end, we settled on native com-
mand as sufficiently distinctive.

Because running a native command involves creating a whole new process for the
command, native commands are the slowest of the command types. Also, native

Listing 2.3 Source code for the simple shell script command my-script.ps1

Parameters
Process scriptblock
44 CHAPTER 2 FOUNDATIONS OF POWERSHELL

commands do their own parameter processing and so don’t necessarily match the syn-
tax of the other types of commands.

Native commands cover anything that can be run on a Windows computer, so
you get a wide variety of behaviors. One of the biggest issues is when PowerShell
waits for a command to finish but it just keeps on going. For example, say you’re
starting a text document at the command line:

PS (1) > .\foo.txt
PS (2) >

You get the prompt back more or less immediately, and your default text editor will
pop up (probably notepad.exe because that’s the default). The program to launch
is determined by the file associations that are defined as part of the Windows
environment.

NOTE In PowerShell, unlike in cmd.exe, you have to prefix a com-
mand with ./ or .\ if you want to run it out of the current directory.
This is part of PowerShell’s “Secure by Design” philosophy. This par-
ticular security feature was adopted to prevent Trojan horse attacks
where the user is lured into a directory and then told to run an innocu-
ous command such as notepad.exe. Instead of running the system
notepad.exe, they end up running a hostile program that the attacker
has placed in that directory and named notepad.exe. Chapter 21 cov-
ers the security features of the PowerShell environment in detail.

What about when you specify the editor explicitly?

PS (2) > notepad foo.txt
PS (3) >

The same thing happens—the command returns immediately. But what about when
you run the command in the middle of a pipeline?

PS (3) > notepad foo.txt | sort-object
<exit notepad>
PS (4) >

Now PowerShell waits for the command to exit before giving you back the prompt.
This can be handy when you want to insert something such as a graphical form editor
in the middle of a script to do some processing. This is also the easiest way to make
PowerShell wait for a process to exit.

Finally, let’s run the edit.com program. This is the old console-based full screen
editor included with MS-DOS and Windows since about DOS 4.0. (This also works
with other console editors—vi, Emacs, and so forth.)

PS (6) > edit.com ./foo.txt
PS (7) >
THE CORE CONCEPTS 45

As you’d expect, the editor starts up, taking over the console window. You can edit the
file and then exit the editor and return to PowerShell. As you can see, the behavior of
native commands depends on the type of native command, as well as where it appears
in the pipeline.

A useful thing to remember is that the PowerShell interpreter itself is a native com-
mand: powershell.exe. This means you can call PowerShell from within Power-
Shell. When you do this, a second PowerShell process is created. In practice there’s
nothing unusual about this—that’s basically how all shells work. PowerShell just
doesn’t have to do it very often, making it much faster than conventional shell lan-
guages.

The ability to run a child PowerShell process is particularly useful if you want to
have isolation in portions of your script. A separate process means that the child script
can’t impact the caller’s environment. This feature is useful enough that PowerShell
has special handling for this case, allowing you to embed the script to run inline. If
you want to run a fragment of script in a child process, you can do so by passing the
block of script to the child process delimited by braces. Here’s an example:

PS {1) > powershell { Get-Process *ss } | Format-Table name, handles

Name Handles
---- -------
csrss 1077
lsass 1272
smss 28

There are two things to note in this example. The script code in the braces can be any
PowerShell code, and it will be passed through to the new PowerShell process. The
special handling takes care of encoding the script in such a way that it’s passed prop-
erly to the child process. The other thing to note is that, when PowerShell is executed
this way, the output of the process is serialized objects—the basic structure of the out-
put is preserved—and so can be passed into other commands. We’ll look at this seri-
alization in detail when we cover remoting—the ability to run PowerShell scripts on a
remote computer—in chapter 12.

Now that we’ve covered all four PowerShell command types, let’s get back to
looking at the PowerShell syntax. Notice that a lot of what we’ve examined so far is a
bit verbose. This makes it easy to read, which is great for script maintenance, but it
looks like it would be a pain to type on the command line. PowerShell addresses these
two conflicting goals—readability and writeability—with the concept of elastic syn-
tax. Elastic syntax allows you to expand and collapse how much you need to type to
suit your purpose. We’ll see how this works in the next section.
46 CHAPTER 2 FOUNDATIONS OF POWERSHELL

2.3 ALIASES AND ELASTIC SYNTAX

We haven’t talked about aliases yet or how they’re used to achieve an elastic syntax in
PowerShell. Because this concept is important in the PowerShell environment, we
need to spend some time on it.

The cmdlet Verb-Noun syntax, while regular, is, as we noted, also verbose. You may
have noticed that in most of the examples we’re using commands such as dir and
type. The trick behind all this is aliases. The dir command is really Get-ChildItem,
and the type command is really Get-Content. You can see this by using the Get-
Command command:

PS (1) > get-command dir
CommandType Name Definition
----------- ---- ----------
Alias dir Get-ChildItem

This tells you that the command is an alias for Get-ChildItem. To get information
about the Get-ChildItem command, you then do this

PS (2) > get-command get-childitem
CommandType Name Definition
----------- ---- ----------
Cmdlet Get-ChildItem Get-ChildItem [[-P...

which truncates the information at the width of the console window. To see all the
information, pipe the output of Get-Command into fl:

PS (3) > get-command get-childitem | fl
Name : Get-ChildItem
CommandType : Cmdlet
Definition : Get-ChildItem [[-Path] <String[]>] [[-Filter]
 <String>] [-Include <String[]>] [-Exclude <S
 tring[]>] [-Recurse] [-Force] [-Name] [-Verbo
 se] [-Debug] [-ErrorAction <ActionPreference>
] [-ErrorVariable <String>] [-OutVariable <St
 ring>] [-OutBuffer <Int32>]
 Get-ChildItem [-LiteralPath] <String[]> [[-Fi
 lter] <String>] [-Include <String[]>] [-Exclu
 de <String[]>] [-Recurse] [-Force] [-Name] [-
 Verbose] [-Debug] [-ErrorAction <ActionPrefer
 ence>] [-ErrorVariable <String>] [-OutVariabl
 e <String>] [-OutBuffer <Int32>]

Path :
AssemblyInfo :
DLL : C:\WINDOWS\assembly\GAC_MSIL\Microsoft.PowerS
 hell.Commands.Management\1.0.0.0__31bf3856ad3
 64e35\Microsoft.PowerShell.Commands.Managemen
 t.dll
HelpFile : Microsoft.PowerShell.Commands.Management.dll-
 Help.xml
ParameterSets : {Items, LiteralItems}
ImplementingType : Microsoft.PowerShell.Commands.GetChildItemCom
ALIASES AND ELASTIC SYNTAX 47

 mand
Verb : Get
Noun : ChildItem

This shows you the full detailed information about this cmdlet. But wait—what’s the
fl command? Again you can use Get-Command to find out:

PS (4) > get-command fl
CommandType Name Definition
----------- ---- ----------
Alias fl Format-List

PowerShell comes with a large set of predefined aliases. There are two basic categories
of aliases—transitional aliases and convenience aliases. By transitional aliases, we mean
a set of aliases that map PowerShell commands to commands that people are accus-
tomed to using in other shells, specifically cmd.exe and the UNIX shells. For the
cmd.exe user, PowerShell defines dir, type, copy, and so on. For the UNIX user,
PowerShell defines ls, cat, cp, and so forth. These aliases allow a basic level of func-
tionality for new users right away.

The other set of aliases are the convenience aliases. These aliases are derived from
the names of the cmdlets they map to. So Get-Command becomes gcm, Get-
ChildItem becomes gci, Invoke-Item becomes ii, and so on. For a list of the
defined aliases, type Get-Alias at the command line. You can use the Set-Alias
command (whose alias is sal, by the way) to define your own aliases.

NOTE Aliases in PowerShell are limited to aliasing the command
name only. Unlike in other systems such as ksh, bash, and zsh, Power-
Shell aliases can’t take parameters. If you need to do something more
sophisticated than simple command-name translations, you’ll have to
use shell functions or scripts.

This is all well and good, but what does it have to do with elastics? Glad you asked!
The idea is that PowerShell can be terse when needed and descriptive when appropri-
ate. The syntax is concise for simple cases and can be stretched like an elastic band for
larger problems. This is important in a language that is both a command-line tool
and a scripting language. The vast majority of “scripts” that you’ll write in PowerShell
will be no more than a few lines long. In other words, they’ll be a string of commands
that you’ll type on the command line and then never use again. To be effective in this
environment, the syntax needs to be concise. This is where aliases like fl come
in—they allow you to write concise command lines. When you’re scripting, though,
it’s best to use the long name of the command. Sooner or later, you’ll have to read the
script you wrote (or—worse—someone else will). Would you rather read something
that looks like this

gcm|?{$_.parametersets.Count -gt 3}|fl name

or this?
48 CHAPTER 2 FOUNDATIONS OF POWERSHELL

get-command |
 where-object {$_.parametersets.count -gt 3} |
 format-list name

I’d certainly rather read the latter. (As always, we’ll cover the details of these examples
later in the book.)

NOTE PowerShell has two (or more) names for many of the same
commands. Some people find this unsettling—they prefer having only
one way of doing things. In fact, this “only one way to do it” principle
is also true for PowerShell, but with a significant variation: we wanted
to have one best way of doing something for each particular scenario or
situation. Fundamentally this is what computers are all about; at their
simplest, everything is just a bunch of bits. To be practical, you start
from the simple bits and build solutions that are more appropriate for
the problem you’re trying to solve. Along the way, you create an inter-
mediate-sized component that may be reused to solve other problems.
PowerShell uses this same approach: a series of components at different
levels of complexity intended to address a wide range of problem
classes. Not every problem is a nail, so having more tools than a ham-
mer is a good idea even if requires a bit more learning.

There’s a second type of alias used in PowerShell: parameter aliases. Unlike command
aliases, which can be created by end users, parameter aliases are created by the author
of a cmdlet, script, or function. (You’ll see how to do this when we look at advanced
function creation in chapter 8.)

A parameter alias is just a shorter name for a parameter. But wait a second. Earlier
we said that you just needed enough of the parameter name to distinguish it from
other command parameters. Isn’t this enough for convenience and elasticity? So why
do you need parameter aliases? The reason you need these aliases has to do with script
versioning. The easiest way to understand versioning is to look at an example.

Say you have a script that calls a cmdlet Process-Message. This cmdlet has a
parameter -Reply. You write your script specifying just

Process-Message -Re

Run the script, and it works fine. A few months later, you install an enhanced version
of the Process-Message command. This new version introduces a new parameter:
-receive. Just specifying -Re is no longer sufficient. If you run the old script with
the new cmdlet, it will fail with an ambiguous parameter message. In other words, the
script is broken.

How do you fix this with parameter aliases? The first thing to know is that Power-
Shell always picks the parameter that exactly matches a parameter name or alias over a
partial match. By providing parameter aliases, you can achieve pithiness without also
making scripts subject to versioning issues. (We do recommend always using the full
ALIASES AND ELASTIC SYNTAX 49

parameter name for production scripts or scripts you want to share. Readability is
always more important in that scenario.)

Now that we’ve covered the core concepts of how commands are processed, let’s
step back a bit and look at PowerShell language processing overall. PowerShell has a
small number of important syntactic rules that you should learn. When you under-
stand these rules, your ability to read, write, and debug PowerShell scripts will
increase tremendously.

2.4 PARSING AND POWERSHELL

In this section, we’ll cover the details of how PowerShell scripts are parsed. Before the
PowerShell interpreter can execute the commands you type, it first has to parse the
command text and turn it into something the computer can execute, as shown in
figure 2.3.

More formally, parsing is the process of turning human-readable source code into
a form the computer understands. This is one area of computer science that deserves
both of these words—computer and science. Science in this case means formal lan-
guage theory, which is a branch of mathematics. And because it’s mathematics, dis-
cussing it usually requires a collection of Greek letters. We’ll keep things a bit simpler
here. A piece of script text is broken up into tokens by the tokenizer (or lexical ana-
lyzer, if you want to be more technical). A token is a particular type of symbol in the
programming language, such as a number, a keyword, or a variable. Once the raw
text has been broken into a stream of tokens, these tokens are processed into struc-
tures in the language through syntactic analysis.

In syntactic analysis, the stream of tokens is processed according to the grammati-
cal rules of the language. In normal programming languages, this process is straight-
forward—a token always has the same meaning. A sequence of digits is always a
number; an expression is always an expression, and so on. For example, the sequence

3+2

would always be an addition expression, and “Hello world” would always be a con-
stant string. Unfortunately, this isn’t the case in shell languages. Sometimes you can’t

 3 + 2
Parser converts this

to an internal

representation

Execution engine

evaluates the

internal

represenation
3 2

+

User types an

expression that is

passed to the

parser

5

Parser

Engine

Figure 2.3 The flow of pro-

cessing in the PowerShell in-

terpreter, where an expression

is transformed and then exe-

cuted to produce a result
50 CHAPTER 2 FOUNDATIONS OF POWERSHELL

tell what a token is except through its context. In the next section, we go into more
detail on why this is and how the PowerShell interpreter parses a script.

2.4.1 How PowerShell parses

For PowerShell to be successful as a shell, it can’t require that everything be quoted.
PowerShell would fail if it required people to continually type

cd ".."

or

copy "foo.txt" "bar.txt"

On the other hand, people have a strong idea of how expressions should work:

2

This is the number 2, not a string “2”. Consequently, PowerShell has some rather
complicated parsing rules. The next three sections will cover these rules. We’ll discuss
how quoting is handled, the two major parsing modes, and the special rules for new-
lines and statement termination.

2.4.2 Quoting

Quoting is the mechanism used to turn a token that has special meaning to the Pow-
erShell interpreter into a simple string value. For example, the Write-Output cmdlet
has a parameter -InputObject. But what if you want to actually use the string
“-InputObject” as an argument, as mentioned earlier? To do this, you have to quote it;
that is, you surround it with single or double quotes. The result looks like this:

PS (2) > Write-Output '-InputObject'
-inputobject

What would happen if you hadn’t put the argument in quotes? Let’s find out:

PS (3) > Write-Output -InputObject
Write-Output : Missing an argument for parameter 'InputObject'.
Specify a parameter of type 'System.Management.Automation.PSObject[]’and

try again.
At line:1 char:25
+ Write-Output -inputobject <<<<
PS (4) >

As you can see, this produces an error message indicating that an argument to the
parameter -InputObject is required.

PowerShell supports several forms of quoting, each with somewhat different
meanings (or semantics). Putting single quotes around an entire sequence of charac-
ters causes them to be treated like a single string. This is how you deal with file paths
that have spaces in them. For example, if you want to change to a directory whose
path contains spaces, you type this:

PS (4) > cd 'c:\program files'
PARSING AND POWERSHELL 51

PS (5) > pwd
Path

C:\Program Files

What happens if you don’t use the quotes?

PS (6) > cd c:\program files
Set-Location : A parameter cannot be found that matches paramete
r name 'files'.
At line:1 char:3
+ cd <<<< c:\program files

When you don’t use the quotes, you receive an error complaining about an unex-
pected parameter in the command because "c:\program" and "files" are treated
as two separate tokens.

NOTE Notice that the error message reports the name of the cmdlet,
not the alias that was used. This way you know what is being executed.
The position message shows you the text that was entered so you can
see that an alias was used.

One problem with using matching quotes as we did in the previous examples is that
you have to remember to start the token with an opening quote. This raises an issue
when you want to quote a single character. You can use the backquote (`) character to
do this (the backquote is usually the upper-leftmost key, below Esc):

PS (6) > cd c:\program` files
PS (7) > pwd
Path

C:\Program Files

The backquote, or backtick, as it tends to be called, has other uses that we’ll explore
later in this section. Now let’s look at the other form of matching quote: double
quotes. Once again, here’s our favorite example:

PS (8) > cd "c:\program files"
PS (9) > pwd

Path

C:\Program Files

It looks pretty much like the example with single quotes, so what’s the difference? In
double quotes, variables are expanded. In other words, if the string contains a variable
reference starting with a $, it will be replaced by the string representation of the value
stored in the variable. Let’s look at an example. First assign the string “files” to the
variable $v:

PS (10) > $v = "files"
52 CHAPTER 2 FOUNDATIONS OF POWERSHELL

Now reference that variable in a string with double quotes:

PS (11) > cd "c:\program $v"
PS (12) > pwd

Path

C:\Program Files

The cd succeeded and the current directory was set as you expected. What happens if
you try it with single quotes? Here you go:

PS (13) > cd 'c:\program $v'
set-location : Cannot find path 'C:\program $v' because it does
not exist.
At line:1 char:3
+ cd <<<< 'c:\program $v'
PS (14) >

Because expansion is performed only in double quotes and not in single quotes, you
get an error because the unexpanded path doesn’t exist.

Take a look at another example:

PS (14) > '$v is $v'
$v is $v
PS (15) > "$v is $v"
files is files

In the single-quoted case, $v is never expanded; and in the double-quoted case, it’s
always expanded. But what if you really want to show what the value of $v is? To do
this, you need to have expansion in one place but not in the other. This is one of
those other uses we had for the backtick. It can be used to quote or escape the dollar
sign in a double-quoted string to suppress expansion. Let’s try it:

PS (16) > Write-Output "`$v is $v"
$v is files

Here’s one final tweak to this example—if $v contained spaces, you’d want to make
clear what part of the output was the value. Because single quotes can contain double
quotes and double quotes can contain single quotes, this is straightforward:

PS (17) > Write-Output "`$v is '$v'"
$v is 'files'
PS (18) >

Now, suppose you want to display the value of $v on another line instead of in
quotes. Here’s another situation where you can use the backtick as an escape charac-
ter. The sequence `n in a double-quoted string will be replaced by a newline charac-
ter. You can write the example with the value of $v on a separate line as follows:

PS (19) > "The value of `$v is:`n$v"
The value of $v is:
Files
PARSING AND POWERSHELL 53

Table 2.1 lists the special characters that can be generated using backtick (also called
escape) sequences.

Note that escape sequence processing, like variable expansion, is only done in double-
quoted strings. In single-quoted strings, what you see is what you get. This is particu-
larly important when writing a string to pass to a subsystem that does additional lev-
els of quote processing.

If you’ve used another language such as C, C#, or Perl, you’ll be accustomed to
using the backslash instead of the backtick for escaping characters. Because Power-
Shell is a shell and has to deal with Windows’ historical use of the backslash as a
path separator, it isn’t practical to use the backslash as the escape character. Too
many applications expect backslash-separated paths, and that would require every
path to be typed with the slashes doubled. Choosing a different escape character was
a difficult decision that the PowerShell team had to make, but there wasn’t any
choice. It’s one of the biggest cognitive bumps that experienced shell and script lan-
guage users run into with PowerShell, but in the end, most people adapt without too
much difficulty.

2.4.3 Expression-mode and command-mode parsing

As mentioned earlier, because PowerShell is a shell, it has to deal with some parsing
issues not found in other languages. In practice, most shell languages are collections
of mini-languages with many different parsing modes. PowerShell simplifies this con-
siderably, trimming the number of modes down to two: expression mode and com-
mand mode.

In expression mode, the parsing is conventional: strings must be quoted, numbers
are always numbers, and so on. In command mode, numbers are treated as numbers
but all other arguments are treated as strings unless they start with $, @, ', ", or (.
When an argument begins with one of these special characters, the rest of the argument
is parsed as a value expression. (There’s also special treatment for leading variable

Table 2.1 The PowerShell escape sequences

Escape sequence Corresponding Special Character

`n Newline

`t Horizontal tab

`a Alert

`b Backspace

`' Single quote

`" Double quote

`0 The NULL character (in other words, 0)

`` A single backtick
54 CHAPTER 2 FOUNDATIONS OF POWERSHELL

references in a string, which we’ll discuss later.) Table 2.2 shows some examples that
illustrate how items are parsed in each mode.

Notice that in the Write-Output (2+2) case, the open parenthesis causes the inter-
preter to enter a new level of interpretation where the parsing mode is once again
established by the first token. This means the sequence 2+2 is parsed in expression
mode, not command mode, so the result of the expression (4) is emitted. Also, the
last example in the table illustrates the exception mentioned previously for a leading
variable reference in a string. A variable itself is treated as an expression, but a variable
followed by arbitrary text is treated as though the whole thing were in double quotes.
This is so you can write

cd $HOME/scripts

instead of

cd "$HOME/scripts"

As mentioned earlier, quoted and unquoted strings are recognized as different tokens
by the parser. This is why

Invoke-MyCmdlet -Parm arg

treats -Parm as a parameter and

Table 2.2 Parsing mode examples

Example command line Parsing mode and explanation

2+2 Expression mode; results in 4.

Write-Output 2+2 Command mode; results in 2+2.

$a=2+2 Expression mode; the variable $a is assigned the value 4.

Write-Output (2+2) Expression mode; because of the parentheses, 2+2 is evaluated as
an expression producing 4. This result is then passed as an argu-
ment to the Write-Output cmdlet.

Write-Output $a Expression mode; produces 4. This is ambiguous—evaluating it in
either mode produces the same result. The next example shows
why the default is expression mode if the argument starts with a
variable.

Write-Output
$a.Equals(4)

Expression mode; $a.Equals(4) evaluates to true so Write-
Output writes the Boolean value True. This is why a variable is
evaluated in expression mode by default. You want simple method
and property expressions to work without parentheses.

Write-Output $a/
foo.txt

Command mode; $a/foo.txt expands to 4/foo.txt. This is the
opposite of the previous example. Here you want it to be evaluated
as a string in command mode. The interpreter first parses in
expression mode and sees that it’s not a valid property expression,
so it backs up and rescans the argument in command mode. As a
result, it’s treated as an expandable string.
PARSING AND POWERSHELL 55

Invoke-MyCmdlet "-Parm" arg

treats "-Parm" as an argument. There’s an additional wrinkle in the parameter bind-
ing. If an unquoted parameter like -NotAparameter isn’t a parameter on Invoke-
MyCmdlet, it will be treated as an argument. This lets you say

Write-Host -this -is -a parameter

without requiring quoting.
This finishes our coverage of the basics of parsing modes, quoting, and com-

mands. Commands can take arbitrary lists of arguments, so knowing when the state-
ment ends is important. We’ll cover this in the next section.

2.4.4 Statement termination

In PowerShell, there are two statement terminator characters: the semicolon (;) and
(sometimes) the newline. Why is a newline a statement separator only sometimes? The
rule is that if the previous text is a syntactically complete statement, a newline is con-
sidered to be a statement termination. If it isn’t complete, the newline is simply
treated like any other whitespace. This is how the interpreter can determine when a
command or expression crosses multiple lines. For example, in the following

PS (1) > 2 +
>> 2
>>
4
PS (2) >

the sequence 2 + is incomplete, so the interpreter prompts you to enter more text.
(This is indicated by the nest prompt characters, >>.) On the other hand, in the next
sequence

PS (2) > 2
2
PS (3) > + 2
2
PS (4) >

the number 2 by itself is a complete expression, so the interpreter goes ahead and
evaluates it. Likewise, + 2 is a complete expression and is also evaluated (+ in this case
is treated as the unary plus operator). From this, you can see that if the newline comes
after the + operator, the interpreter will treat the two lines as a single expression. If the
newline comes before the + operator, it will treat the two lines as two individual
expressions.

Most of the time, this mechanism works the way you expect, but sometimes you
can receive some unanticipated results. Take a look at the following example:

PS (22) > $b = (2
>> + 2)
>>
Missing closing ')' in expression.
56 CHAPTER 2 FOUNDATIONS OF POWERSHELL

At line:2 char:1
+ + <<<< 2)
PS (23) >

This was a question raised by one of the PowerShell beta testers. They were surprised
by this result and thought there was something wrong with the interpreter, but in
fact, this is not a bug. Here’s what’s happening.

Consider the following text:

> $b = (2 +
> 2)

It’s parsed as $b = (2 + 2) because a trailing + operator is only valid as part of a
binary operator expression. Because the sequence $b = (2 + can’t be a syntactically
complete statement, the newline is treated as whitespace. On the other hand, con-
sider the text

> $b = (2
> + 2)

In this case, 2 is a syntactically complete statement, so the newline is now treated as a
line terminator. In effect, the sequence is parsed like $b = (2 ; + 2); that is, two
complete statements. Because the syntax for a parenthetical expression is

(<expr>)

you get a syntax error—the interpreter is looking for a closing parenthesis as soon as
it has a complete expression. Contrast this with using a subexpression instead of just
the parentheses:

>> $b = $(
>> 2
>> +2
>>)
>>
PS (24) > $b
2
2

Here the expression is valid because the syntax for subexpressions is

$(<statementList>)

But how do you deal with the case when you do need to extend a line that isn’t exten-
sible by itself? This is another place where you can use the backtick escape character.
If the last character in the line is a backtick, then the newline will be treated as a sim-
ple breaking space instead of as a newline:

PS (1) > Write-Output `
>> -inputobject `
>> "Hello world"
>>
Hello world
PS (2) >
PARSING AND POWERSHELL 57

Finally, one thing that surprises some people is that strings aren’t terminated by a
newline character. Strings can carry over multiple lines until a matching, closing
quote is encountered:

PS (1) > Write-Output "Hello
>> there
>> how are
>> you?"
>>
Hello
there
how are
you?
PS (2) >

In this example, you see a string that extended across multiple lines. When that string
was displayed, the newlines were preserved in the string.

The handling of end-of-line characters in PowerShell is another of the trade-offs
that had to be made for PowerShell to be useful as a shell. Although the handling of
end-of-line characters is a bit strange compared to non-shell languages, the overall
result is easy for most people to get used to.

2.4.5 Comment syntax in PowerShell

Every computer language has some mechanism for annotating code with expository
comments. Like many other shells and scripting languages, PowerShell comments
begin with a number sign (#) symbol and continue to the end of the line. The # char-
acter must be at the beginning of a token for it to start a comment. Here’s an example
that illustrates what this means:

PS (1) > echo hi#there
hi#there

In this example, the number sign is in the middle of the token hi#there and so isn’t
treated as the starting of a comment. In the next example, there’s a space before the
number sign:

PS (2) > echo hi #there
hi

Now the # is treated as starting a comment and the following text isn’t displayed. It
can be preceded by characters other than a space and still start a comment. It can be
preceded by any statement-terminating or expression-terminating character like a
bracket, brace, or semicolon, as shown in the next couple of examples:

PS (3) > (echo hi)#there
hi
PS (4) > echo hi;#there
hi

In both of these examples, the # symbol indicates the start of a comment.
58 CHAPTER 2 FOUNDATIONS OF POWERSHELL

Finally, you need to take into account whether you’re in expression mode or com-
mand mode. In command mode, as shown in the next example, the + symbol is
included in the token hi+#there:

PS (5) > echo hi+#there
hi+#there

But in expression mode, it’s parsed as its own token. Now the # indicates the start of
a comment, and the overall expression results in an error:

PS (6) > "hi"+#there
You must provide a value expression on the right-hand side of the '+'
operator.
At line:1 char:6
+ "hi"+ <<<< #there

The # symbol is also allowed in function names:

PS (3) > function hi#there { "Hi there" }
PS (4) > hi#there
Hi there

The reason for allowing the # in the middle of tokens was to make it easy to accom-
modate path providers that used # as part of their path names. People conventionally
include a space before the beginning of a comment, so this doesn’t appear to cause
any difficulties.

Multiline Comments

In PowerShell version 2, a new type of multiline comment was introduced, primarily
to allow you to embed inline help text in scripts and functions. A multiline comment
begins with <# and ends with #>. Here’s an example:

<#
 This is a comment
 that spans
 multiple lines
#>

This type of comment can be entered from the command line, which looks like this:

PS {1) > <#
>> this is a comment
>> that spans
>> multiple lines
>> #>
>>
PS {2) >

This type of comment need not span multiple lines, so you can use this notation to
add a comment preceding some code:

PS {2) > <# a comment #> "Some code"
Some code
PS {3) >
PARSING AND POWERSHELL 59

In this example, the line is parsed, the comment is read and ignored, and the code
after the comment is executed.

One of the things this type of comment allows you to do is easily embed chunks
of preformatted text in functions and scripts. The PowerShell help system takes
advantage of this feature to allow functions and scripts to contain inline documenta-
tion in the form of special comments. These comments are automatically extracted by
the help system to generate documentation for the function or script. You’ll learn
how the comments are used by the help subsystem in chapter 8.

Now that you have a good understanding of the basic PowerShell syntax, let’s
look at how what you type gets executed by the PowerShell execution engine. We’ll
start with the pipeline.

2.5 HOW THE PIPELINE WORKS

At long last we get to the
details of pipelines. We’ve
been talking about them
throughout this chapter, but
here we discuss them in
detail. A pipeline is a series
of commands separated by
the pipe operator (|), as
shown in figure 2.4. In some
ways, the term production
line better describes pipelines in PowerShell. Each command in the pipeline receives
an object from the previous command, performs some operation on it, and then
passes it along to the next command in the pipeline.

NOTE This, by the way, is the great PowerShell Heresy. All previous
shells passed strings only through the pipeline. Many people had diffi-
culty with the notion of doing anything else. Like the character in The
Princess Bride, they’d cry “Inconceivable!” And we’d respond, “I do not
think that word means what you think it means.”

All of the command categories take parameters and arguments. To review, a parameter
is a special token that starts with a hyphen (-) and is used to control the behavior of
the command. An argument is a data value consumed by the command. In the fol-
lowing example

get-childitem –filter *.dll –path c:\windows -recurse

-filter is a parameter that takes one argument, *.dll. The string “c:\windows” is
the argument to the positional parameter -path.

Next we’ll discuss the signature characteristic of pipelines—streaming behavior.

dir -recurse -filter *.cs|format-table name,length

Command
Parameter with

argument

Switch parameter Positional
argument

Command

Pipe operator

Figure 2.4 Anatomy of a pipeline
60 CHAPTER 2 FOUNDATIONS OF POWERSHELL

2.5.1 Pipelines and streaming behavior

Streaming behavior occurs when objects are processed one at a time in a pipeline. As
mentioned, this is one of the characteristic behaviors of shell languages. In stream
processing, objects are output from the pipeline as soon as they become available. In
more traditional programming environments, the results are returned only when the
entire result set has been generated—the first result and the last result are returned at
the same time. In a pipelined shell, the first result is returned as soon as it’s available
and subsequent results return as they also become available. This flow is illustrated in
figure 2.5.

At the top of figure 2.5 you see a PowerShell command pipeline containing four
commands. This command pipeline is passed to the PowerShell parser, which does
all the work of figuring out what the commands are, what the arguments and param-
eters are, and how they should be bound for each command. When the parsing is
complete, the pipeline processor begins to sequence the commands. First it runs the
begin clause of each of the commands, in sequence from first to last. After all the
begin clauses have been run, it runs the process clause in the first command. If the
command generates one or more objects, the pipeline processor passes these objects,
one at a time, to the second command. If the second command also emits an object,
this object is passed to the third command, and so on.

When processing reaches the end of the pipeline, any objects emitted are passed
back to the PowerShell host. The host is then responsible for any further processing.

This aspect of streaming is important in an interactive shell environment, because
you want to see objects as soon as they’re available. The next example shows a simple
pipeline that traverses through C:\Windows looking for all of the DLLs whose names
start with the word “system”:

PS (1) > dir -rec -fil *.dll | where {$_.name -match "system.*dll"}

 Directory: Microsoft.Management.Automation.Core\FileSystem::
[CA]C:\WINDOWS\assembly\[CA]GAC\System\1.0.3300.0__b77a5c561934e089

Figure 2.5 How

objects flow

through a pipeline

one at a time. A

common parser

constructs each of

the command ob-

jects and then

starts the pipeline

processor, stepping

each object

through all stages

of the pipeline.
HOW THE PIPELINE WORKS 61

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/26/2004 6:29 PM 1167360 System.dll

 Directory: Microsoft.Management.Automation.Core\FileSystem::
[CA]C:\WINDOWS\assembly
[CA]\GAC\System\1.0.5000.0__b77a5c561934e089

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/26/2004 6:36 PM 1216512 System.dll

With streaming behavior, as soon as the first file is found, it’s displayed. Without
streaming, you’d have to wait until the entire directory structure has been searched
before you’d start to see any results.

In most shell environments, streaming is accomplished by using separate processes
for each element in the pipeline. In PowerShell, which only uses a single process (and
a single thread as well), streaming is accomplished by splitting cmdlets into three
clauses: BeginProcessing, ProcessRecord, and EndProcessing. In a pipeline,
the BeginProcessing clause is run for all cmdlets in the pipeline. Then the Pro-
cessRecord clause is run for the first cmdlet. If this clause produces an object, that
object is passed to the ProcessRecord clause of the next cmdlet in the pipeline, and
so on. Finally the EndProcessing clauses are all run. (We cover this sequencing
again in more detail in chapter 7, which is about scripts and functions, because they
can also have these clauses.)

2.5.2 Parameters and parameter binding

Now let’s talk about more of the details involved in binding parameters for com-
mands. Parameter binding is the process in which values are bound to the parameters
on a command. These values can come from either the command line or the pipeline.
Here’s an example of a parameter argument being bound from the command line:

PS (1) > Write-Output 123
123

And here’s the same example where the parameter is taken from the input object
stream:

PS (2) > 123 | Write-Output
123

The binding process is controlled by declaration information on the command itself.
Parameters can have the following characteristics: they are either mandatory or
optional, they have a type to which the formal argument must be convertible, and
they can have attributes that allow the parameters to be bound from the pipeline.
Table 2.3 describes the actual steps in the binding process.
62 CHAPTER 2 FOUNDATIONS OF POWERSHELL

As you can see, this binding process is quite involved. In practice, the parameter
binder almost always does what you want—that’s why a sophisticated algorithm is
used. But there are times when you’ll need to understand the binding algorithm to
get a particular behavior. PowerShell has built-in facilities for debugging the parame-
ter-binding process that can be accessed through the Trace-Command cmdlet.
(Trace-Command is covered in detail in appendix D.) Here’s an example showing how
to use this cmdlet:

Trace-Command -Name ParameterBinding -Option All `
-Expression { 123 | Write-Output } -PSHost

In this example, you’re tracing the expression in the braces—that’s the expression:

123 | Write-Output

This expression pipes the number 123 to the cmdlet Write-Output. The Write-
Output cmdlet takes a single mandatory parameter -InputObject, which allows
pipeline input by value. (The tracing output is long but fairly self-explanatory, so we
haven’t included it here. This is something you should experiment with to see how it
can help you figure out what’s going on in the parameter-binding process.)

And now for the final topic in this chapter: formatting and output. The format-
ting and output subsystem provides the magic that lets PowerShell figure out how to
display the output of the commands you type.

Table 2.3 Steps in the parameter binding process

Binding step Description

1. Bind all named parameters. Find all unquoted tokens on the command line that start with a
dash. If the token ends with a colon, an argument is required. If
there’s no colon, look at the type of the parameter and see if an
argument is required. Convert the type of actual argument to the
type required by the parameter, and bind the parameter.

2. Bind all positional parameters. If there are any arguments on the command line that haven’t
been used, look for unbound parameters that take positional
parameters and try to bind them.

3. Bind from the pipeline by value
with exact match.

If the command is not the first command in the pipeline and
there are still unbound parameters that take pipeline input, try to
bind to a parameter that matches the type exactly.

4. If not bound, then bind from
the pipe by value with conver-
sion.

If the previous step failed, try to bind using a type conversion.

5. If not bound, then bind from
the pipeline by name with exact
match.

If the previous step failed, look for a property on the input object
that matches the name of the parameter. If the types exactly
match, bind the parameter.

6. If not bound, then bind from
the pipeline by name with con-
version.

If the input object has a property whose name matches the
name of a parameter, and the type of the property is convertible
to the type of the parameter, bind the parameter.
HOW THE PIPELINE WORKS 63

2.6 FORMATTING AND OUTPUT

We’ve reached this point without discussing how PowerShell figures out how to dis-
play output. In general, we’ve just run commands and depended on the system to fig-
ure out how to display the results. Occasionally, we’ve used commands such as
Format-Table and Format-List to give general guidance on the shape of the dis-
play but no specific details. Let’s dig in now and see how this all works.

As always, because PowerShell is a type-based system, types are used to determine
how things are displayed. But normal objects don’t usually know how to display
themselves. PowerShell deals with this by including a database of formatting informa-
tion for various types of objects. This is part of the extended type system, which is an
important component of the overall system. This extended type system allows Power-
Shell to add new behaviors to existing .NET objects. The default formatting database
is stored in the PowerShell install directory, which you can get to by using the
$PSHOME shell variable. Here’s a list of the files that were included as of this writing:

PS (1) > dir $PSHOME/*format* | Format-Table name

Name

Certificate.format.ps1xml
Diagnostics.Format.ps1xml
DotNetTypes.format.ps1xml
FileSystem.format.ps1xml
Help.format.ps1xml
PowerShellCore.format.ps1xml
PowerShellTrace.format.ps1xml
Registry.format.ps1xml
WSMan.Format.ps1xml

You can more or less figure out what types of things each of these files contains
descriptions for. (The others should become clear after reading the rest of this book.)
These files are XML documents that contain descriptions of how each type of object
should be displayed. These descriptions are fairly complex and somewhat difficult to
write. It’s possible for end users to add their own type descriptions, but that’s beyond
the scope of this chapter. The important thing to understand is how the formatting
and outputting commands work together.

2.6.1 The formatting cmdlets

Display of information is controlled by the type of the objects being displayed, but
the user can choose the “shape” of the display by using the Format-* commands:

PS (5) > Get-Command Format-* | Format-Table name

Name

Format-Custom
Format-List
Format-Table
Format-Wide
64 CHAPTER 2 FOUNDATIONS OF POWERSHELL

By shape, we mean things such as a table or a list. Here’s how they work. The Format-
Table cmdlet formats output as a series of columns displayed across your screen:

PS (1) > Get-Item c:\ | Format-Table

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 4/9/2006 10:04 PM C:\

By default, it tries to use the maximum width of the display and guesses at how wide
a particular field should be. This allows you to start seeing data as quickly as possible
(streaming behavior) but doesn’t always produce optimal results. You can achieve a
better display by using the -AutoSize switch, but this requires the formatter to pro-
cess every element before displaying any of them, and this prevents streaming. Power-
Shell has to do this to figure out the best width to use for each field. The result in this
example looks like this:

PS (3) > Get-Item c:\ | Format-Table -AutoSize

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 4/9/2006 10:04 PM C:\

Okay—so it doesn’t look much different: things are more compressed with less
whitespace.

In practice, the default layout when streaming is pretty good and you don’t need
to use -autosize, but sometimes it can help make things more readable.

The Format-List command displays the elements of the objects as a list, one
after the other:

PS (2) > Get-Item c:\ | Format-List

 Directory:

Name : C:\
CreationTime : 2/26/2001 3:38:39 PM
LastWriteTime : 4/9/2006 10:04:38 PM
LastAccessTime : 4/11/2006 9:33:51 PM

If there’s more than one object to display, they’ll appear as a series of lists. Let’s try it:

PS (3) > Get-Item c:\,d:\ | Format-List

 Directory:

Name : C:\
CreationTime : 2/26/2001 3:38:39 PM
LastWriteTime : 6/21/2006 1:20:06 PM
LastAccessTime : 6/21/2006 9:14:46 PM
FORMATTING AND OUTPUT 65

Name : D:\
CreationTime : 12/31/1979 11:00:00 PM
LastWriteTime : 12/31/1979 11:00:00 PM
LastAccessTime : 12/31/1979 11:00:00 PM

This is usually the best way to display a large collection of fields that won’t fit well
across the screen. (Obviously the idea of an -AutoSize switch makes no sense for
this type of formatter.)

The Format-Wide cmdlet is used when you want to display a single object prop-
erty in a concise way. It’ll treat the screen as a series of columns for displaying the
same information. Here’s an example:

PS (1) > Get-Process –Name s* | Format-Wide -Column 8 id

1372 640 516 1328 400 532 560 828
876 984 1060 1124 4

In this example, you want to display the process IDs of all processes whose names start
with “s” in eight columns. This formatter allows for dense display of information.

The final formatter is Format-Custom, which displays objects while preserving
the basic structure of the object. Because most objects have a structure that contains
other objects, which in turn contain other objects, this can produce extremely ver-
bose output. Here’s a small part of the output from the Get-Item cmdlet, displayed
using Format-Custom:

PS (10) > Get-Item c:\ | Format-Custom -Depth 1
v
class DirectoryInfo
{
 PSPath = Microsoft.PowerShell.Core\FileSystem::C:\
 PSParentPath =
 PSChildName = C:\
 PSDrive =
 class PSDriveInfo
 {
 CurrentLocation =
 Name = C
 Provider = Microsoft.PowerShell.Core\FileSystem
 Root = C:\
 Description = C_Drive
 Credential = System.Management.Automation.PSCredential
 }

The full output is considerably longer, and notice that we’ve told it to stop walking
the object structure at a depth of 1. You can imagine how verbose this output can be!
So why have this cmdlet? Mostly because it’s a useful debugging tool, either when
you’re creating your own objects or for exploring the existing objects in the .NET class
libraries. You can see that this is a tool to keep in your back pocket for when you’re
getting down and dirty with objects, but not something that you’ll typically use on a
day-to-day basis.
66 CHAPTER 2 FOUNDATIONS OF POWERSHELL

2.6.2 The outputter cmdlets

Now that you know how to format something, how do you output it? You don’t have
to worry because, by default, things are automatically sent to (can you guess?) Out-
Default.

Note that the following three examples do exactly the same thing:

dir | Out-Default
dir | Format-Table
dir | Format-Table | Out-Default

This is because the formatter knows how to get the default outputter, the default out-
putter knows how to find the default formatter, and the system in general knows how
to find the defaults for both. The Möbius strip of subsystems!

As with the formatters, there are several outputter cmdlets available in PowerShell
out of the box. You can use the Get-Command command to find them:

PS (1) > Get-Command Out-* | Format-Table Name

Name

Out-Default
Out-File
Out-GridView
Out-Host
Out-Null
Out-Printer
Out-String

Here we have a somewhat broader range of choices. We’ve already talked about Out-
Default. The next one we’ll talk about is Out-Null. This is a simple outputter; any-
thing sent to Out-Null is simply discarded. This is useful when you don’t care about
the output for a command; you want the side effect of running the command. For
example, the mkdir command outputs a listing of the directory it just created:

PS (1) > mkdir foo

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 6/25/2010 8:50 PM foo

If you don’t want to see this output, pipe it to Out-Null. First remove the directory
you created, and then create the directory:

PS (2) > rmdir foo
PS (3) > mkdir foo | out-null
PS (4) > get-item foo

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp
FORMATTING AND OUTPUT 67

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 6/25/2010 8:50 PM foo

And finally, because you didn’t get the message, you should verify that the directory
was actually created.

Next we have Out-File. Instead of sending the output to the screen, this command
sends it to a file. (This command is also used by I/O redirection when doing output
to a file.) In addition to writing the formatted output, Out-File has several flags that
control how the output is written. The flags include the ability to append to a file
instead of replacing it, to force writing to read-only files, and to choose the output
encodings for the file. This last item is the trickiest one. You can choose from a num-
ber of the text encodings supported by Windows. Here’s a trick—enter the command
with an encoding that you know doesn’t exist:

PS (9) > out-file -encoding blah
Out-File : Cannot validate argument "blah" because it does
not belong to the set "unicode, utf7, utf8, utf32, ascii,
bigendianunicode, default, oem".
At line:1 char:19
+ out-file -encoding <<<< blah
PS (10) >

You can see in the error message that all the valid encoding names are displayed. If
you don’t understand what these encodings are, don’t worry about it, and let the sys-
tem use its default value.

NOTE Where you’re likely to run into problems with output encod-
ing (or input encoding for that matter) is when you’re creating files
that are going to be read by another program. These programs may
have limitations on what encodings they can handle, especially older
programs. To find out more about file encodings, search for “file
encodings” on http://msdn.microsoft.com. MSDN contains a wealth of
information on this topic. Chapter 5 also contains additional informa-
tion about working with file encodings in PowerShell.

The Out-Printer cmdlet doesn’t need much additional explanation; it routes its
text-only output to the printer instead of to a file or to the screen.

Null redirect

For the I/O redirection fans in the audience; piping to Out-Null is essentially
equivalent to doing redirecting to $null. So

mkdir foo | out-null

is equivalent to

mkdir foo > $null
68 CHAPTER 2 FOUNDATIONS OF POWERSHELL

The Out-Host cmdlet is a bit more interesting—it sends its output back to the
host. This has to do with the separation in PowerShell between the interpreter or
engine and the application that hosts that engine. In theory, the host could be any
application. It could be Visual Studio, it could be one of the Microsoft Office appli-
cations, or it could be a custom third-party application. In each of those cases, the
host application would have to implement a special set of interfaces so that Out-Host
could render its output properly. (We see this used in version 2 of PowerShell, which
includes two hosts: the console host and the ISE.)

NOTE Out-Default delegates the actual work of outputting to the
screen to Out-Host.

The last output cmdlet to discuss is Out-String. This one’s a bit different. All the
other cmdlets send the output off somewhere else and don’t write anything to the
pipeline. The Out-String cmdlet formats its input and sends it as a string to the
next cmdlet in the pipeline. Note that we said string, not strings. By default, it sends
the entire output as a single string. This is not always the most desirable behavior—a
collection of lines is usually more useful—but at least once you have the string, you
can manipulate it into the form you want. If you do want the output as a series of
strings, use the -Stream switch parameter. When you specify this parameter, the out-
put will be broken into lines and streamed one at a time.

Note that this cmdlet runs somewhat counter to the philosophy of PowerShell;
once you’ve rendered the object to a string, you’ve lost its structure. The main reason
for including this cmdlet is for interoperation with existing APIs and external com-
mands that expect to deal with strings. So, if you find yourself using Out-String a
lot in your scripts, stop and think if it’s the best way to attack the problem.

PowerShell version 2 introduced one additional output command: Out-GridView.
As you might guess from the name, this command displays the output in a grid, but
rather than rendering the output in the current console window, a new window is
opened with the output displayed using a sophisticated grid control (see figure 2.6).

Figure 2.6 Displaying

output with

Out-GridView
FORMATTING AND OUTPUT 69

The underlying grid control used by Out-GridView has all the features you’d expect
from a modern Windows interface: columns can be reordered by dragging and drop-
ping them, and the output can be sorted by clicking a column head. This control also
introduces sophisticated filtering capabilities. This filtering allows you to drill into a
dataset without having to rerun the command. Figure 2.7 shows an example of this
filtering.

In figure 2.7, we’ve added a filter clause by clicking the Add button. This launches
a dialog box that allows you to select a field to filter on as well as the criteria to use for
the filter. In this case we’ve chosen to sort based on the Handles field, selecting rows
where the number of handles is less than 1,000.

That’s it for the basics: commands, parameters, pipelines, parsing, and presenta-
tion. You should now have a sufficient foundation to start moving on to more
advanced topics in PowerShell.

2.7 SUMMARY

This chapter covered the basic structure of PowerShell commands, pipelines, and syntax:

• We began the chapter with an overview of the major concepts in PowerShell.

• We discussed the basic command and pipeline syntax and command parameter
binding.

• PowerShell has four types of commands: cmdlets, functions, script commands,
and native commands, each with slightly different characteristics.

• We discussed the notion of elastic syntax—concise on the command line and
complete in scripts—and how aliases are used to facilitate elastic syntax.

• The fact that PowerShell is a command language as well as a scripting language
impacts how it parses text in a number of ways:

– PowerShell parses scripts in two modes: expression mode and command
mode, which is a critical point to appreciate when using PowerShell.

Figure 2.7 With the filtering features of control used by Out-GridView,

you can drill into the dataset without having to regenerate the data.
70 CHAPTER 2 FOUNDATIONS OF POWERSHELL

– The PowerShell escape character is a backtick (`), not a backslash.

– PowerShell supports both double quotes and single quotes; variable and
expression expansion is done in double quotes but not in single quotes.

– Line termination is handled specially in PowerShell because it’s a command
language.

– PowerShell has two types of comments: line comments that begin with # and
block comments that start with <# and end with #>. The block comment
notation was introduced in PowerShell version 2 with the intent of support-
ing inline documentation for scripts and functions.

• PowerShell uses a sophisticated formatting and outputting system to determine
how to render objects without requiring detailed input from the user.
SUMMARY 71

C H A P T E R 3

Working with types

3.1 Type management in the wild, wild

West 72
3.2 Basic types and literals 77
3.3 Collections: dictionaries and hashta-

bles 85

3.4 Collections: arrays and sequences 91
3.5 Type literals 96
3.6 Type conversions 101
3.7 Summary 109
“When I use a word,” Humpty Dumpty said, in rather a scornful tone,
“it means just what I choose it to mean—neither more nor less.”

 —Lewis Carroll, Through the Looking Glass

Most shell environments can only deal with strings, so the ability to use objects makes
PowerShell different. Where you have objects, you also have object types. Much of the
power of PowerShell comes from the innovative way it uses types. In this chapter,
we’ll look at the PowerShell type system, show how to take advantage of it, and exam-
ine some of the things you can accomplish with types in PowerShell.

3.1 TYPE MANAGEMENT IN THE WILD, WILD WEST

Shell languages are frequently called typeless languages. That characterization isn’t
really accurate because, fundamentally, programming is all about working with differ-
ent types of objects. The more interesting question is how much implicit work the
system does in handling types and how much work is required of you. This spectrum
of effort is conventionally split into static and dynamic typing. In statically typed
72

systems, much of the work is done for you as long as you stay within the domain of
the types you’re working on. Once you move outside that domain, it’s up to the user
to figure out how to move objects between those domains. The other cost of static
typing is that you’re required to declare the type of every variable, even when the
compiler can figure it out for itself. Take the following C# statement, for example:

string myString = "hello world";

The variable myString is declared to be a string, even though it’s obvious that it has
to be a string. You’re assigning a string to it, so what else could it be? It’s this kind of
redundancy that dynamic languages try to avoid. In dynamically typed languages, the
user is rarely required to specify the type of a variable. Typically you don’t even have
to declare the variable at all.

NOTE The statically typed language community recognizes that requir-
ing the user to repeatedly specify type information is a problem. They
address this, at least in part, through something called type inferencing.
This is a mechanism where the language processor tries to figure out the
type of each expression by looking at the types of each component of the
expression. C# 3.0 is an example of a statically typed mainstream lan-
guage that uses type inference for local variables and expressions.

3.1.1 PowerShell: a type-promiscuous language

The tendency is to characterize PowerShell as a dynamically typed language, but a
better description is that PowerShell is a type-promiscuous language (sounds sala-
cious, doesn’t it?). By type-promiscuous, we mean that PowerShell will expend a tre-
mendous amount of effort trying to turn what you have into what you need with as
little work on your part as it can manage. When you ask for a property Y, PowerShell
doesn’t care if the object foo is a member of class X. It only cares whether foo has a
property Y.

People who are used to strongly typed environments find this approach—
well—disturbing. It sounds too much like “wild wild West” management. In practice,
the interpreter is careful about making sure its transformations are reasonable and that
no information is unexpectedly lost. This is particularly important when dealing with
numeric calculations. In PowerShell, you can freely mix and match different types of
numbers in expressions. You can even include strings in this mix. PowerShell converts
everything as needed without specific guidance from the user, as long as there’s no loss
in precision. We’ll use the remainder of this section to present a number of examples
that illustrate this point. We’ll look at operations where the conversions succeed and
the type of the result of the operations. (For convenience, we’ll use the .NET Get-
Type() method to look at the base type of the results of the various expressions.) We’ll
also explore some examples where there’s an error because the conversion causes some
significant loss of information.
TYPE MANAGEMENT IN THE WILD, WILD WEST 73

In our first example, you’ll add an integer, a floating-point number, and a string
that contains only digits:

PS (1) > 2 + 3.0 + "4"
9
PS (2) > (2 + 3.0 + "4").GetType().FullName
System.Double

As you can see from the result, everything was widened to a double-precision float-
ing-point number. (Widening means converting to a representation that can handle
larger or wider numbers: a [long] is wider than an [int], and so forth.) Now let’s
be a bit trickier: put the floating-point number within quotes this time:

PS (3) > 2 + "3.0" + 4
9
PS (4) > (2 + "3.0" + 4).GetType().FullName
System.Double

Once again the system determines that the expression has to be done in floating point.

NOTE The .NET single-precision floating-point representation isn’t
typically used unless you request it. In PowerShell, there usually isn’t a
performance benefit for using single precision, so there’s no reason to
use this less precise representation.

Now let’s see a few simple examples that involve only integers. As you’d expect, all these
operations result in integers as long as the result can be represented as an integer:

PS (5) > (3 + 4)
7
PS (6) > (3 + 4).GetType().FullName
System.Int32
PS (7) > (3 * 4).GetType().FullName
System.Int32

Try an example using the division operator:

PS (8) > 6/3
2
PS (9) > (6/3).GetType().FullName
System.Int32

Because 6 is divisible by 3, the result of this division is also an integer. But what hap-
pens if the divisor isn’t a factor? Try it and see:

PS (10) > 6/4
1.5
PS (11) > (6/4).GetType().FullName
System.Double

The result is now a [double] type. The system noticed that there would be a loss of
information if the operation were performed with integers, so it’s executed using dou-
bles instead.
74 CHAPTER 3 WORKING WITH TYPES

Finally, try some examples using scientific notation. Add an integer to a large
decimal:

PS (10) > 1e300
1E+300
PS (11) > 1e300 + 12
1E+300

The operation executed with the result being a double. In effect, adding an integer to
a number of this magnitude means that the integer is ignored. This sort of loss is con-
sidered acceptable by the system. But there’s another numeric type that’s designed to
be precise: System.Decimal. Normally you only use this type when you care about
the precision of the result. Try the previous example, this time adding a decimal
instead of an integer:

PS (12) > 1e300 + 12d
Cannot convert "1E+300" to "System.Decimal". Error: "Value was
either too large or too small for a
Decimal."
At line:1 char:8
+ 1e300 + <<<< 12d
PS (13) >

This results in an error because when one of the operands involved is a [decimal]
value, all operands are converted to decimal first and then the operation is performed.
Because 1e300 is too large to be represented as a decimal, the operation will fail with
an exception rather than lose precision.

From these examples, you can see that although the PowerShell type conversion
system is aggressive in the types of conversions it performs, it’s also careful about how
it does things.

Now that you have a sense of the importance of types in PowerShell, let’s look at
how it all works.

3.1.2 The type system and type adaptation

Everything in PowerShell involves types in one way or another, so it’s important to
understand how the PowerShell type system works. That’s what we’re going to cover
in this section. At the core of the PowerShell type system is the .NET type system. Lit-
tle by little, the .NET Framework is expanding to encapsulate everything in the Win-
dows world, but it hasn’t swallowed everything yet. There are still several other object
representations that Windows users, especially Windows system administrators, have
to deal with. There’s Common Object Model (COM) (essentially the precursor to
.NET); Windows Management Instrumentation (WMI), which uses Management
Object Format (MOF) definitions; ActiveX Data Objects (ADO) database objects;
Active Directory Services Interface (ADSI) directory service objects; and so on (wel-
come to object alphabet soup). There’s even everyone’s favorite old/new (as in “every-
thing old is new again") object representation: XML. And finally the .NET libraries,
as well designed as they are, aren’t always quite what you want them to be.
TYPE MANAGEMENT IN THE WILD, WILD WEST 75

In an effort to bring harmony to this object soup and fix some of the shortcomings of
the various object representations, PowerShell uses a type-adaptation system that masks
all the details of these different objects’ representations. A PowerShell script never
directly accesses an object. It always goes through the type-adaptation layer—the
PSObject (PowerShell Object) layer—that rationalizes the interfaces presented to the
user. The PSObject layer allows for a uniquely consistent user experience when
working with the different types of objects. This architecture is shown in figure 3.1.

When you see an expression like

$x.Count

you don’t have to know or care about the type of object stored in $x. You only care
that it has a property named Count. PowerShell never generates code to directly
access the Count property on a particular type of object. Instead, it makes an indirect
call through the PSObject layer, which figures out how a Count property for the
object can be accessed. If $x contains a .NET object, it will return the value from that
object’s Length property. If $x contains an XML document, the XML adapter will
look for a node called “count” on the top level of that XML document. The object in
the variable might not even contain a Count property at all. With PowerShell, you
can have a type system with a synthetic property (called a PSMember) defined by the
type system itself, instead of on the object. Table 3.1 lists the set of available Power-
Shell object adapters.

Table 3.1 The basic set of object adapters available in PowerShell

Adapted object type Description

.NET Adapter This is the basic adapter for all .NET types. This adapter directly
maps the properties on the .NET object and adds several new
ones that start with a PS prefix.

COM Object Adapter This adapter provides access to COM objects. Supported
objects include the Windows Script Host classes and script-
able applications such as Microsoft Word or Internet Explorer.

PSObject layer

PowerShell script

that accesses

objects

.NET object adapter

.NET object

WMI object adapter

WMI object

COM object adapter

COM object

Figure 3.1 The architecture of the PowerShell type-

adaptation system. For each kind of data that Power-

Shell works with, there’s a corresponding adapter. An

instance of a particular data object is subsequently

wrapped in an instance of the associated type adapter.

This type adapter instance acts as an intermediary be-

tween the object and PowerShell, proxying all accesses.
76 CHAPTER 3 WORKING WITH TYPES

Let’s recap. In chapter 2, you saw how cmdlets produced various kinds of objects.
These are the objects you have to manipulate to get your work done. In this section,
we discussed how these manipulations work—how the adapter mechanism provides a
uniform experience for the various types of objects. Now let’s look at one more source
of objects: the constants embedded in the script itself, which is accomplished through
the various types of literals. All languages need to have some form of literal data for
initializing variables, comparing against objects, and so on. To say, “Get me all the
files smaller than 10 MB,” you need a way to express 10 MB in your script. You’ll
learn how this is done in the next section.

3.2 BASIC TYPES AND LITERALS

All programming languages have a set of basic or primitive types from which every-
thing else is built. These primitive types usually have some form of corresponding
syntactic literal. Literal tokens in the language are used to represent literal data objects
in the program. In PowerShell there are the usual literals—strings, numbers, and
arrays—but there are some other literals that aren’t typically found outside of
dynamic languages: dictionaries and hashtables. PowerShell also makes heavy use of
type literals that correspond to type objects in the system. In this section, we’ll go
through each of the literals, illustrate how they’re represented in script text, and
explore the details of how they’re implemented in the PowerShell runtime.

3.2.1 String literals

There are four kinds of string literals in PowerShell: single-quoted strings, double-
quoted strings, single-quoted here-strings, and double-quoted here-strings. The
underlying representation for all of these strings is the same.

String representation in PowerShell

In PowerShell, a string is a sequence of 16-bit Unicode characters and is directly
implemented using the .NET System.String type. Because PowerShell strings use
Unicode, they can effectively contain characters from every language in the world.

WMI Adapter This adapts objects returned from a WMI provider.

ADO Adapter This adapter allows you to treat the columns in ADO data
tables as though they were properties.

Custom Object
Adapter

This adapter manages objects for which there’s no actual
underlying object, only synthetic properties.

ADSI Object Adapter This adapts objects returned from the Active Directory Service
Interfaces.

Table 3.1 The basic set of object adapters available in PowerShell (continued)

Adapted object type Description
BASIC TYPES AND LITERALS 77

There are a couple of other characteristics that strings in PowerShell inherit from the
underlying .NET strings. They can also be arbitrarily long and they’re immuta-
ble—the contents of a string can be copied but can’t be changed without creating an
entirely new string.

Single- and double-quoted strings

Because of the expression mode/command mode parsing dichotomy described in
chapter 2, strings can be represented in several ways. In expression mode, a string is
denoted by a sequence of characters surrounded by matching quotes, as shown in the
following example:

PS (1) > "This is a string in double quotes"
This is a string in double quotes
PS (2) > 'This is a string in single quotes'
This is a string in single quotes
PS (3) >

Literal strings can contain any character, including newlines, with the exception of an
unquoted closing quote character. In double-quoted strings, to embed the closing
quote character you have to either quote it with the backtick character or double it
up. In other words, two adjacent quotes become a single literal quote in the string. In
single-quoted strings, doubling up the quote is the only way to embed a literal quote
in the string. This is one area where an important difference exists between single-
and double-quoted strings: in single-quoted strings, the backtick isn’t special. This
means that it can’t be used for embedding special characters such as newlines or
escaping quotes.

Like the Unix shells, PowerShell supports variable substitutions. These variable
substitutions or expansions are only done in double-quoted strings (which is why
these are sometimes called expandable strings).

Encoding matters

The encoding used in strings is obviously important in international environments. If
you’re interested in the nitty-gritty details of the encoding used in System.String,
here’s what the Microsoft Developer’s Network documentation has to say:

Each Unicode character in a string is defined by a Unicode scalar value,
also called a Unicode code point or the ordinal (numeric) value of the
Unicode character. Each code point is encoded using UTF-16 encoding,
and the numeric value of each element of the encoding is represented
by a Char. The resulting collection of Char objects constitutes the String.
A single Char usually represents a single code point; that is, the numeric
value of the Char equals the code point. However, a code point might
require more than one encoded element. For example, a Unicode supple-
mentary code point (a surrogate pair) is encoded with two Char objects.

Refer to the Microsoft Developer Network (MSDN) documentation for additional details.
78 CHAPTER 3 WORKING WITH TYPES

NOTE Arguments to commands are treated as though they were in
double quotes, so variables will be expanded in that situation as well.
You’ll see examples of this later on.

Let’s look at an example of string expansion:

PS (1) > $foo = "FOO"
PS (2) > "This is a string in double quotes: $foo"
This is a string in double quotes: FOO
PS (3) > 'This is a string in single quotes: $foo'
This is a string in single quotes: $foo
PS (4) >

In the preceding lines, you can see that $foo in the double-quoted string was
replaced by the contents of the variable FOO but not in the single-quoted case.

Subexpression expansion in strings

Expandable strings can also include arbitrary expressions by using the subexpression
notation. A subexpression is a fragment of PowerShell script code that’s replaced by
the value resulting from the evaluation of that code. Here are examples of subexpres-
sion expansion in strings:

PS (1) > "2+2 is $(2+2)"
2+2 is 4
PS (2) > $x=3
PS (3) > "$x * 2 is $($x * 2)"
3 * 2 is 6
PS (4) >

The expression in the $(...) sequence in the string is replaced by the result of
evaluating the expression. $(2+2) is replaced by 4, and so on.

Using complex subexpressions in strings

So far, these examples show only simple embedded expressions. In fact, subexpres-
sions allow statement lists—a series of PowerShell statements separated by semico-
lons—to be embedded. Here’s an example where the subexpression contains three
simple statements. First execute the three simple statements:

PS (1) > 1;2;3 # three statements
1
2
3

Now execute the same set of statements in a subexpression expansion:

PS (2) > "Expanding three statements in a string: $(1; 2; 3)"
Expanding three statements in a string: 1 2 3
PS (3) >
BASIC TYPES AND LITERALS 79

The result shows the output of the three statements concatenated together, space sep-
arated, and inserted into the result string. Here’s another example of using a for
statement in a subexpression expansion:

PS (1) > "Numbers 1 thru 10: $(for ($i=1; $i -le 10; $i++) { $i })."
Numbers 1 thru 10: 1 2 3 4 5 6 7 8 9 10.
PS (2) >

The output of all the iterations for the loop are gathered up, turned into a string with
one value separated from the next by a space, and then substituted into the overall
string. As you can see, this can be quite powerful. Using a subexpression in a string is
one way to quickly generate formatted results when presenting data.

String expansion considerations

PowerShell expands strings when an assignment is executed. It doesn’t reevaluate
those strings when the variable is used later. This is an important point. Let’s look at
two examples that will make this clear. These examples use the postincrement opera-
tor ++, which adds 1 to a variable, and the range operator, which expands to a
sequence of numbers.

In the first example, initialize $x to 0 and then assign a string with an expansion
that increments $x to a variable $a. Next output $a three times to see what happens
to the value of $x:

PS (1) > $x=0
PS (2) > $a = "x is $($x++; $x)"
PS (4) > 1..3 | foreach {$a}
x is 1
x is 1
x is 1

As you can see, $x was incremented once when $a was assigned but didn’t change on
subsequent references. Now inline the string literal into the body of the loop and see
what happens:

PS (5) > 1..3 | foreach {"x is $($x++; $x)"}
x is 1
x is 2
x is 3

This time around, you can see that $x is being incremented each time. To reiterate,
string literal expansion is done only when the literal is assigned.

NOTE There’s a way to force a string to be expanded if you need to
do it. You can do this by calling $ExecutionContext.InvokeCom-
mand.ExpandString('a is $a'). This method will return a new
string with all the variables expanded.

Here-string literals

Getting back to the discussion of literal string notation, there’s one more form of
string literal, called a here-string. A here-string is used to embed large chunks of text
80 CHAPTER 3 WORKING WITH TYPES

inline in a script. This can be powerful when you’re generating output for another
program. Here’s an example that assigns a here-string to the variable $a:

PS (1) > $a = @"
>> Line one
>> Line two
>> Line three
>> "@
>>
PS (2) > $a
Line one
Line two
Line three

NOTE Here’s a note for C# users. There’s a lexical element in C# that
looks a lot like PowerShell here-strings. In practice, the C# feature is
most like PowerShell’s single-quoted strings. In PowerShell, a here-
string begins at the end of the line and the terminating sequence must
be at the beginning of the line that terminates the here-string. In C#,
the string terminates at the first closing quote that isn’t doubled up.

When $a is displayed, it contains all the lines that were entered. Now you’re probably
saying, “Wait a minute—you told me I can do the same thing with a regular string.
What makes here-strings so special?” It has to do with how quoting is handled. Here-
strings have special quoting rules.

Here-strings start with @<quote><newline> and end with <newline><quote>@.
The <newlines> are important because the here-string quote sequences won’t be
treated as quotes without them. The content of the here-string is all the lines between
the beginning and ending quotes but not the lines the quotes are on. Because of the
fancy opening and closing quote sequences, other special characters (such as quotes
that would cause problems in regular strings) are fine here. This makes it easy to gen-
erate string data without having quoting errors. Here’s a more elaborate example:

PS (1) > $a = @"
>> One is "1"
>> Two is '2'
>> Three is $(2+1)
>> The date is "$(get-date)"
>> "@ + "A trailing line"
>>
PS (2) > $a
One is "1"
Two is '2'
Three is 3
The date is "1/8/2006 9:59:16 PM"A trailing line
PS (3) >

On line 1, the here-string is assigned to the variable $a. The contents of the here-
string start on line 2, which has a string containing double quotes. Line 3 has a string
with single quotes. Line 4 has an embedded expression, and line 5 calls the Get-Date
BASIC TYPES AND LITERALS 81

cmdlet in a subexpression to embed the current date into the string. Finally, line 6
appends some trailing text to the whole string. When you look at the output of the
variable shown in lines 9–12, you see that the quotes are all preserved and the expan-
sions are shown in place.

Here-strings come in single and double-quoted versions just like regular strings,
with the significant difference being that variables and subexpressions aren’t
expanded in the single-quoted variant, as shown here:

PS (1) > $a=123
PS (2) > @"
>> a is $a
>> "@
>>
a is 123

In the double-quoted here-string, the variable $a is expanded, but in the single-
quoted here-string

PS (3) > @'
>> a is $a
>> '@
>>
a is $a
PS (4) >

it isn’t. The single-quoted version is best for embedding large blocks of literal text
where you don’t want to have to deal with individually quoting $ everywhere. You’ll
see how useful this can be when we look at the Add-Type cmdlet in chapter 9.

That should be enough about strings for now. Let’s move on to numbers and
numeric literals. This will finally let us express that “10 MB” value we wanted to
compare against earlier.

3.2.2 Numbers and numeric literals

As mentioned earlier, PowerShell supports all the basic .NET numeric types and per-
forms conversions to and from the different types as needed. Table 3.2 lists these
numeric types.

Table 3.2 Numeric literals

Example numeric literal .NET full type name Short type name

1
0x1FE4

System.Int32 [int]

10000000000
10l

System.Int64 [long]

1.1
1e3

System.Double [double]
82 CHAPTER 3 WORKING WITH TYPES

Now that you know the basic numeric types, you need to understand how literals of
each type are specified.

Specifying numeric literals

In general, you don’t specify a literal having a particular type; the system will figure
out the best way to represent the number. By default, an integer will be used. If the
literal is too large for a 32-bit integer, a 64-bit integer will be used instead. If it’s still
too big or if it contains a decimal point, a System.Double will be used. (The
System.Single single-precision floating point isn’t used for numeric literals because
it offers no advantages and just complicates the process.) The one case where you do
want to tell the system that you’re requesting a specific type is with the System
.Decimal type. These are specified by placing the letter d at the end of the number
with no intervening space, as shown:

PS (1) > (123).gettype().fullname
System.Int32
PS (2) > (123d).gettype().fullname
System.Decimal
PS (3) > (123.456).gettype().fullname
System.Double
PS (4) > (123.456d).gettype().fullname
System.Decimal

You can see that in each case where there’s a trailing d, the literal results in a [deci-
mal] value being created. (If there’s a space between the number and the d, you’ll get
an error.)

The multiplier suffixes

Plain numbers are fine for most applications, but in the system administration world,
there are many special values that you want to be able to conveniently represent,
namely, those powers of two—kilobytes, megabytes, gigabytes, terabytes, and peta-
bytes (terabyte and petabyte suffixes aren’t available in PowerShell v1).

PowerShell provides a set of multiplier suffixes for common sizes to help with this,
as listed in table 3.3. These suffixes allow you to easily express common very large
numbers.

There is no single-precision
numeric literal but you can use
a cast:
[float] 1.3

System.Single [single] or
[float]

1d
1.123d

System.Decimal [decimal]

Table 3.2 Numeric literals (continued)

Example numeric literal .NET full type name Short type name
BASIC TYPES AND LITERALS 83

NOTE Yes, the PowerShell team is aware that these notations aren’t
consistent with the ISO/IEC recommendations (kilobyte, and so on).
Because the point of this notation is convenience and most IT people
are more comfortable with KB than with Ki, we choose to err on the
side of comfort over conformance in this one case. This particular issue
generated easily the second-most heated debate on the PowerShell
internal and external beta tester lists. We’ll cover the most heated
debate later when we get to the comparison operators.

Hexadecimal literals

The last item we’ll cover in this section is hexadecimal literals. When working with
computers, it’s obviously useful to be able to specify hex literals. PowerShell uses the
same notation as C, C#, and so on—preceding the number with the sequence 0x and
allowing the letters A–F as the extra digits. As always, the notation is case insensitive,
as shown in the following examples:

PS (1) > 0x10
16
PS (2) > 0x55
85
PS (3) > 0x123456789abcdef
81985529216486895
PS (4) > 0xDeadBeef
-559038737

Table 3.3 The numeric multiplier suffixes supported in PowerShell. Suffixes marked v2 are

 only available in version 2 or PowerShell.

Multiplier

suffix
Multiplication factor Example Equivalent value .NET type

kb or KB 1024 1 KB 1024 System.Int32

kb or KB 1024 2.2 KB 2252.8 System.Double

mb or MB 1024*1024 1 MB 1048576 System.Int32

mb or MB 1024*1024 2.2 MB 2306867.2 System.Double

gb or GB 1024*1024*1024 1 GB 1073741824 System.Int32

gb or GB 1024*1024*1024 2.14 GB 2297807503.36 System.Double

tb or TB
(v2 only)

1024*1024*1024*
1024

1 TB 1099511627776 System.Int64

tb or TB
(v2 only)

1024*1024*1024*
1024

2.14 TB 2352954883440.64 System.Double

pb or PB
(v2 only)

1024*1024*1024*
1024*1024

1 PB 1125899906842624 System.Int64

pb or PB
(v2 only)

1024*1024*1024*
1024*1024

2.14 PB 2.40942580064322E+15 System.Int64
84 CHAPTER 3 WORKING WITH TYPES

Now that we’ve covered the “basic” literals, strings, and numbers, let’s move on to the
more interesting and less common ones. This is one of the areas where the power of
scripting languages shines. These literals let you express complex configuration data,
inline in your script, in a clear and direct fashion. This, in turn, means that you don’t
have to use an external data language like XML or INI files to encode this configura-
tion data. PowerShell lets you express this information in PowerShell itself.

3.3 COLLECTIONS: DICTIONARIES AND HASHTABLES

Perhaps the most flexible data type in PowerShell is the hashtable. This data type lets
you map a set of keys to a set of values. For example, we may have a hashtable that
maps “red” to 1, “green” to 2, and “yellow” to 4.

NOTE A dictionary is the general term for a data structure that maps
keys to values. In the .NET world, this takes the form of an interface
(System.Collections.IDictionary) that describes how a collec-
tion should do this mapping. A hashtable is a specific implementation
of that interface. Although the PowerShell hashtable literal syntax only
creates instances of System.Collections.Hashtable, scripts that
you write will work properly with any object that implements
IDictionary.

3.3.1 Creating and inspecting hashtables

In PowerShell, you use hash literals to create a hashtable inline in a script. Here’s a
simple example:

PS (26) > $user = @{ FirstName = "John"; LastName = "Smith";
>> PhoneNumber = "555-1212" }
PS (27) > $user

Key Value
--- -----
LastName Smith
FirstName John
PhoneNumber 555-1212

This example created a hashtable that contains three key-value pairs. The hashtable
starts with the token @{ and ends with }. Inside the delimiters, you define a set of
key-value pairs where the key and value are separated by an equals sign (=). Formally,
the syntax for a hash literal is

<hashLiteral> = '@{' <keyExpression> '=' <pipeline> [<separator>
<keyExpression> '=' <pipeline>] * '}'

Now that you’ve created a hashtable, let’s see how you can use it. PowerShell allows
you to access members in a hashtable in two ways—through property notation and
through array notation. Here’s what the property notation looks like:

PS (3) > $user.firstname
John
COLLECTIONS: DICTIONARIES AND HASHTABLES 85

PS (4) > $user.lastname
Smith

This notation lets you treat a hashtable like an object. This access method is intended
to facilitate the use of hashtables as a kind of lightweight data record. Now let’s look
at using the array notation:

PS (5) > $user["firstname"]
John
PS (6) > $user["firstname","lastname"]
John
Smith

Property notation works pretty much the way you’d expect; you specify a property
name and get the corresponding value back. Array notation, on the other hand, is
more interesting. In the second command in the example, you provided two keys and
got two values back.

Here’s an example that shows some additional features of the underlying
hashtable object. The underlying object for PowerShell hashtables is the .NET type
System.Collections.Hashtable. This type has a number of properties and meth-
ods that you can use. One of these properties is keys. This property will give you a
list of all the keys in the hashtable:

PS (7) > $user.keys
LastName
FirstName
PhoneNumber

In the array access notation, you can use keys to get a list of all the values in the
table:

PS (8) > $user[$user.keys]
Smith
John
555-1212

NOTE A more efficient way to get all of the values from a hashtable is
to use the Values property. The point of this example is to demon-
strate how you can use multiple indexes to retrieve the values based on
a subset of the keys.

You might have noticed that the keys property didn’t return the keys in alphabetical
order. This is because of the way hashtables work—keys are randomly distributed in
the table to speed up access. If you do need to get the values in alphabetical order,
here’s how you can do it:

PS (10) > $user.keys | sort-object
FirstName
LastName
PhoneNumber
86 CHAPTER 3 WORKING WITH TYPES

The Sort-Object (or just sort) cmdlet sorts the keys into alphabetical order and
returns a list. Use this list to index the table:

PS (11) > $user[[string[]] ($user.keys | sort)]
John
Smith
555-1212

You’ll notice something funny about the last example: we had to cast or convert the
sorted list into an array of strings. This is because the hashtable keys mechanism
expects strings, not objects, as keys. There’s much more on casts later in this chapter.

A digression: sorting, enumerating, and hashtables

Let’s digress for a second and address a question that comes up sometimes when peo-
ple, especially .NET programmers, first encounter hashtables in PowerShell. The
question is, “Are hashtables collections or scalar objects?” From the .NET perspective,
they’re enumerable collections just like arrays except they contain a collection of key-
value pairs. However, and this is important, PowerShell treats hashtables like scalar
objects. It does this because, in scripting languages, hashtables are commonly used as
on-the-fly structures or data records. Using hashtables this way, you don’t have to pre-
define the fields in a record; you just make them up as you go. If PowerShell treated
hashtables as enumerable collections by default, this wouldn’t be possible because
every time you passed one of these “records” into a pipeline, it would be broken up
into a stream of individual key-value pairs and the integrity of the original table
would be lost.

This causes the most problems for people when they use hashtables in the
foreach statement. In a .NET language like C#, the foreach statement iterates over
all the pairs. In PowerShell, the foreach loop will run only once because the
hashtable isn’t considered an enumerable, at least not by default. So, if you do want
to iterate over the pairs, you’ll have to call the GetEnumerator() method yourself.
This looks like

PS (12) > $h = @{a=1; b=2; c=3}
PS (13) > foreach ($pair in $h.GetEnumerator())
>> {
>> $pair.key + " is " + $pair.value
>> }
>>
a is 1
b is 2
c is 3

In each iteration, the next pair is assigned to $pair and processing continues.
A significant part of the reason this behavior confuses people is that when Power-

Shell displays a hashtable, it uses enumeration to list the key-value pairs as part of the
presentation. The result is that there’s no visible difference between when you call
COLLECTIONS: DICTIONARIES AND HASHTABLES 87

GetEnumerator() in the foreach loop and when you don’t. Let’s look at this. First,
the no GetEnumerator() case:

PS (14) > foreach ($pair in $h) { $pair }

Name Value
---- -----
a 1
b 2
c 3

Now call GetEnumerator() in the loop:

PS (15) > foreach ($pair in $h.GetEnumerator()) { $pair }

Name Value
---- -----
a 1
b 2
c 3

As you can see, the output is identical in both cases. This is desirable in the sense that
it’s a good way to present a hashtable and doesn’t require effort from the user to do
this. On the other hand, it masks the details of what’s really going on. As always, it’s
difficult to serve all audiences perfectly.

Another aspect of the hashtable collection question is that people want to be able
to “sort” a hashtable the way you’d sort a list of numbers. In the case of a hashtable,
this usually means that the user wants to be able to control the order in which keys
will be retrieved from the hashtable. Unfortunately this can’t work because the
default hashtable object that PowerShell uses has no way to store any particular key
ordering in the table. The keys are just stored in random order, as you saw earlier in
this section. If you want to have an ordered dictionary, you’ll have to use a different
type of object, such as

[Collections.Generic.SortedDictionary[object,object]]

This is a sorted generic dictionary (we’ll get to type literals and generics later in this
chapter). And now, back to our regularly scheduled topic.

3.3.2 Modifying and manipulating hashtables

Next let’s look at adding, changing, and removing elements in the hashtable. First let’s
add the date and the city where the user lives to the $user table.

PS (1) > $user.date = get-date
PS (2) > $user
Key Value
--- -----
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John
PhoneNumber 555-1212
88 CHAPTER 3 WORKING WITH TYPES

PS (3) > $user["city"] = "Seattle"
PS (4) > $user
Key Value
--- -----
city Seattle
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John
PhoneNumber 555-1212

A simple assignment using either the property or array accessor notation allows you
to add an element to a hashtable. Now let’s say you got the city wrong—John really
lives in Detroit. Let’s fix that:

PS (5) > $user.city = "Detroit"
PS (6) > $user
Key Value
--- -----
city Detroit
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John
PhoneNumber 555-1212

As this example shows, simple assignment is the way to update an element. Finally,
you don’t want this element, so remove it from the table with the remove() method:

PS (7) > $user.remove("city")
PS (8) > $user
Key Value
--- -----
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John
PhoneNumber 555-1212
The hashtable no longer contains the element.

If you want to create an empty hashtable, use @{ } with no member specifications
between the braces. This creates an empty table that you can then add members to
incrementally:

PS (1) > $newHashTable = @{}
PS (2) > $newHashTable
PS (3) > $newHashTable.one =1
PS (4) > $newHashTable.two = 2
PS (5) > $newHashTable

Key Value
--- -----
two 2
one 1

In the example, there were no members initially; you added two by making assign-
ments. The members are created on assignment.
COLLECTIONS: DICTIONARIES AND HASHTABLES 89

3.3.3 Hashtables as reference types

Hashtables are reference types, so if you create a hashtable, assign it to a variable
$foo, and assign $foo to another variable, $bar, you’ll have two variables that point
to, or reference, the same object. Consequently, any changes that are made to one vari-
able will affect the other, because they’re pointing to the same object. Let’s try this
out. Create a new hashtable and assign it to $foo:

PS (2) > $foo = @{
>> a = 1
>> b = 2
>> c = 3
>> }
>>
PS (3) > $foo
Key Value
--- -----
a 1
b 2
c 3

Now assign $foo to $bar and verify that it matches $foo as you’d expect:

PS (4) > $bar = $foo
PS (5) > $bar
Key Value
--- -----
a 1
b 2
c 3

Next assign a new value to the element a in $foo:

PS (6) > $foo.a = "Hi there"
PS (7) > $foo.a
Hi there

And see what happened to $bar:

PS (8) > $bar.a
Hi there
PS (9) > $bar
Key Value
--- -----
a Hi there
b 2
c 3

The change that was made to $foo has been reflected in $bar.
Now if you want to make a copy of the hashtable instead of just copying the refer-

ence, you can use the Clone() method on the object:

PS (1) > $foo=@{a=1; b=2; c=3}
PS (2) > $bar = $foo.Clone()
90 CHAPTER 3 WORKING WITH TYPES

Change the a member in the table

PS (3) > $foo.a = "Hello"

and verify that the hashtable in $foo has changed

PS (4) > $foo.a
Hello

but the hashtable in $bar hasn’t

PS (5) > $bar.a
1

because it’s a copy, not a reference. This technique can be useful if you’re creating a
number of tables that are mostly the same. You can create a “template” table, make
copies, and then change the pieces you need to.

There’s still more to know about hashtables and how they work with operators,
but we’ll cover that in chapters 4 and 5. For now, let’s move on to the next data type.

3.4 COLLECTIONS: ARRAYS AND SEQUENCES

In the previous section, we talked about hashtables and hash literals. Now let’s talk
about the PowerShell syntax for arrays and array literals. Most programming languages
have some kind of array literal notation similar to the PowerShell hash literal notation,
where there’s a beginning character sequence followed by a list of values, followed by
a closing character sequence. Here’s how array literals are defined in PowerShell:

They’re not. There’s no array literal notation in PowerShell.
Yes, you read that correctly. There’s no notation for an array literal in PowerShell. So
how exactly does this work? How do you define an inline array in a PowerShell script?
Here’s the answer: instead of having array literals, there’s a set of operations that create
collections as needed. In fact, collections of objects are created and discarded trans-
parently throughout PowerShell. If you need an array, one will be created for you. If
you need a singleton (or scalar) value, the collection will be unwrapped as needed.

3.4.1 Collecting pipeline output as an array

The most common operation resulting in an array in PowerShell is collecting the out-
put from a pipeline. When you run a pipeline that emits a sequence of objects and
assign that output to a variable, it automatically collects the elements into an array,
specifically into a .NET object of type [object[]].

But what about building a simple array in an expression? The simplest way to do
this is to use the comma operator (,). For example, at the command line, type

1,2,3

and you’ll have created a sequence of numbers. (See chapter 5 for more information
about using the comma operator.) When you assign that sequence to a variable, it’s
COLLECTIONS: ARRAYS AND SEQUENCES 91

stored as an array. Assign these three numbers to a variable, $a, and look at the
result type:

PS (1) > $a = 1,2,3
PS (2) > $a.gettype().fullname
System.Object[]

As in the pipeline case, the result is stored in an array of type [object[]].

3.4.2 Array indexing

Let’s explore some of the operations that can be performed on arrays. As is commonly
the case, getting and setting elements of the array (array indexing) is done with square
brackets. The length of an array can be retrieved with the Length property:

PS (3) > $a.length
3
PS (4) > $a[0]
1

Note that arrays in PowerShell are origin-zero; that is, the first element in the array is
at index 0, not index 1. As the example showed, the first element of $a is in $a[0].

As with hashtables, changes are made to an array by assigning new values to
indexes in the array. The following example assigns new values to the first and third
elements in $a:

PS (5) > $a[0] = 3.1415
PS (6) > $a
3.1415
2
3
PS (7) > $a[2] = "Hi there"
PS (8) > $a
3.1415
2
Hi there
PS (9) >

Looking at the output, you can see that elements of the array have been changed.
Simple assignment updates the element at the specified index.

3.4.3 Polymorphism in arrays

Another important thing to note from the previous example is that arrays are poly-
morphic by default. By polymorphic we mean that you can store any type of object in
an array. (A VBScript user would call these variant arrays.) When you created the
array, you assigned only integers to it. In the subsequent examples, you assigned a
floating-point number and a string. The original array was capable of storing any
kind of object. In formal terms, PowerShell arrays are polymorphic by default
(though it’s possible to create type-constrained arrays).
92 CHAPTER 3 WORKING WITH TYPES

Earlier you saw how to get the length of an array. What happens when you try to
assign to an element past the end of the array? The next example illustrates this:

PS (9) > $a.length
3
PS (10) > $a[4] = 22
Array assignment failed because index '4' was out of range.
At line:1 char:4
+ $a[4 <<<<] = 22
PS (11) >

Attempts to assign outside the bounds of an array will result in a range error. This is
because PowerShell arrays are based on .NET arrays and their size is fixed. So how can
you add more elements to a PowerShell array if the underlying objects are fixed in
size? This is easily done through array concatenation using the plus (+) or plus-equals
(+=) operators. Let’s add two more elements to the array from the previous example:

PS (11) > $a += 22,33
PS (12) > $a.length
5
PS (13) > $a[4]
33
PS (14) >

So the length of the array in $a is now 5. The addition operation did add elements.
Here’s how this works:

1 PowerShell creates a new array large enough to hold the total number of elements.

2 It copies the contents of the original array into the new one.

3 It copies the new elements into the end of the array.

You didn’t add any elements to the original array after all. Instead, you created a new,
larger one.

3.4.4 Arrays as reference types

This copying behavior has some interesting consequences. You can explore this fur-
ther by first creating a simple array and looking at the value. Let’s use string expan-
sion here so that the values in the variable are all displayed on one line:

PS (1) > $a=1,2,3
PS (2) > "$a"
1 2 3

Now assign $a to a new variable, $b, and check that $a and $b have the same elements:

PS (3) > $b = $a
PS (4) > "$b"
1 2 3

Next, change the first element in $a:
COLLECTIONS: ARRAYS AND SEQUENCES 93

PS (5) > $a[0] = "Changed"
PS (6) > "$a"
Changed 2 3

Yes, the first element in $a was changed. But what about $b?

PS (7) > "$b"
Changed 2 3

It was also changed. As with hashtables, array assignment is done by reference. When
you assigned $a to $b, you got a copy of the reference to the array instead of a copy of
contents of the array. Add a new element to $b:

PS (8) > $b += 4
PS (9) > "$b"
Changed 2 3 4

$b is now four elements long. Because of the way array concatenation works, $b con-
tains a copy of the contents of the array instead of a reference. If you change $a now,
it won’t affect $b. Let’s verify that:

PS (10) > $a[0] = "Changed again"
PS (11) > "$a"
Changed again 2 3
PS (12) > "$b"
Changed 2 3 4

You see that $b wasn’t changed. Conversely, changing $b should have no effect on $a:

PS (13) > $b[0] = 1
PS (14) > "$a"; "$b"
Changed again 2 3
1 2 3 4
PS (15) >

Again, there was no change.
To reiterate, arrays in PowerShell, like arrays in other .NET languages, are refer-

ence types, not value types. When you assign them to a variable, you get another
reference to the array, not another copy of the array.

3.4.5 Singleton arrays and empty arrays

You saw how to use the comma operator to build up an array containing more than
one element. You can also use the comma operator as a prefix operator to create an
array containing only one element. The next example shows this:

PS (1) > , 1
1
PS (2) > (, 1).length
1
PS (3) >

This code creates an array containing a single element, 1.
94 CHAPTER 3 WORKING WITH TYPES

How about empty arrays? The comma operator always takes an argument to work
on. Even using $null as an argument to the comma operator will result in a one-
element array containing the $null reference. Empty arrays are created through a
special form of subexpression notation that uses the @ symbol instead of the $ sign to
start the expression. Here’s what it looks like:

PS (3) > @()
PS (4) > @().length
0
PS (5) >

In the preceding example, you created an array of length 0. This notation is more
general—it takes the result of the expression it encloses and ensures that it’s always
returned as an array. If the expression returns $null or a scalar value, it will be
wrapped in a one-element array. Given this behavior, the other solution to creating an
array with one element is

PS (1) > @(1)
1
PS (2) > @(1).length
1

That is, you place the value you want in the array in @(...) and you get an
array back.

Use this notation when you don’t know whether the command you’re calling is
going to return an array. By executing the command in this way, you’re guaranteed
to get an array back. Note that if what you’re returning is already an array, it won’t be
wrapped in a new array. Compare this to the use of the comma operator:

PS (1) > 1,2,3
1
2
3
PS (2) > (1,2,3).Length
3
PS (3) > (, (1,2,3)).Length
1
PS (4) > (@(1,2,3)).Length
3

Line 1 created a regular array; on line 5, you get the length and see that it’s 3. Next,
on line 7, you apply the prefix operator to the array and then get the length. The
result now is only 1. This is because the unary comma operator always wraps its argu-
ments in a new array. Finally, on line 9, you use the @(...) notation and then get
the length. This time it remains 3. The @(...) sequence doesn’t wrap unless the
object isn’t an array.

Now let’s look at the last type of literal: the type literal. Because object types are so
important in PowerShell, you need to be able to express types in a script. Remember
with numbers, when you wanted to say, “Get me all the files larger than 10 MB,” you
COLLECTIONS: ARRAYS AND SEQUENCES 95

needed numeric literals? The same concept applies to types. If you want to be able to
say, “Get me all the objects of a particular type,” you need to be able to express that
type in the script.

3.5 TYPE LITERALS

In earlier sections, you saw a number of things that looked like [type]. These are the
type literals. In PowerShell, you use type literals a variety of ways. You use them to
specify a particular type. They can be used as operators in a cast (an operation that
converts an object from one type to another), as part of a type-constrained variable
declaration (see chapter 4), or as an object itself. Here’s an example of a cast using a
type literal:

$i = [int] "123"

In this example, you’re casting or converting a string into a number, specifically an
instance of primitive .NET type System.Int32. You could use the longer .NET type
name to accomplish the same thing:

$i = [System.Int32] "123"

Now let’s look at something a bit more sophisticated. If you wanted to make this into
an array of integers, you’d do this:

$i = [int[]][object[]] "123"

In this example, you’re not just casting the basic type, you’re also changing it from a
scalar object to an array. Notice that you had to do this in two steps. In the first step,
you converted it into a collection but without changing the element type. In the sec-
ond step, you converted the types of the individual elements. This follows the general
type converter rule that no more than one conversion will be performed in a single
step. This rule makes it much easier to predict what any given conversion will do.

NOTE In this case, converting a scalar value into an array is so com-
mon that we added support for doing this directly in PowerShell v2.
You can simply say $i = [int[]] "123".

3.5.1 Type name aliases

Obviously, the shorter type name (or type alias, as it’s known) is more convenient.
Table 3.4 lists all the type aliases defined in PowerShell and the .NET types they cor-
respond to. It also indicates which version of PowerShell the alias is available in.
(Another change that was made in v2 is that there are no longer separate aliases for
arrays of the base type. As a result, these aren’t shown in the table as they were in the
first version of the book.) Anything in the System.Management.Automation
namespace is specific to PowerShell. The other types are core .NET types and are cov-
ered in the MSDN documentation.
96 CHAPTER 3 WORKING WITH TYPES

Type resolution

When PowerShell resolves a type name, it first checks the type name alias table;
then it checks to see whether a type exists whose full name matches the string
specified. Finally it prepends the type with system. and checks to see whether a
type exists that matches the new string. This means things that are in the System
namespace look like they might be aliased.

For example, the type System.IntPtr can be referred to as [intpr] even though
it’s not in the alias table. For the most part, this referral is transparent. The one time
it does matter is if, for some reason, a type was added to the system that lives in the
top-level namespace. In this case, [intptr] would refer to the new type and you’d
have to use [system.intptr] to refer to the system type. This should never
happen because types should always be in namespaces.

Table 3.4 PowerShell type aliases and their corresponding .NET types

Type alias Corresponding .NET type Version

[int] System.Int32 1, 2

[long] System.Int64 1, 2

[string] System.String 1, 2

[char] System.Char 1, 2

[bool] System.Boolean 1, 2

[byte] System.Byte 1, 2

[double] System.Double 1, 2

[decimal] System.Decimal 1, 2

[float] System.Single 1, 2

[single] System.Single 1, 2

[regex] System.Text.RegularExpressions.Regex 1, 2

[array] System.Array 1, 2

[xml] System.Xml.XmlDocument 1, 2

[scriptblock] System.Management.Automation.ScriptBlock 1, 2

[switch] System.Management.Automation.SwitchParameter 1, 2

[hashtable] System.Collections.Hashtable 1, 2

[ref] System.Management.Automation.PSReference 1, 2

[type] System.Type 1, 2

[psobject] System.Management.Automation.PSObject 1, 2

[pscustomobject] System.Management.Automation.PSObject 2

[psmoduleinfo] System.Management.Automation.PSModuleInfo 2
TYPE LITERALS 97

3.5.2 Generic type literals

There’s a special kind of type in .NET called a generic type, which let you say some-
thing like “a list of strings” instead of just “a list.” And although you could do this
without generics, you’d have to create a specific type for the type of list. With gener-
ics, you create one generic list type (hence the name) and then parameterize it with
the type it can contain.

NOTE Generic type literal support was added in v2. In v1, it was pos-
sible to express a type literal, but it was a painful process. You’ll learn
how to do this later in the book.

This example shows the type literal for a generic list (System.Collections
.Generic.List) of integers:

PS (1) > [system.collections.generic.list[int]] | ft -auto

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True List`1 System.Object

If you look at the type literal, it’s easy to see how the collection element type is
expressed: [int]. This is essentially a nested type literal where the type parameter is
enclosed in nested square brackets. Create an instance of this type:

PS (2) > $l = new-object system.collections.generic.list[int]

Then add some elements to it:

PS (3) > $l.add(1)
PS (4) > $l.add(2)

Get the count of elements added and list the elements:

PS (5) > $l.count
2

[powershell] System.Management.Automation.PowerShell 2

[runspacefactory] System.Management.Runspaces.RunspaceFactory 2

[runspace] System.Management.Automation.Runspaces.Runspace 2

[ipaddress] System.Net.IPAddress 2

[wmi] System.Management.ManagementObject 1, 2

[wmisearcher] System.Management.ManagementClass 1, 2

[wmiclass] System.Management.ManagementClass 1, 2

[adsi] System.DirectoryServices.DirectoryEntry 1, 2

[adsisearcher] System.DirectoryServices.DirectorySearcher 1, 2

Table 3.4 PowerShell type aliases and their corresponding .NET types (continued)

Type alias Corresponding .NET type Version
98 CHAPTER 3 WORKING WITH TYPES

PS (6) > $l
1
2

Try to add something that isn’t an integer:

PS (7) > $l.add("hello")
Cannot convert argument "0", with value: "hello", for "Add" to
type "System.Int32": "Cannot convert value "hello" to type "System
.Int32". Error: "Input string was not in a correct format.""
at line:1 char:7
 $l.add <<<< ("hello")
 + CategoryInfo : NotSpecified: (:) [], MethodExcep
 tion
 + FullyQualifiedErrorId : MethodArgumentConversionInvalidCa
 stArgument

This results in a type error because "hello" can’t be converted into an integer. Now,
if the string could be converted to a number, as in this example

PS (8) > $l.add("123")
PS (9) > $l.count
3

PowerShell would take care of the conversion and the operation could proceed with-
out error.

Finally, let’s look at a type that requires more than one type parameter. For exam-
ple, a generic dictionary requires two type parameters: the type of the keys and the
type of the values. Here’s what this looks like:

PS (10) > [system.collections.generic.dictionary[string,int]] |
>> Format-List -auto

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Dictionary`2 System.Object

The two type parameters are separated by a comma inside the square brackets.
Now let’s take a trip into the “too-much-information” zone and look in detail at

the process PowerShell uses to perform all of these type conversions. On first reading,
you’ll probably want to skim this section but read it in detail later when you’re more
comfortable with PowerShell. This is a “spinach” section—you may not like it, but
it’s good for you.

The primary uses for type literals are in performing type conversions and invoking
static methods. We’ll look at both of these uses in the next two sections.

3.5.3 Accessing static members with type literals

As mentioned, a common use for type literals is for accessing static methods on .NET
classes. You can use the Get-Member cmdlet to look at the members on an object. To
view the static members, use the -Static flag:
TYPE LITERALS 99

PS (1) > [string] | get-member -static

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Compare Method static System.Int32 Compare(String...
CompareOrdinal Method static System.Int32 CompareOrdinal...
Concat Method static System.String Concat(Object...
Copy Method static System.String Copy(String str)
Equals Method static System.Boolean Equals(Strin...
Format Method static System.String Format(String...
Intern Method static System.String Intern(String...
IsInterned Method static System.String IsInterned(St...
IsNullOrEmpty Method static System.Boolean IsNullOrEmpt...
Join Method static System.String Join(String s...
op_Equality Method static System.Boolean op_Equality(...
op_Inequality Method static System.Boolean op_Inequalit...
ReferenceEquals Method static System.Boolean ReferenceEqu...
Empty Property static System.String Empty {get;set;}

This code will dump out all the static members on the .NET System.String class. If
you want to call one of these methods, you need to use the :: operator. Let’s use the
join method to join an array of string. First create the array:

PS (2) > $s = "one","two","three"

Then use the join method to join all the pieces into a single string with plus signs in
between:

PS (3) > [string]::Join(' + ', $s)
one + two + three
PS (4) >

Example: using advanced math functions

A good example of the power of static methods is the [math] class from the .NET
Framework. This class—[System.Math]—is a pure static class. This means you can’t
create an instance of it—you can only use the static methods it provides. Again, let’s
use the Get-Member cmdlet to look at the methods. Here’s a truncated listing of the
output you’d see:

PS (1) > [math] | get-member -static

 TypeName: System.Math

Name MemberType Definition
---- ---------- ----------
Abs Method static System.Single Abs(Single va...
Acos Method static System.Double Acos(Double d)
Asin Method static System.Double Asin(Double d)
Atan Method static System.Double Atan(Double d)
Atan2 Method static System.Double Atan2(Double ...
 :
 :
100 CHAPTER 3 WORKING WITH TYPES

Sqrt Method static System.Double Sqrt(Double d)
Tan Method static System.Double Tan(Double a)
Tanh Method static System.Double Tanh(Double v...
Truncate Method static System.Decimal Truncate(Dec...
E Property static System.Double E {get;}
PI Property static System.Double PI {get;}

As you can see, it contains a lot of useful methods and properties. For example, it
contains useful constants like Pi and e as static properties:

PS (2) > [math]::Pi
3.14159265358979
PS (3) > [math]::e
2.71828182845905
PS (4) >

There are also all the trigonometric functions:

PS (4) > [math]::sin(22)
-0.00885130929040388
PS (5) > [math]::cos(22)
-0.999960826394637
PS (6) >

As we’ve said, types in PowerShell provide tremendous power and breadth of capabil-
ities. In many cases, before rolling your own solution it’s worth browsing the MSDN
documentation on the .NET libraries to see if there’s something you can use to solve
your problems. Now that you’ve seen the types, let’s look at how PowerShell does type
conversions.

3.6 TYPE CONVERSIONS

In the previous section, we introduced type literals and the major data types used in
PowerShell. But how do all these types work together? This is a critical question we
had to address in designing PowerShell. In shell languages, there’s usually only string
data, so you never have to worry about things being of the wrong type. So how could
the PowerShell team achieve this “typeless” behavior in PowerShell? The answer was a
comprehensive system for handling type conversions automatically.

Automatic type conversion is the “secret sauce” that allows a strongly typed language
like PowerShell to behave like a typeless command-line shell. Without a comprehensive
type conversion system to map the output of one command to the input type required
by another command, PowerShell would be nearly impossible to use as a shell.

In the next few sections, we’ll go through an overview of how the type-conversion
system works. Then we’ll look at the conversion algorithm in detail. Finally, we’ll
explore special conversion rules that apply only when binding cmdlet parameters.

3.6.1 How type conversion works

Type conversions are used any time an attempt is made to use an object of one type in
a context that requires another type (such as adding a string to a number). Here’s a
TYPE CONVERSIONS 101

good example: In the previous chapter, we talked about how parameters are bound to
cmdlets. The parameter binder uses the type conversion system heavily when trying
to bind incoming objects to a particular parameter. If the user has supplied a string
and the cmdlet requires a number, the system will quietly convert the source object to
the destination type as long as it’s not a destructive conversion. A destructive conver-
sion is one where the sense of the original object has been lost or distorted in some
significant way. With numbers, this typically means a loss of precision.

The type-conversion facility is also surfaced directly to the shell user through cast
operations in the PowerShell language, as we mentioned in the previous section. In
PowerShell, you use types to accomplish many things that you’d do with methods or
functions in other languages. You use type literals as operators to convert (or cast)
one type of object to another. Here’s a simple example:

PS (1) > [int] "0x25"
37
PS (2) >

In this example, a string representing a hexadecimal number is converted into a num-
ber by using a cast operation. A token specifying the name of a type in square brack-
ets can be used as a unary operator that will try to convert its argument into the
desired type. These type cast operations can be composed—that is, several casts can
be chained together. Here’s an example of that type of composition. To get the ordi-
nal value for a character, you can do this:

:
PS (2) > [int] [char]"a"
97

Notice that you first cast the string into a char and then into an int. This is necessary
because the simple conversion would try to parse the entire string as a number. This
only works for a string containing exactly one character, however. If you want to con-
vert an entire string, you need to use array types. Here’s what that looks like:

PS (3) > [int[]] [char[]] "Hello world"
72
101
108
108
111
32
119
111
114
108
100

The string was split into an array of characters, then that array of characters was con-
verted into an array of integers and finally displayed as a list of decimal numbers. If
102 CHAPTER 3 WORKING WITH TYPES

you wanted to see those numbers in hex, you’d have to use the –f format operator
and a format specifier string:

PS (4) > "0x{0:x}" -f [int] [char] "a"
0x61

And then, if you want to make a round trip, string to char to int to char to string, you
can do this:

PS (6) > [string][char][int] ("0x{0:x}" -f [int] [char] "a")
a

Finally, here’s a somewhat extreme example (for 2001: A Space Odyssey fans). You’ll
take the string “HAL” and increment each of the characters in the string by 1:

PS (7) > $s = "HAL"
PS (8) > $OFS=""; [string] [char[]] ([int[]] [char[]] $s |
>> foreach {$_+1})
>>
IBM

Creepy, but cool (or just weird if you’re not a 2001 fan)! Moving closer to home, we
know that the Windows NT kernel was designed by the same person who designed
the VMS operating system. Let’s prove that Windows NT (WNT) is just VMS plus 1:

PS (9) > $s = "VMS"
PS (10) > $OFS=""; [string] [char[]] ([int[]] [char[]] $s |
>> foreach {$_+1})
>>
WNT

One final issue you may be wondering about: what is the $OFS (Output Field Separa-
tor) variable doing in the example? When PowerShell converts arrays to strings, it
takes each array element, converts that element into a string, and then concatenates
all the pieces together. Because this would be an unreadable mess, it inserts a separa-
tor between each element. That separator is specified using the $OFS variable. It can
be set to anything you want, even the empty string. Here’s an interesting example.
Say you want to add the numbers from 1 to 10. Let’s put the numbers into an array:

PS (1) > $data = 1,2,3,4,5,6,7,8,9,10

Now convert them to a string:

PS (2) > [string] $data
1 2 3 4 5 6 7 8 9 10

As an aside, variable expansion in strings goes through the same mechanism as the
type converter, so you’ll get the same result:

PS (3) > "$data"
1 2 3 4 5 6 7 8 9 10

Change $OFS to be the plus operator, and then display the data.
TYPE CONVERSIONS 103

PS (4) > $OFS='+'
PS (5) > "$data"
1+2+3+4+5+6+7+8+9+10

Previously, the fields had been separated by spaces. Now they’re separated by plus
operators. This is almost what you need. You just have to find a way to execute this
string. PowerShell provides that ability through the Invoke-Expression cmdlet.
Here’s how it works:

PS (6) > invoke-expression "$data"
55
PS (7) >

Ta-da! Note that this isn’t an efficient way to add a bunch of numbers. The looping
constructs in the language are a much better way of doing this.

3.6.2 PowerShell’s type-conversion algorithm

In this section, we’ll cover the steps in the conversion process in painful detail—much
more than you’ll generally need to know in your day-to-day work. But if you want to
be an expert on PowerShell, this stuff ’s for you.

NOTE Type conversion is one of the areas of the PowerShell project
that grew “organically.” In other words, we sat down, wrote a slew of
specifications, threw them out, and ended up doing something com-
pletely different. This is one of the joys of this type of work. Nice,
clean theory falls apart when you put it in front of real people. The
type conversion algorithm as it exists today is the result of feedback
from many of the early adopters both inside Microsoft as well as out-
side. The PowerShell community helped us tremendously in this area.

In general, the PowerShell type conversions are separated into two major buckets; a
description follows.

PowerShell language standard conversions

These are built-in conversions performed by the engine itself. They’re always pro-
cessed first and consequently can’t be overridden. This set of conversions is largely
guided by the historical behavior of shell and scripting languages, and isn’t part of the
normal .NET type-conversion system.

 .NET-based custom converters

This class of converters uses (and abuses in some cases) existing .NET mechanisms for
doing type conversion.

Table 3.5 lists the set of built-in language conversions that PowerShell uses. The
conversion process always starts with an object of a particular type and tries to pro-
duce a representation of that object in the requested target type. The conversions are
104 CHAPTER 3 WORKING WITH TYPES

applied in the order shown in table 3.5. Only one conversion is applied at a time.
The PowerShell engine doesn’t automatically chain conversions.

If none of the built-in PowerShell language-specific conversions could be applied suc-
cessfully, then the .NET custom converters are tried. Again, these converters are tried

Table 3.5 The PowerShell language standard conversions

Converting from To target type Result description

$null [string] "" (empty string)

[char] '0' (string containing a single character 0)

Any kind of
number

The object corresponding to 0 for the correspond-
ing numeric type.

[bool] $false

[PSObject] $null

Any other type
of object

$null

Derived class Base class The original object is returned unchanged.

Anything [void] The object is discarded.

Anything [string] The PowerShell internal string converter is used.

Anything [xml] The original object is first converted into a string
and then into an XML document object.

Array of type [X] Array of type
[Y]

PowerShell creates a new array of the target type,
then copies and converts each element in the
source array into an instance for the target array
type.

Non-array (singleton) object Array of type
[Y]

Creates an array containing one element and then
places the singleton object into the array, convert-
ing if necessary.

System.Collections
.IDictionary

[Hashtable] A new instance of
System.Collections.Hashtable is created,
and then the members of the source
IDictionary are copied into the new object.

[string] [char[]] Converts the string to an array of characters.

[string] [regex] Constructs a new instance of a .NET regular
expression object.

[string] Number Converts the string into a number using the small-
est representation available that can accurately
represent that number. If the string is not purely
convertible (i.e., only contains numeric informa-
tion), then an error is raised.

[int] System.Enum Converts the integer to the corresponding enumer-
ation member if it exists. If it doesn’t, a conversion
error is generated.
TYPE CONVERSIONS 105

in order until a candidate is found that will produce the required target type. This
candidate conversion is applied. If the candidate conversion throws an exception
(that is, a matching converter is found but it fails during the conversion process), no
further attempt to convert this object will be made and the overall conversion process
will be considered to have failed.

NOTE Developing an understanding of these conversions depends on
a fair knowledge of the .NET type conversion mechanisms. You’ll need
to refer to additional documentation if you want to understand every-
thing in table 3.6. On the other hand, with the .NET docs, you can see
exactly what steps are being applied in the type-conversion process.

Custom converters are executed in the order described in table 3.6.

Table 3.6 Custom type conversions

Converter type Description

PSTypeConverter A PSTypeConverter can be associated with a particular type using the
TypeConverterAttribute or the <TypeConverter> tag in the
types.ps1xml file. If the value to convert has a PSTypeConverter that can
convert to the target type, then it’s called. If the target type has a
PSTypeConverter that can convert from values to convert, then it’s called.
The PSTypeConverter allows a single type converter to work for a number
of different classes. For example, an enum type converter can convert a
string to any enum (there doesn’t need to be separate type to convert each
enum). Refer to the PowerShell SDK documentation from MSDN for com-
plete details on this converter.

TypeConverter This is a CLR defined type that can be associated with a particular type using
the TypeConverterAttribute or the <TypeConverter> tag in the
types file. If the value to convert has a TypeConverter that can convert to
the target type, then it is called. If the target type has a TypeConverter
that can convert from the source value, then it is called.
The CLR TypeConverter doesn’t allow a single type converter to work for
a number of different classes. Refer to the PowerShell SDK documentation
and the Microsoft .NET Framework documentation for details on the
TypeConverter class.

Parse() method If the value to convert is a string and the target type has a Parse() method,
then that Parse() method is called. Parse() is a well-known method
name in the CLR world and is commonly implemented to allow conversion
of strings to other types.

Constructors If the target type has a constructor that takes a single parameter matching
the type of the value to convert; then this constructor is used to create a
new object of the desired type.

Implicit cast operator If the value to convert has an implicit cast operator that converts to the tar-
get type, then it’s called. Conversely, if the target type has an implicit cast
operator that converts from value to convert’s type, then that’s called.
106 CHAPTER 3 WORKING WITH TYPES

This section covered the set of type conversions that PowerShell will apply in expres-
sions. In the parameter binder are a few extra steps that are applied first.

3.6.3 Special type conversions in parameter binding

In this final section, we’ll go over the extra type-conversion rules that are used in
parameter binding that haven’t already been covered. If these steps are tried and aren’t
successful, the parameter binder goes on to call the normal PowerShell type converter
code.

NOTE If at any time failure occurs during the type conversion, an
exception will be thrown.

Here are the extra steps:

1 If there’s no argument for the parameter, the parameter type must be either a
[bool] or the special PowerShell type SwitchParameter; otherwise, a parame-
ter binding exception is thrown. If the parameter type is a [bool], it’s set to
true. If the parameter type is a SwitchParameter, it’s set to SwitchParame-
ter.Present.

2 If the argument value is null and the parameter type is [bool], it’s set to false. If
the argument value is null and the parameter type is SwitchParameter, it’s set
to SwitchParameter.Present. Null can be bound to any other type, so it just
passes through.

3 If the argument type is the same as the parameter type, the argument value is
used without any type conversion.

4 If the parameter type is [object], the current argument value is used without
any coercion.

5 If the parameter type is a [bool], use the PowerShell Boolean IsTrue()
method to determine whether the argument value should set the parameter to
true or false.

6 If the parameter type is a collection, the argument type must be encoded into
the appropriate collection type. You’ll encode a scalar argument type or a collec-
tion argument type to a target collection parameter type. You won’t encode a
collection argument type into a scalar parameter type (unless that type is Sys-
tem.Object or PSObject).

Explicit cast operator If the value to convert has an explicit cast operator that converts to the target
type, then it’s called. Alternatively, if the target type has an explicit cast oper-
ator that converts from value to convert’s type, then that’s called.

IConvertable System.Convert.ChangeType is then called.

Table 3.6 Custom type conversions (continued)

Converter type Description
TYPE CONVERSIONS 107

7 If the argument type is a scalar, create a collection of the parameter type (cur-
rently only arrays and IList are supported) of length 1 and set the argument
value as the only value in the collection. If needed, the argument type is con-
verted to the element type for the collection using the same type coercion pro-
cess this section describes.

8 If the argument type is a collection, we create a collection of the parameter type
with length equal to the number of values contained in the argument value.
Each value is then coerced to the appropriate element type for the new collec-
tion using the recursive application of this algorithm.

9 If none of these steps worked, use the conversions in table 3.6. If those fail, then
the overall parameter binding attempt fails.

Once again, this is a level of detail that you don’t often need to consider, but it’s useful
to know it’s available when you need it.

Scriptblock parameters

And finally, there’s one last aspect of the parameter binder type converter to cover: a
feature called scriptblock parameters.

First, a bit of a preview of things to come. PowerShell has something called a
scriptblock. A scriptblock is a small fragment of code that you can pass around as an
object itself. This is a powerful concept, and we’ll cover scriptblocks in great detail in
later chapters, but for now we’re just going to look at them in the context of parame-
ter binding.

 Here’s how scriptblock parameters work. Normally, when you pipe two cmdlets
together, the second cmdlet receives values directly from the first cmdlet. Scriptblock
parameters (you could also call them computed parameters) allow you to insert a piece
of script to perform a calculation or transformation in the middle of the pipelined
operation. This calculation can do pretty much anything you want since a scriptblock
can contain any element of PowerShell script.

The following example shows how this works. You want to take a collection of
XML files and rename them as text files. You could write a loop to do the processing,
but scriptblock parameters greatly simplify this problem. To rename each file, use the
Rename-Item cmdlet. This cmdlet takes two parameters: the current name of the file
and the new name. Use a scriptblock parameter as an argument to the -NewName
parameter to generate the new filename. This scriptblock will use the -replace oper-
ator to replace the .xml file extension with the desired .txt. Here’s the command line
that performs this task:

dir *.xml | Rename-Item -Path {$_.name} `
 -NewName {$_.name -replace '\.xml$', '.txt'} -whatif

The original path for -Path is just the current name of the file. The -NewName
parameter is the filename with the extension replaced. The -WhatIf parameter will
108 CHAPTER 3 WORKING WITH TYPES

let you see what the command will do before actually moving anything. Once you’re
happy that the correct operations are being performed, just remove the -WhatIf and
the renaming will proceed.

Scriptblock parameters can be used with any pipelined parameter as long as the
type of that parameter is not [object] or [scriptblock]. In these cases, the script-
block is passed as the actual parameter instead of using it to calculate a new value.
You’ll see why this is important when we look at the Where-Object and ForEach-
Object cmdlets later on.

You now know everything you need to know about how types work on Power-
Shell. Well, not quite everything. In the next two chapters, we’ll discuss how the
PowerShell operators build on this basic type foundation. But for now, we’re
through!

3.7 SUMMARY

A solid understanding of the PowerShell type system will allow you to use PowerShell
most effectively. By taking advantage of the built-in type system and conversions, you
can accomplish startlingly complex tasks with little code. In this chapter, we covered
the following topics:

• The PowerShell type system, how it works, and how you can use it

• The basic PowerShell types and how they are represented in PowerShell script
(literals)

• Some of the more advanced types—hashtables and arrays

• The use of type literals in type casts and as a way to call static methods

• The added support in PowerShell version 2 for generic type literals that greatly
simplify working with generic types

• The type conversion process for language conversions, the pre-conversion steps
that are used by the parameter binder, and the relationship between the Power-
Shell types and the underlying .NET types

• Scriptblock parameters, which allow you to calculate new values for pipelined
parameters instead of having to write a loop to do this (we’ll look at scriptblocks
in detail in chapter 9)
SUMMARY 109

C H A P T E R 4

Operators and expressions

4.1 Arithmetic operators 112
4.2 The assignment operators 119
4.3 Comparison operators 124

4.4 Pattern matching and text
manipulation 131

4.5 Logical and bitwise operators 148
4.6 Summary 150
Operators, Mr. Rico! Millions of them!
 —Robert A. Heinlein, Starship Troopers (paraphrased)

So far, we’ve covered the basics, and we’ve covered the type system in considerable
depth. Now let’s look at how you can combine all this stuff and get some real work
done. As in any language, objects are combined with operators to produce expres-
sions. When these expressions are evaluated, the operators perform their operations
on objects, giving you (hopefully) useful results. This chapter covers the set of basic
operators in PowerShell and how they’re used in expressions. The operators we’re
going to cover in this chapter are shown in figure 4.1.

As you can see, PowerShell has operators. Lots of operators—the full complement
you’d expect in a conventional programming language and several more. In addition,
PowerShell operators are typically more powerful than the corresponding operators in
conventional languages such as C or C++. So, if you invest the time to learn what the
PowerShell operators are and how they work, in a single line of code you’ll be able to
accomplish tasks that would normally take a significant amount of programming.
110

Here’s an example of the kind of thing that can be done using just the PowerShell
operators. Say we have a file, old.txt, with the following text in it:

Hello there.
My car is red. Your car is blue.
His car is orange and hers is gray.
Bob's car is blue too.
Goodbye.

Our task is to copy this content to a new file, making certain changes. In the new file,
the word “is” should be replaced with “was,” but only when it’s in front of the word
“red” or “blue.” In most languages, this would require a fairly complex program. In
PowerShell, it takes exactly one line. Here’s the “script”:

${c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

It uses the -replace operator along with output redirection and variable
namespaces. (The -replace operator is described later in this chapter.) Redirection
and variable namespaces are features for working with files that are covered in chapter
5. After running this script, the content of new.txt looks like this:

Hello there.
My car was red. Your car was blue.
His car is orange and hers is gray.
Bob's car was blue too.
Goodbye.

NOTE For the impatient reader, the notation ${c:old.txt} says,
“Return the contents of the file old.txt from the current working direc-
tory on the C: drive.” In contrast, ${c:\old.txt} says, “Get the file
old.txt from the root of the C: drive.”

+ - * / %

Arithmetic operators

= += -= *= /= %=

Assignment operators

-eq -ne -gt -ge -lt -le

Comparison operators

-contains -notcontains

Containment operators

-like -notlike -match -notmatch
-replace -split -join

Pattern-matching and text operators

-and -or -not -xor
-band -bor -bnot -bxor

Logical and bitwise operators

Figure 4.1 The broad groups of operators we’ll cover in this chapter
111

As you can see, only the second and fourth lines have been changed as desired. The
phrases “is red” and “is blue” have been changed to “was red” and “was blue.” The “is
orange” and “is gray” phrases weren’t changed. From this example, you can also see
that it’s possible to do quite a bit of work just with the operators.

One of the characteristics that makes PowerShell operators powerful is the fact
that they’re polymorphic. This simply means that they work on more than one type of
object. Although this is generally true in other object-based languages, in those lan-
guages the type of the object defines the behavior of the operator.

NOTE If you’re a C# or Visual Basic user, here’s something you might
want to know. In “conventional” .NET languages, the operator sym-
bols are mapped to a specific method name on a class called
op_<operatorName>. For example, in C#, the plus operator (+) maps
to the method op_Addition(). Although PowerShell is a .NET lan-
guage, it takes a different approach that’s more consistent with
dynamic scripting languages, as you’ll see in the following sections.

In PowerShell, the interpreter primarily defines the behavior of the operators, at least
for common data types. Type-based polymorphic methods are only used as a backup.
By common types, we mean strings, numbers, hashtables, and arrays. This allows
PowerShell to provide more consistent behavior over this range of common objects
and also to provide higher-level behaviors than are provided by the objects them-
selves, especially when dealing with collections. We’ll cover these special behaviors in
the sections for each class of operator. (The following sections have many examples,
but the best way to learn is to try the examples in PowerShell yourself.) Now let’s get
going and start looking at the operators.

4.1 ARITHMETIC OPERATORS

First we’ll cover the basic arithmetic
operators shown in figure 4.2.

We touched on the polymorphic
behavior of these operators briefly in
chapter 3, where we discussed the vari-
ous type conversions. The operators
themselves are listed with examples in
table 4.1.

Table 4.1 The basic arithmetic operators in PowerShell

Operator Description Example Result

+ Add two values together. 2+4 6

"Hi " + "there" "Hi there"

1,2,3 + 4,5,6 1,2,3,4,5,6

+ - * / %

Arithmetic operators

Figure 4.2 The arithmetic operators in

PowerShell that will be covered in this

section
112 CHAPTER 4 OPERATORS AND EXPRESSIONS

In terms of behavior, the most interesting operators are + and *. We’ll cover these
operators in detail in the next two sections.

4.1.1 The addition operator

As mentioned earlier, PowerShell defines the behavior of the + and * operators for
numbers, strings, arrays, and hashtables. Adding or multiplying two numbers pro-
duces a numeric result following the numeric widening rules. Adding two strings per-
forms string concatenation, resulting in a new string, and adding two arrays joins the
two arrays (array concatenation), producing a new array. Adding two hashtables cre-
ates a new hashtable with combined elements. The interesting part occurs when you
mix operand types. In this situation, the type of the left operand determines how the
operation will proceed. We’ll look at how this works with addition first.

NOTE The “left-hand” rule for arithmetic operators: the type of the
left-hand operand determines the type of the overall operation. This is
an important rule to remember.

If the left operand is a number, PowerShell will try to convert the right operand to a
number. Here’s an example. In the following expression, the operand on the left is a
number and the operand on the right is the string “123”:

PS (1) > 2 + "123"
125

Because the operand on the left is a number, according to the conversion rule the
operand “123” must be converted into a number. Once the conversion is complete,
the numeric addition operation proceeds and produces the result 125, as shown.
Conversely, in the next example, when a string is on the left side

PS (2) > "2" + 123
2123

the operand on the right (the number 123) is converted to a string and appended to
“2” to produce a new string, “2123”.

* Multiply two values. 2 * 4 8

"a" * 3 "aaa"

1,2 * 2 1,2,1,2

- Subtract one value from another. 6-2 4

/ Divide two values. 6/2 3

7/4 1.75

% Return the remainder from a division operation. 7%4 3

Table 4.1 The basic arithmetic operators in PowerShell (continued)

Operator Description Example Result
ARITHMETIC OPERATORS 113

If the right operand can’t be converted into the type of the left operand, then a
type-conversion error will be raised:

PS (3) > 2 + "abc"
Cannot convert "abc" to "System.Int32". Error: "Input string was not
 in a correct format."
At line:1 char:4
+ 2 + <<<< "abc"

Because “abc” can’t be converted into a number, you’ll receive a type-conversion error.
Now if this had been done using the hex notation as discussed in section 3.3.2, every-
thing would be fine:

PS (4) > 2 + "0xabc"
2750

Because “a”, “b”, and “c” are valid hex digits, the string “0xabc” converts into the
number 2748 and is then added to 2, yielding 2750.

The next PowerShell-defined polymorphic behavior for + involves arrays or col-
lections. If the operand on the left is an array or collection, the operand on the right
will be appended to that collection. If the right operand is a scalar value, it will be
added to the array as is. If it’s already an array (or any type of enumerable collection),
it will be appended to the collection.

At this point, it’s probably a good idea to reiterate how array catenation is done in
PowerShell. Because the underlying .NET array objects are of fixed size (as discussed in
chapter 3), catenation is accomplished by creating a new array of type [object[]]
and copying the elements from the operands into this new array. In the process of cre-
ating the new array, any type constraint on the original arrays will be lost. For example,
if the left operand is [int[]]—that is, an array of type [int]—and you add a non-
numeric string to it, a new array will be created that will be of type [object[]], which
can hold any type of object. Let’s look at an example. First create an integer array:

PS (1) > $a = [int[]] (1,2,3,4)
PS (2) > $a.GetType().FullName
System.Int32[]

Now let’s do some assignments. First assign an integer:

PS (3) > $a[0] = 10

This works without error. Next try it with a string that can be converted into an inte-
ger. Use the hex string mentioned earlier:

PS (4) > $a[0] = "0xabc"

This also works fine. Finally, try assigning a non-numeric string to the array element:

PS (5) > $a[0] = "hello"
Array assignment to [0] failed: Cannot convert "hello" to
"System.Int32". Error: "Input string was not in a correct format.".
At line:1 char:4
+ $a[0 <<<<] = "hello"
114 CHAPTER 4 OPERATORS AND EXPRESSIONS

This fails, as you might expect. An array of type [int[]] can only hold integers.
Because "hello" can’t be converted into an integer, you get the type-conversion error
shown. So far, so good. Now let’s do an array concatenation:

PS (6) > $a = $a + "hello"

And now try the assignment that failed previously:

PS (7) > $a[0] = "hello"
PS (8) > $a
hello
2
3
4
hello

This time the assignment succeeds without error. What happened here? Let’s look at
the type of the array:

PS (9) > $a.GetType().FullName
System.Object[]

When the new, larger array was created to hold the combined elements, it was created
as type [object[]], which isn’t type constrained. It can hold any type of object, so
the assignment proceeded without error.

Finally, let’s see how addition works with hashtables. Similar to arrays, addition of
hashtables creates a new hashtable and copies the elements of the original tables into
the new one. The left elements are copied first; then the elements from the right
operand are copied. (This only works if both operands are hashtables.) If any colli-
sions take place—that is, if the keys of any of the elements in the right operand match
the keys of any element in the left operand—then an error will occur saying that the
key already exists in the hashtable. (This was an implementation decision; the Power-
Shell team could’ve had the new element overwrite the old one, but the consensus
was that generating an error message is usually the better thing to do.)

PS (1) > $left=@{a=1;b=2;c=3}
PS (2) > $right=@{d=4;e=5}
PS (3) > $new = $left + $right
PS (4) > $new

Key Value
--- -----
d 4
a 1
b 2
e 5
c 3

The new hashtable is of type System.Collections.Hashtable:

PS (5) > $new.GetType().FullName
System.Collections.Hashtable
ARITHMETIC OPERATORS 115

The table is created in such a way that the strings that are used as keys are compared
in a case-insensitive way.

This completes our discussion of the behavior of the addition operator. We cov-
ered how it works with numbers, strings, hashtables, and arrays. Now that we’ve fin-
ished with addition, let’s move on to the multiplication operator.

4.1.2 The multiplication operator

As with addition, PowerShell defines multiplication behavior for numbers, strings,
and arrays. (We don’t do anything special for hashtables for multiplication.) Multiply-
ing numbers works as expected and follows the widening rules discussed in chapter 3.
In fact, the only legal right-hand operand for multiplication is a number. If the oper-
and on the left is a string, then that string is repeated the number of times specified in
the right operand. Let’s try this out. Multiply the string “abc” by 1, 2, and then 3:

PS (1) > "abc" * 1
abc
PS (2) > "abc" * 2
abcabc
PS (3) > "abc" * 3
abcabcabc

The results are “abc”, “abcabc”, and “abcabcabc”, respectively. What about multiply-
ing by 0?

PS (4) > "abc" * 0
PS (5) >

The result appears to be nothing—but which “nothing”—spaces, empty string, or
null? The way things are displayed, you can’t tell by looking. Here’s how to check.
First check the type of the result:

PS (5) > ("abc" * 0).GetType().FullName
System.String

You see that it’s a string, not $null. But it could still be spaces, so you need to check
the length:

PS (6) > ("abc" * 0).Length
0

And, because the length is 0, you can tell that it is in fact an empty string.
Now let’s look at how multiplication works with arrays. Because multiplication

applied to a string repeats the string, logically you’d expect that multiplication
applied to an array should repeat the array, which is exactly what it does. Let’s look at
some examples of this. First create an array with three elements:

PS (1) > $a=1,2,3
PS (2) > $a.Length
3

116 CHAPTER 4 OPERATORS AND EXPRESSIONS

Now multiply it by 2:

PS (3) > $a = $a * 2
PS (4) > $a.Length
6

The length of the new array is 6. Looking at the contents of the array (using variable
expansion in strings to save space), you see that it’s “1 2 3 1 2 3”—the original array
doubled.

PS (5) > "$a"
1 2 3 1 2 3

Multiply the new array by 3:

PS (6) > $a = $a * 3

And check that the length is now 18:

PS (7) > $a.Length
18

It is, so looking at the contents

PS (8) > "$a"
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

you see that it is six repetitions of the original three elements.
As with addition, first a new larger array is created during multiplication, and

then the component elements are copied into it. This has the same issue that addition
had, where the new array is created without type constraints. Even if the original
array could only hold numbers, the new array can hold any type of object.

4.1.3 Subtraction, division, and the modulus operator

Addition and multiplication are the most interesting of the arithmetic operators in
terms of polymorphic behavior, but let’s go over the remaining operators. Subtraction,
division, and the modulus (%) operators are only defined for numbers by PowerShell.
(Modulus returns the remainder from a division operation.) Again, as with all numeric
computations, the widening rules for numbers are obeyed. For the basic scalar types
(such as strings and numbers), these operations are only defined for numbers, so if
either operand is a number (not just the left-hand operand), an attempt will be made
to convert the other operand into a number as well, as shown here:

PS (1) > "123" / 4
30.75
PS (2) > 123 / "4"
30.75
PS (3) >

In the first example, the string “123” is converted into a number. In the second exam-
ple, the string “4” will be converted into a number.
ARITHMETIC OPERATORS 117

NOTE Here’s an important characteristic about how division works in
PowerShell that you should keep in mind. Integer division underflows
into floating point (technically System.Double). This means that 5
divided by 4 in PowerShell results in 1.25 instead of 1, as it would in C#.
If you want to round the decimal part to the nearest integer, simply cast
the result into [int]. You also need to be aware that PowerShell uses
what’s called “Banker’s rounding” when converting floating point num-
bers into integers. Banker’s rounding rounds .5 up sometimes and down
sometimes. The convention is to round to the nearest even number, so
that both 1.5 and 2.5 round to 2, and 3.5 and 4.5 both round to 4.

If neither operand is a number, the operation is undefined and you’ll get an error:

PS (3) > "123" / "4"
Method invocation failed because [System.String] doesn't contain
a method named 'op_Division'.
At line:1 char:8
+ "123" / <<<< "4"
PS (4) >

Take note of this particular error message, though. PowerShell has no built-in defini-
tion for this operation, so as a last step it looks to see whether the type of the left
operand defines a method for performing the operation. In fact, PowerShell looks for
the op_<operation> methods on the left operand if the operation isn’t one of those
defined by PowerShell itself. This allows the operators to work on types such as Sys-
tem.Datetime (the .NET representation of dates) even though there’s no special sup-
port for these types in PowerShell.

Here’s an example. Suppose you want to find the total number of days between
January 1, 2006, and February 1, 2006. You can create objects representing these
dates by casting strings into DateTime objects. Once you have these objects, you can
convert them:

PS (1) > ([DateTime] "2006-2-1" - [DateTime]"2006-1-1").TotalDays
31

For those of you with children, here’s a more useful example. Jeffrey Snover, the
architect of PowerShell, tells a story about his daughter:

My daughter loves Christmas. She often asks me, “How long is it ’til
Christmas?” The problem with that is that I’m one of those people who
can barely remember what year it is, much less the date. Well, it’s one
thing to be a flawed person and it’s another thing to disappoint your
daughter. PowerShell to the rescue!
Here’s a little date math routine I wrote to help me out:
function tillXmas ()
{
 $now = [DateTime]::Now
 [DateTime]([string] $now.Year + "-12-25") - $Now
}

118 CHAPTER 4 OPERATORS AND EXPRESSIONS

PS> tillxmas

Days : 321
Hours : 18
Minutes : 8
Seconds : 26
Milliseconds : 171
Ticks : 277997061718750
TotalDays : 321.755858470775
TotalHours : 7722.14060329861
TotalMinutes : 463328.436197917
TotalSeconds : 27799706.171875
TotalMilliseconds : 27799706171.875

Thanks to PowerShell, I can tell my daughter how many seconds to go
until Christmas! Now if I can only get her to stop asking me in the car.

To take a look at the operator methods defined for System.DateTime, you can use
the GetMembers() method. Here’s a partial listing of the operator methods defined.
This example uses the PowerShell Select-String cmdlet to limit what’s displayed
to only those methods whose names contain the string “op_”:

PS (5) > [DateTime].GetMembers()| foreach{"$_"}| Select-String op_
System.DateTime op_Addition(System.DateTime, System.TimeSpan)
System.DateTime op_Subtraction(System.DateTime, System.TimeSpan)
System.TimeSpan op_Subtraction(System.DateTime, System.DateTime)

As you can see, not all the arithmetic operator methods are defined. In fact, no meth-
ods are defined for any operations other than addition and subtraction. If you try to
divide a DateTime object by a number, you’ll get the same error you saw when you
tried to divide two strings:

PS (4) > [DateTime] "1/1/2006" / 22
Method invocation failed because [System.DateTime] doesn't contain
a method named 'op_Division'.
At line:1 char:24
+ [DateTime] "1/1/2006" / <<<< 22
PS (5) >

The error occurred because PowerShell was looking for an op_Division() on the
object on the left. It didn’t find one, and therefore the operation failed.

Okay, now that you know all about arithmetic operators and operations in Power-
Shell, you need to have a way to save the results of these operations. Variable assign-
ment is the answer, so we’ll look at assignment and the assignment operators next.

4.2 THE ASSIGNMENT OPERATORS

In this section we’ll cover the assignment
operators, which are shown in figure 4.3
and listed with examples in table 4.2.

As you can see, along with simple
assignment, PowerShell supports the
compound operators that are found in

= += -= *= /= %=

Assignment operators

Figure 4.3 The PowerShell assignment

operators
THE ASSIGNMENT OPERATORS 119

C-based languages. These compound operators retrieve, update, and reassign a vari-
able’s value all in one step. The result is a much more concise notation for expressing
this type of operation.

In table 4.2, for each of the compound assignment operators, the third column
shows the equivalent decomposed operation.

Of course, the arithmetic parts of the compound arithmetic/assignment operators
follow all the rules for the arithmetic operators described in the previous section. The
formal syntax for an assignment expression looks like this:

<lvalueList> <assignmentOperator> <pipeline>
<lvalueList> := <lvalue> [, <lvalue>] *
<lvalue> := <variable> | <propertyReference> | <arrayReference>

One interesting thing to note from this syntax is that multiple assignments are
allowed. For example, the expression

$a,$b,$c = 1,2,3,4

is a perfectly legal statement. It says, “Assign 1 to $a, assign 2 to $b, and assign the
remaining elements 3 and 4 of the list to $c.” Multiple assignments can be used to
greatly simplify certain types of operations, as you’ll see in the next section.

4.2.1 Multiple assignments

Multiple assignment works only with the basic assignment operator. You can’t use it
with any of the compound operators. It can, however, be used with any type of
assignable expression such as an array element or property reference. Here’s a quick
example where multiple assignment is particularly useful. The canonical pattern for
swapping two variables in conventional languages is

$temp = $a
$a = $b
$b = $temp

Table 4.2 PowerShell assignment operators

Operator Example Equivalent Description

= $a= 3 Sets the variable to the specified value

+= $a += 2 $a = $a + 2 Performs the addition operation in the existing value,
and then assigns the result back to the variable

-= $a -= 13 $a = $a – 13 Performs the subtraction operation in the existing
value, and then assigns the result back to the variable

*= $a *= 3 $a = $a * 3 Multiplies the value of a variable by the specified value
or appends to the existing value

/= $a /= 3 $a = $a / 3 Divides the value of a variable by the specified value

%= $a %= 3 $a = $a % 3 Divides the value of a variable by the specified value
and assigns the remainder (modulus) to the variable
120 CHAPTER 4 OPERATORS AND EXPRESSIONS

This takes three lines of code and requires you to use a temporary variable. Here’s
how to do it using multiple assignments in PowerShell:

$a,$b = $b,$a

It’s simple and clean—only one line of code with no temporary variables to worry
about. Here’s a more interesting example. The Fibonacci sequence is a sequence of
numbers where each element is defined as the sum of the previous two numbers in
the sequence. It looks like this:

1 1 2 3 5 8 13 21 …

NOTE The Fibonacci sequence is an oddly popular bit of mathematics.
It shows up in books, movies, and seashells. In the West, it was first studied
by Leonardo of Pisa, a.k.a. Fibonacci. He used this sequence to describe
how rabbits multiply. Rabbits aren’t good at math, so it wasn’t very accu-
rate. The sequence also describes the progression of the spiral found in
some shells. Mollusks are better at math than rabbits, apparently.

Here’s how to generate this sequence in PowerShell using multiple assignments:

PS (53) > $c=$p=1; 1; while ($c -lt 100) { $c; $c,$p = ($c+$p),$c }
1
1
2
3
5
8
13
21
34
55
89

This example begins by initializing the two variables $c (current) and $p (previous)
to 1. Then it loops while $c is less than 100. $c contains the current value in the
sequence, so that value is emitted. Next comes the double assignment, where $c
becomes the next element in the sequence and $p becomes the current (now previ-
ous) value in the sequence. So far, you’ve seen that using multiple assignments can
simplify basic operations such as swapping values. But when combined with some of
PowerShell’s other features, it lets you do much more interesting things than that.
You’ll see this in the next section.

4.2.2 Multiple assignments with type qualifiers

This is all interesting, but let’s look at a more practical example. Say you’re given a
text file containing some data that you want to parse into a form you can work with.
First let’s look at the data file:

quiet 0 25
normal 26 50
THE ASSIGNMENT OPERATORS 121

loud 51 75
noisy 75 100

This file contains a set of sound-level descriptions. The format is a string describing
the level, followed by two numbers describing the upper and lower bounds for these
levels out of a possible 100. You want to read this information into a data structure so
you can use it to categorize a list of sounds later on. Here’s the fragment of PowerShell
code needed to do this:

PS (2) > $data = get-content data.txt | foreach {
>> $e=@{}
>> $e.level, [int] $e.lower, [int] $e.upper = -split $_
>> $e
>> }
>>

You start by using the Get-Content cmdlet to write the data into a pipeline. Each line
of the file is sent to the ForEach-Object cmdlet to be processed. The first thing you
do in the body of the foreach cmdlet is initialize a hashtable in $e to hold the result.
You take each line stored in the $_ variable and apply the -split operator to it. This
splits the string into an array at each space character in the string. (The -split oper-
ator is covered in detail later in this chapter.) For example, the string

"quiet 0 25"

becomes an array of three strings:

"quiet","0","25"

Then you assign the split string to three elements of the hashtable: $e.level,
$e.lower, and $e.upper. But there’s one more thing you want to do. The array
being assigned is all strings. For the upper and lower bounds, you want numbers, not
strings. To do this, add a cast before the assignable element. This causes the value
being assigned to first be converted to the target type. The end result is that the upper
and lower fields in the hashtable are assigned numbers instead of strings. Finally, note
that the result of the pipeline is being assigned to the variable $data, so you can use it
later on.

Let’s look at the result of this execution. Because there were four lines in the file,
there should be four elements in the target array:

PS (3) > $data.Length
4

You see that there are. Now let’s see if the value stored in the first element of the array
is what you expect: it should be the “quiet” level.

PS (4) > $data[0]
Key Value
--- -----
upper 25
level quiet
lower 0
122 CHAPTER 4 OPERATORS AND EXPRESSIONS

It is. Finally, let’s verify that the types were properly converted:

PS (5) > $data[0].level
quiet
PS (6) > $data[0].lower
0
PS (7) > $data[0].upper
25
PS (8) > $data[0].level.GetType().FullName
System.String
PS (9) > $data[0].lower.GetType().FullName
System.Int32
PS (10) > $data[0].upper.GetType().FullName
System.Int32

Again you use the GetType() method to look at the types, and you can see that the
level description field is a string and that the two bounds fields are integers, as
expected.

In this last example, you’ve seen how array assignment can be used to perform
sophisticated tasks in only a few lines of code. By now, you should have a good sense
of the utility of assignments in processing data in PowerShell. There’s one last point
to cover about assignment expressions, which we’ll discuss in the next section.

4.2.3 Assignment operations as value expressions

The last thing you need to know about assignment expressions is that they’re expres-
sions. This means that you can use them anywhere you’d use any other kind of
expression. This lets you initialize multiple variables at once. Let’s initialize $a, $b,
and $c to the number 3:

PS (1) > $a = $b = $c = 3

Now verify that the assignments worked:

PS (2) > $a, $b, $c
3
3
3

Yes, they did. So what exactly happened? Well, it’s the equivalent of the following
expression:

PS (3) > $a = ($b = ($c = 3))

That is, $c is assigned 3. The expression ($c = 3) returns the value 3, which is in
turn assigned to $b, and the result of that assignment (also 3) is finally assigned to $a,
so once again, all three variables end up with the same value:

PS (4) > $a, $b, $c
3
3
3

THE ASSIGNMENT OPERATORS 123

Now, because you can “intercept” the expressions with parentheses, you can perform
additional operations on the values returned from the assignment statements before
this value is bound in the outer assignment. Here’s an example that does this:

PS (5) > $a = ($b = ($c = 3) + 1) + 1

In this expression, $c gets the value 3. The result of this assignment is returned, and 1
is added to that value, yielding 4, which is then assigned to $b. The result of this second
assignment also has 1 added to it, so $a is finally assigned 5, as shown in the output:

PS (6) > $a, $b, $c
5
4
3

Now you understand assignment and arithmetic operators. But a language isn’t much
good if you can’t compare things, so let’s move on to the comparison operators.

4.3 COMPARISON OPERATORS

In this section, we’ll cover what the comparison operators are in PowerShell and how
they work. These operators are shown in figure 4.4.

We’ll cover how case sensitivity factors into comparisons and how the operators work
for scalar values and for collections of values. The ability of these operators to work
on collections eliminates the need to write looping code in a lot of scenarios.

PowerShell has a sizable number of comparison operators, in large part because
there are case-sensitive and case-insensitive versions of all the operators. These are
listed with examples in table 4.3.

-eq -ne -gt -ge -lt -le
-ieq -ine -igt -ige -ilt -ile

Comparison operators (case-insensitive)

-ceq -cne -cgt -cge -clt -cle

Comparison operators (case-sensitive)

Figure 4.4 The comparison

operators in PowerShell. Each

operator has case-sensitive

and case-insensitive versions.

Table 4.3 PowerShell comparison operators

Operator Description Example Result

-eq, –ceq,
 –ieq

Equals 5 –eq 5 $true

-ne, –cne, –ine Not equals 5 –ne 5 $false
124 CHAPTER 4 OPERATORS AND EXPRESSIONS

In table 4.3, you can see that for each operator there’s a base or unqualified operator
form, like -eq and its two variants, -ceq and -ieq. The “c” variant is case sensitive
and the “i” variant is case insensitive. This raises the question, what’s the behavior for
the base operators with respect to case? The answer is that the unqualified operators
are case insensitive. All three variants are provided to allow script authors to make
their intention clear—that they meant a particular behavior rather than accepting
the default.

Now that you’re clear on the case-sensitivity issue, let’s move on to discuss the seman-
tics of the comparison operators. We’ll begin in the next section by describing their
operation on scalar data types; then in the subsequent section, we’ll describe how they
work with collections of objects.

4.3.1 Scalar comparisons

In this section, we’ll explore how the comparison operators work with scalar objects.
In particular, we’ll cover their polymorphic behavior with the scalar data types.

-gt, –cgt, –igt Greater than 5 –gt 3 $true

-ge, –cge, –ige Greater than or equal to 5 –ge 3 $true

-lt, –clt, –ilt Less than 5 –lt 3 $false

-le, –cle, -ile Less than or equal to 5 –le 3 $false

Table 4.3 PowerShell comparison operators (continued)

Operator Description Example Result

Design decisions

Let’s talk about the most contentious design decision in the PowerShell language.
And the winner is: why the heck didn’t we use the conventional symbols for compar-
ison like >, >=, <, <=, ==, and !=? The answer is that the > and < characters are used
for output redirection. Because PowerShell is a shell and all shell languages in the
last 30 years have used > and < for I/O redirection, people expected that PowerShell
should do the same. During the first public beta of PowerShell, this topic generated
discussions that went on for months. We looked at a variety of alternatives, such as
modal parsing where sometimes > meant greater-than and sometimes it meant redi-
rection. We looked at alternative character sequences for the operators like :> or ->,
either for redirection or comparison. We did usability tests and held focus groups,
and in the end, settled on what we had started with.
The redirection operators are > and <, and the comparison operators are taken from
the Unix test(1) command. We expect that, because these operators have a
30-year pedigree, they’re adequate and appropriate to use in PowerShell. (We also
expect that people will continue to complain about this decision, though hopefully
not for 30 more years.)
COMPARISON OPERATORS 125

Basic comparison rules

As with the assignment operators, the behavior of the comparison operators is signifi-
cantly affected by the type of the left operand. If you’re comparing a number and a
string, the string will be converted into a number and a numerical comparison will be
done. If the left operand is a string, the right operand will be converted to a string,
and the results compared as strings. Let’s look through some examples. First a simple
numeric comparison:

PS (26) > 01 -eq 001
True

Because you’re doing a numeric comparison, the leading zeros don’t matter and the
numbers compare as equal. Now let’s try it when the right operand is a string:

PS (28) > 01 -eq "001"
True

Following the rule, the right operand is converted from a string into a number; then
the two are compared and are found to be equal. Finally, try the comparison when
the left operand is a string:

PS (27) > "01" -eq 001
False

In this example, the right operand is converted to a string, and consequently they no
longer compare as equal. You can always use casts to force a particular behavior. In
the next example, let’s force the left operand to be a number:

PS (29) > [int] "01" -eq 001
True

And because you forced a numeric comparison, once again they’re equal.

Type conversions and comparisons

As with any PowerShell operator that involves numbers, when comparisons are done
in a numeric context, the widening rules are applied. This can produce somewhat
unexpected results. Here’s an example that illustrates this. In the first part of the
example, you use a cast to convert the string “123” into a number. Once you’re doing
the conversion in a numeric context, the numbers get widened to double because the
right operand is a double; and because 123.4 is larger than 123.0, the -lt operator
returns true:

PS (37) > [int] "123" -lt 123.4
True

Now try it using a string as the right operand. The cast forces the left operand to be
numeric, but the right operand is not yet numeric. It’s converted to the numeric type
126 CHAPTER 4 OPERATORS AND EXPRESSIONS

of the left operand, which is [int], not [double]. This means that the value is trun-
cated and the comparison now returns false:

PS (38) > [int] "123" -lt "123.4"
False

Finally, if you force the context to be [double] explicitly, the comparison again
returns true:

PS (39) > [double] "123" -lt "123.4"
True

Although all these rules seem complicated (and, speaking as the guy who imple-
mented them, they are), the results are generally what you’d intuitively expect. This
satisfies the principle of least astonishment. So most of the time you don’t need to
worry about the specifics and can let the system take care of the conversions. It’s only
when things don’t work as expected that you need to understand the details of the
conversion process. To help you debug cases where this happens, PowerShell provides
a type-conversion tracing mechanism to help you track down the problems. Chapter
7 describes how to use this debugging feature. Finally, you can always apply a set of
casts to override the implicit behavior and force the results you want.

4.3.2 Comparisons and case sensitivity

Next let’s look at the “i” and “c” versions of the comparison operators—the case-
sensitive and case-insensitive versions. Obviously, case sensitivity only applies to
strings. All the comparison operators have both versions. For example, the -eq opera-
tor has the following variants:

PS (1) > "abc" -eq "ABC"
True
PS (2) > "abc" -ieq "ABC"
True
PS (3) > "abc" -ceq "ABC"
False

The default case -eq is case insensitive, as is the explicitly case-insensitive operator
-ieq, so in the example, “abc” and “ABC” compare as equal. The -ceq operator is
case sensitive, so with this operator, “abc” and “ABC” compare as not equal.

The final item to discuss with scalar comparisons is how things that aren’t
strings and numbers are compared. In this case, the .NET comparison mechanisms
are used. If the object implements the .NET IComparable interface, then that will
be used. If not, and if the object on the left side has an .Equals() method that can
take an object of the type of the right operand, this is used. If there’s no direct
mechanism for comparing the two, an attempt will be made to convert the right
operand into an instance of the type of the left operand, and then PowerShell will
COMPARISON OPERATORS 127

try to compare the resulting objects. This lets you compare things such as [Date-
Time] objects, as shown here:

PS (4) > [DateTime] "1/1/2010" -gt [DateTime] "1/1/2009"
True
PS (5) > [DateTime] "1/1/2010" -gt [DateTime] "2/1/2010"
False
PS (6) >

Not all objects are directly comparable. For example, there’s no direct way to compare
a System.DateTime object to a System.Diagnostics.Process object:

PS (6) > [DateTime] "1/1/2010" -gt (Get-Process)[0]
The '-gt' operator failed: Cannot convert
"System.Diagnostics.Process (ALCXMNTR)" to "System.DateTime"..
At line:1 char:26
+ [] "1/1/2010" -gt <<<< (Get-Process)[0]
PS (7) >

In this example, because there’s no direct way to compare a DateTime object to a
Process object, the next step is to try to convert the Process object into an instance
of DateTime. This also failed, and as this is the last step in the comparison algorithm,
an error message is produced explaining what happened. This is where a human has
to intervene. The obvious field on a Process object to compare is the StartTime of
the process. Use the property notation to do this:

PS (7) > [DateTime] "1/1/2010" -gt (Get-Process)[0].StartTime
False
PS (8) > [DateTime] "1/1/2011" -gt (Get-Process)[0].StartTime
True

In this expression, you’re looking to see whether the first element in the list of Pro-
cess objects had a start time greater than the beginning of this year (no) and whether
it had a start time from before the beginning of next year (obviously true). You can
use this approach to find all the processes on a computer that started today:

Get-Process | where {$_.starttime -ge [DateTime]::today}

The Get-Process cmdlet returns a list of all the processes on this computer, and the
where cmdlet selects those processes where the StartTime property of the process is
greater than or equal to today.

NOTE The where used in the previous example is an alias for the
Where-Object cmdlet, which is described in chapter 6.

This completes our discussion of the behavior of the comparison operators with sca-
lar data. We paid a lot of attention to the role types play in comparisons, but so far
we’ve avoided discussing collection types—lists, arrays, and so on. We’ll get to that in
the next section.
128 CHAPTER 4 OPERATORS AND EXPRESSIONS

4.3.3 Using comparison operators with collections

In this section, we’ll focus on the behavior of the comparison operators when they’re
used with collections of objects.

Basic comparison operations involving collections

Here’s the basic behavior. If the left operand is an array or collection, the comparison
operation will return the elements of that collection that match the right operand.
Let’s illustrate the rule with an example:

PS (1) > 1,2,3,1,2,3,4 -eq 2
2
2

This expression searches the list of numbers on the left side and returns those that
match—the two “2”s. And this works with strings as well:

PS (2) > "one","two","three","two","one" -eq "two"
two
two

When processing the array, the scalar comparison rules are used to compare each ele-
ment. In the next example, the left operand is an array containing a mix of numbers
and strings, and the right operand is the string “2”:

PS (3) > 1,"2",3,2,"1" -eq "2"
2
2

Again, it returns the two “2”s. Let’s look at some more examples where you have lead-
ing zeros in the operands. In the first example

PS (4) > 1,"02",3,02,"1" -eq "2"
2

you only return the number 2 because 2 and “02” compare equally in a numeric con-
text, but “2” and “02” are different in a string context. The same thing happens in the
next example:

PS (5) > 1,"02",3,02,"1" -eq 2
2

When the elements are compared as numbers, they match. When compared as
strings, they don’t match because of the leading zero. Now one final example:

PS (6) > 1,"02",3,02,"1" -eq "02"
02
2

They both match. In a numeric context, the leading zeros don’t matter; and in the
string context, the strings match.
COMPARISON OPERATORS 129

The containment operators

All of the comparison operators we’ve discussed so far return the matching elements
from the collection. Although this is extremely useful, there are times when you just
want to find out whether or not an element is there. This is what the -contains and
-notcontains operators, shown in figure 4.5, are for.

These operators return $True if the set contains the element you’re looking for
instead of returning the matching elements. They’re listed in table 4.4 with examples.

Let’s redo the example at the end of the previous section, but this time you’ll use
-contains instead of -eq:

PS (1) > 1,"02",3,02,"1" -contains "02"
True
PS (2) > 1,"02",3,02,"1" -notcontains "02"
False

Now, instead of returning 02 and 2, you just return a single Boolean value. Because
all values in PowerShell can be converted into a Boolean value, this doesn’t seem as if
it would particularly matter, and usually it doesn’t. The one case where it does matter
is if the matching set of elements is something that’s false. This even includes Bool-
eans. The concept is easier to understand with an example:

PS (3) > $false,$true -eq $false
False
PS (4) > $false,$true -contains $false
True

Table 4.4 PowerShell containment operators

Operator Description Example Result

-contains
-ccontains
-icontains

The collection on the left side
contains the value specified on
the right side.

1,2,3 –contains 2 $true

-notcontains
-cnotcontains
-inotcontains

The collection on the left side
doesn’t contain the value specified
on the right side.

1,2,3 –notcontains 2 $false

-contains -notcontains -icontains -inotcontains

Containment operators (case-insensitive)

-ccontains -cnotcontains

Containment operators (case-sensitive) Figure 4.5 The Power-

Shell containment

operators in case-

insensitive and

case-sensitive versions
130 CHAPTER 4 OPERATORS AND EXPRESSIONS

In the first command, -eq searches the list for $false, finds it, and then returns the
matching value. But because the matching value was literally $false, a successful
match looks as if it failed. When you use the -contains operator in the expression,
you get the result you’d expect, which is $true. The other way to work around this
issue is to use the @(..) construction and the Count property:

PS (5) > @($false,$true -eq $false).count
1

The @(...) sequence forces the result to be an array and then takes the count of
the results. If there are no matches the count will be zero, which is equivalent to
$false. If there are matches the count will be nonzero, equivalent to $true. There
can also be some performance advantages to -contains, because it stops looking on
the first match instead of checking every element in the list.

NOTE The @(..) construction is described in detail in chapter 5.

In this section, we covered all the basic comparison operators. We addressed the issue
of case sensitivity in comparisons, and we covered the polymorphic behavior of these
operations, first for scalar data types, then for collections. Now let’s move on to look at
PowerShell’s operators for working with text. One of the hallmark features of dynamic
languages is great support for text manipulation and pattern matching. In the next sec-
tion, we’ll cover how PowerShell incorporates these features into the language.

4.4 PATTERN MATCHING AND TEXT MANIPULATION

In this section, we explore the pattern-matching and text-manipulation operators in
PowerShell (see figure 4.6).

Beyond the basic comparison operators, PowerShell has a number of pattern-
matching operators. These operators work on strings, allowing you to search through
text, extract pieces of it, and edit or create new strings. The other text-manipulation

-like -notlike -match -notmatch -replace -split
-ilike -inotlike -imatch -inotmatch -ireplace -isplit

Pattern-matching and text-manipulation operators (case-insensitive)

-clike -cnotlike -cmatch -cnotmatch -creplace -csplit

Pattern-matching and text-manipulation operators (case-sensitive)

-join

The -join operator

Figure 4.6

The pattern-

matching and

text-manipulation

operators in

PowerShell. All the

operators that use

patterns (every-

thing except -join)

have case-sensitive

and case-insensitive

forms.
PATTERN MATCHING AND TEXT MANIPULATION 131

operators allow you to break strings apart into pieces or add individual pieces back
together into a single string.

We’ll start with the pattern-matching operators. PowerShell supports two built-
in types of patterns—wildcard expressions and regular expressions. Each of these pattern
types is useful in distinct domains. We’ll cover the operation and applications of
both types of patterns along with the operators that use them.

4.4.1 Wildcard patterns and the -like operator

You usually find wildcard patterns in a shell for matching filenames. For example, the
command

dir *.txt

finds all the files ending in .txt. Similarly

cp *.txt c:\backup

will copy all the text files into the directory c:\backup. In these examples, the *
matches any sequence of characters. Wildcard patterns also allow you to specify char-
acter ranges. In the next example, the pattern

dir [st]*.txt

will return all the files that start with either the letter s or t that have a .txt extension.
Finally, you can use the question mark (?) to match any single character.

The wildcard pattern-matching operators are listed in table 4.5. This table lists the
operators and includes some simple examples of how each one works.

You can see from the table that there are several variations on the basic -like opera-
tor. These variations include case-sensitive and case-insensitive versions of the opera-
tor, as well as variants that return true if the target doesn’t match the pattern. Table 4.6
summarizes the special characters that can be used in PowerShell wildcard patterns.

Table 4.5 PowerShell wildcard pattern-matching operators

Operator Description Example Result

-like, –clike, –ilike Do a wildcard pattern match. "one" –like "o*" $true

-notlike, –cnotlike,
-inotlike

Do a wildcard pattern match; true
if the pattern doesn’t match.

"one" –notlike "o*" $false

Table 4.6 Special characters in PowerShell wildcard patterns

Wildcard Description Example Matches Doesn’t match

* Matches zero or more charac-
ters anywhere in the string

a* a
aa
abc
ab

bc
babc

? Matches any single character a?c abc
aXc

a~
ab
132 CHAPTER 4 OPERATORS AND EXPRESSIONS

Although wildcard patterns are simple, their matching capabilities are limited, so
PowerShell also provides a set of operators that use regular expressions.

4.4.2 Regular expressions

Regular expressions are conceptually (if not syntactically) a superset of wildcard
expressions. By this, we mean that you can express the same patterns in regular
expressions that you can in wildcard expressions, but with slightly different syntax.

NOTE In fact, in versions 1 and 2 of PowerShell, wildcard patterns
are translated internally into the corresponding regular expressions
under the covers.

With regular expressions, instead of using * to match any sequence of characters as
you would in wildcard patterns, you use .*—and, instead of using ? to match any
single character, you use the dot (.).

Although regular expressions are similar to wildcard patterns, they’re much more
powerful and allow you to do sophisticated text manipulation with small amounts

[<char>-<char>] Matches a sequential range of
characters

a[b-d]c abc
acc
adc

aac
aec
afc
abbc

[<char><char>…] Matches any one character
from a set of characters

a[bc]c abc
acc

a
ab
Ac
adc

Table 4.6 Special characters in PowerShell wildcard patterns (continued)

Wildcard Description Example Matches Doesn’t match

Why is the expression regular?

The name regular expressions comes from theoretical computer science, specifically
the branches of automata theory (state machines) and formal languages. Ken
Thompson, one of the creators of the Unix operating system, saw an opportunity to
apply this theoretical aspect of computer science to solve a real-world prob-
lem—finding patterns in text in an editor—and the rest is history.
Most modern languages and environments that work with text now allow you to use
regular expressions. This includes languages such as Perl, Python, and VBScript, and
environments such as Emacs and Microsoft Visual Studio. The regular expressions
in PowerShell are implemented using the .NET regular expression classes. The pat-
tern language implemented by these classes is powerful, but it’s also very large, so
we can’t completely cover it in this book. On the other hand, because PowerShell
directly uses the .NET regular expression classes, any source of documentation for
.NET regular expressions is also applicable to PowerShell. For example, the Micro-
soft Developer Network has extensive (if rather fragmented) online documentation
on .NET regular expressions.
PATTERN MATCHING AND TEXT MANIPULATION 133

of script. We’ll look at the kinds of things you can do with these patterns in the
next few sections.

4.4.3 The -match operator

The PowerShell version 1 operators that work with regular expressions are -match
and -replace. These operators are shown in table 4.7 along with a description and
some examples. PowerShell v2 introduced an additional -split operator, which we’ll
cover a bit later.

The -match operator is similar to the -like operator in that it matches a pattern and
returns a result. Along with that result, though, it also sets the $matches variable.
This variable contains the portions of the string that are matched by individual parts
of the regular expressions. The only way to clearly explain this is with an example:

PS (1) > "abc" -match "(a)(b)(c)"
True

Here, the string on the left side
of the -match operator is
matched against the pattern on
the right side. In the pattern
string, you can see three sets of
parentheses. Figure 4.7 shows
this expression in more detail.
You can see on the right side of
the -match operator that each
of the components in paren-
theses is a “submatch.” We’ll
get to why this is important in
the next section.

Table 4.7 PowerShell regular expression -match and -replace operators

Operator Description Example Result

-match
-cmatch
-imatch

Do a pattern match using regular
expressions.

"Hello" –match "[jkl]" $true

-notmatch
-cnotmath
-inotmatch

Do a regex pattern match; return
true if the pattern doesn’t match.

"Hello" –notmatch "[jkl]" $false

-replace
-creplace
-ireplace

Do a regular expression substitu-
tion on the string on the left side
and return the modified string.

"Hello" –replace "ello","i" "Hi"

Delete the portion of the string
matching the regular expression.

"abcde" –replace "bcd" "ae"

"abc" -match "(a)(b)(c)"

Match operator

String to match

(2) Second(1) First

submatchsubmatch

(3) Third

submatch

(0) Complete pattern

Figure 4.7 The anatomy of a regular expression match

operation where the pattern contains submatches. Each

of the bracketed elements of the pattern corresponds to

a submatch pattern.
134 CHAPTER 4 OPERATORS AND EXPRESSIONS

Figure 4.7 shows the anatomy of a regular expression match operation where the pat-
tern contains submatches. Each of the bracketed elements of the pattern corresponds
to a submatch pattern.

The result of this expression was true, which means that the match succeeded. It
also means that $matches should be set, so let’s look at what it contains:

PS (2) > $matches

Key Value
--- -----
3 c
2 b
1 a
0 abc

$matches contains a hashtable where the keys of the hashtable are indexes that corre-
spond to parts of the pattern that matched. The values are the substrings of the target
string that matched. Note that even though you only specified three subpatterns, the
hashtable contains four elements. This is because there’s always a default element that
represents the entire string that matched. Here’s a more complex example that shows
multiple nested matches:

PS (4) > "abcdef" -match "(a)(((b)(c))de)f"
True
PS (5) > $matches

Key Value
--- -----
5 c
4 b
3 bc
2 bcde
1 a
0 abcdef

Now you have the outermost match in index 0, which matches the whole string. Next
you have a top-level match at the beginning of the pattern that matches “a” at index
1. At index 2, you have the complete string matched by the next top-level part, which
is “bcde”. Index 3 is the first nested match in that top-level match, which is “bc”.
This match also has two nested matches: b at element 4 and c at element 5.

Matching using named captures

Calculating these indexes is fine if the pattern is simple. If it’s complex, as in the pre-
vious example, it’s hard to figure out what goes where—and even if you do, when you
look at what you’ve written a month later, you’ll have to figure it out all over again.
The .NET regular expression library provides a way to solve this problem by using
named captures. You specify a named capture by placing the sequence ?<name>
immediately inside the parentheses that indicate the match group. This allows you to
PATTERN MATCHING AND TEXT MANIPULATION 135

reference the capture by name instead of by number, making complex expressions
easier to deal with. Here’s what this looks like:

PS (10) > "abcdef" -match "(?<o1>a)(?<o2>((?<e3>b)(?<e4>c))de)f"
True
PS (11) > $matches

Key Value
--- -----
o1 a
e3 b
e4 c
o2 bcde
1 bc
0 abcdef

Now let’s look at a more realistic example.

Parsing command output using regular expressions

Existing utilities for Windows produce text output, so you have to parse the text to
extract information. (As you may remember, avoiding this kind of parsing was one of
the reasons PowerShell was created. But it still needs to interoperate with the rest of
the world.) For example, the net.exe utility can return some information about your
computer configuration. The second line of this output contains the name of the
computer. Your task is to extract the name and domain for this computer from that
string. One way to do this is to calculate the offsets and then extract substrings from
the output. This is tedious and error prone (since the offsets might change). Here’s
how to do it using the $matches variable. First let’s look at the form of this string:

PS (1) > (net config workstation)[1]
Full Computer name brucepay64.redmond.corp.microsoft.com

It begins with a well-known pattern, Full Computer name, so start by matching
against that to make sure there are no errors. You’ll see that there’s a space before the
name, and the name itself is separated by a period. You’re pretty safe in ignoring the
intervening characters, so here’s the pattern you’ll use:

PS (2) > $p='^Full Computer.* (?<computer>[^.]+)\.(?<domain>[^.]+)'

Figure 4.8 shows this pattern in more detail.

^Full Computer.* (?<computer>[^.]+)\.(?<domain>[^.]+)'

^ anchors

the string

Sequence

containing

anything but .

.* sequence matches any

characters
Matches the literal . character

Figure 4.8 This is an example

of a regular expression pattern

that uses the named submatch

capability. When this expres-

sion is used with the -match

operator, instead of using

simple numeric indexes in

the $matches variable for

the substrings, the names

will be used.
136 CHAPTER 4 OPERATORS AND EXPRESSIONS

You check the string at the beginning, and then allow any sequence of characters that
ends with a space, followed by two fields that are terminated by a dot. Notice that
you don’t say that the fields can contain any character. Instead, you say that they can
contain anything but a period. This is because regular expressions are greedy—that is,
they match the longest possible pattern, and because the period is any character, the
match won’t stop at the period. Now let’s apply this pattern:

PS (3) > (net config workstation)[1] -match $p
True

It matches, so you know that the output string was well formed. Now let’s look at
what you captured from the string:

PS (4) > $matches.computer
brucepay64
PS (5) > $matches.domain
redmond

You see that you’ve extracted the computer name and domain as desired. This
approach is significantly more robust than using exact indexing for the following rea-
sons. First, you checked with a guard string instead of assuming that the string at
index 1 was correct. In fact, you could have written a loop that went through all the
strings and stopped when the match succeeded. In that case, it wouldn’t matter which
line contained the information; you’d find it anyway. You also didn’t care about where
in the line the data actually appeared, only that it followed a basic well-formed pat-
tern. With a pattern-based approach, output format can vary significantly, and this
pattern would still retrieve the correct data. By using techniques like this, you can
write more change-tolerant scripts than you would otherwise do.

The -match operator lets you match text; now let’s look at how to go about making
changes to text. This is what the -replace operator is for, so we’ll explore that next.

4.4.4 The -replace operator

The -replace operator allows
you to do regular expres-
sion–based text substitution on
a string or collection of strings.
The syntax for this operator is
shown in figure 4.9.

Let’s run the example from
the syntax diagram:

PS {1) > "1,2,3,4" -replace "\s*,\s*","+"
1+2+3+4

What this has done is replace every instance of a comma surrounded by zero or more
spaces with a + sign. Now let’s look at the example you saw at the beginning of this chapter:

${c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

"1,2,3,4" -replace "\s*,\s*","+"

Target string Pattern to replace

Replacement

string

Replace operator

Figure 4.9 The syntax of the -replace operator
PATTERN MATCHING AND TEXT MANIPULATION 137

We can now discuss what the -replace operator is doing in this case. First look at
the pattern to replace: 'is (red|blue)'. From our earlier discussion about regular
expressions with –match, you know that parentheses establish a submatch. Now look
at the replacement string. It contains '$1', which might be assumed to be a Power-
Shell variable. But because the string is in single quotes, it won’t be expanded.
Instead, the regular expression engine uses this notation to allow submatches to be
referenced in the replacement expression. This allows PowerShell to intelligently
replace "is" with "was":

PS {2) > "The car is red" -replace 'is (red|blue)','was $1'
The car was red
PS {3) > "My boat is blue" -replace 'is (red|blue)','was $1'
My boat was blue

The pattern matches "is red" or "is blue" but you only want to replace "is".
These substitutions make this possible. The complete set of substitution character
sequences is shown in table 4.8.

Finally, what happens if the pattern doesn’t match? Let’s try it:

PS {4) > "My bike is yellow" -replace 'is (red|blue)','was $1'
My bike is yellow

You see that if the pattern isn’t matched, the string is returned as is.

Sometimes you’ll want to use regular expression substitutions and PowerShell variable
expansion at the same time. You can do this by escaping the '$' before the substitu-
tion with a backtick (`). The result looks like this:

PS {5) > $a = "really"
PS {6) > "The car is red" -replace 'is (red|blue)',"was $a `$1"
The car was really red

Table 4.8 Character sequences for doing substitutions in the replacement pattern for the

 -replace operator

Character sequence Description

$number Substitutes the last submatch matched by group number

${name} Substitutes the last submatch matched by a named capture of the form
(?<name>)

$$ Substitutes a single "$" literal

$& Substitutes a copy of the entire match itself

$` Substitutes all the text from the argument string before the matching
portion

$' Substitutes all the text of the argument string after the matching portion

$+ Substitutes the last submatch captured

$_ Substitutes the entire argument string
138 CHAPTER 4 OPERATORS AND EXPRESSIONS

In the output string, the word “red” was preserved using the regular expression substi-
tution mechanism and the word “really” was added by expanding the $a variable.

We’ve looked at lots of ways to substitute one thing for something else. But some-
times you don’t want to substitute something—you want to substitute nothing. More
simply, you just want to remove the matching parts. You can do this using -replace
by omitting the replacement string:

PS {7) > "The quick brown fox" -replace 'quick'
The brown fox

In this example, the word “quick” was removed from the sentence.
Here’s one final point we should make clear. The -replace operator doesn’t

change strings—it returns a new string with the necessary edits applied. To illustrate
this, put a string in a variable and then use it in a -replace expression:

PS {8) > $orig = "abc"
PS {9) > $orig -replace "b","B"
aBc
PS {10) > $orig
abc
PS {11) >

In the resulting output from the -replace expression, the lowercase b has been
changed to an uppercase B. But when you look at the original string, you see that it’s
unchanged. The result string is a new string with the substitutions performed on it
rather than on the original.

Up to this point, all the operations we’ve looked at have involved transformations
on a single string. Now let’s look at how to take strings apart and put them back
together using two more string operators: -split and -join. This will complete
your knowledge of the set of operators PowerShell provides for manipulating strings.

4.4.5 The -join operator

PowerShell version 2 introduced two new operators for working with collections and
strings: -split and -join. These operators allow you to join the elements of a col-
lection into a single string or split strings into a collection of substrings. We’ll look at
the -join operator first as it’s the simpler of the two.

As we mentioned, the -join operator allows you to join collections of objects into
a single string. This operator can be used both as a unary operator and a binary oper-
ator. The syntax for the unary form of the -join operator is shown in figure 4.10.

-join 1,2,3

Join operator Collection to join Figure 4.10 The unary join operator

allows you to join a collection of objects

into a single string with nothing

between each element.
PATTERN MATCHING AND TEXT MANIPULATION 139

The unary form of the -join operator allows you to concatenate a collections of
strings into a single string with no separator between each item in the resulting string.
Here’s a simple example. First assign an array of numbers to the variable $in:

PS {1) > $in = 1,2,3

Now check the type of the variable’s value

PS {2) > $in.GetType().FullName
System.Object[]

and you see that it’s an array of objects. (Remember that PowerShell arrays are always
created as polymorphic arrays, regardless of the content of the arrays.) Now use the
-join operator on this variable and assign the result to a new variable, $out:

PS {3) > $out = -join $in

Checking the type of the result

PS {4) > $out.GetType().FullName
System.String

you see that it’s a string. The -join operator first converted each array element into a
string and then joined the results into a single larger string. Let’s look at the contents
of $out to see what the result looks like:

PS {5) > $out
123

It’s “123”, as expected. Next, let’s do something a bit more sophisticated. Say you
want to reverse a string. Unfortunately the .NET [string] type has no built-in
reverse operator, but the [array] type does have a static method for reversing arrays.
This method takes an array as input and sorts it in place. To use this, you need to do
two conversions: from a string to an array of characters and from an array of charac-
ters back to a string. From chapter 3, you know that you can use a cast to convert a
string into a character array:

PS {6) > $ca = [char[]] "abcd"

Now that you have a character array, you can use the Reverse() method.

PS {7) > [array]::Reverse($ca)

This method reverses the contents of the array in-place so when you look at the
result, you see that it’s reversed as desired. But it’s still an array of characters and you
need a string:

PS {8) > $ca
d
c
b
a

140 CHAPTER 4 OPERATORS AND EXPRESSIONS

This is where the unary -join comes into play. Use it to convert the character array
back into a string:

PS {9) > $ra = -join $ca

And verify that the string has been created properly:

PS {10) > $ra
dcba

Yes, it has. Now let’s look at one potential gotcha using the unary form of the opera-
tor. Let’s redo the join of 1,2,3 again, but without using a variable to hold the value.
Here’s what that looks like:

PS {11) > -join 1,2,3
1
2
3

Surprise! Instead of joining the array members into a single string, it just returned the
same array. This is because unary operators have higher precedence than binary oper-
ators and, in PowerShell, the comma is a binary operator. As a result, the expression is
parsed like

PS {12) > (-join 1),2,3
1
2
3

So, to use the unary -join operator in a more complex expression, make sure you
put parentheses around the argument expression:

PS {13) > -join (1,2,3)
123

When parentheses are used, the result of the expression is as expected. Next let’s look
at the (much more useful) binary form.

The binary form for the -join operator is shown in figure 4.11.
The obvious difference with this operator is that you can specify the string to use

as an element separator instead of always using the default of nothing between the
joined strings. Let’s execute the example from the figure. Place the array to join into a
variable called $numbers and put the joined result into a variable called $exp:

PS {1) > $numbers = 1,2,3
PS {2) > $exp = $numbers -join '+'

1,2,3 -join "+"

Join operator

Collection to join String to join with

Figure 4.11 The binary form of the

-join operator allows you to join a

collection of objects into a single string

using the specified join string.
PATTERN MATCHING AND TEXT MANIPULATION 141

Look at the contents of $exp:

PS {3) > $exp
1+2+3

It contains the numbers with a plus sign between each number. Because this is a valid
PowerShell expression, you can pass the resulting string to the Invoke-Expression
cmdlet for evaluation:

PS {4) > Invoke-Expression $exp
6

The result is 6. Of course, this works on any operator. Let’s use the range operator
(see chapter 5) and the multiply operator to calculate the factorial of 10. Here’s what
the code looks like:

PS {5) > $fact = Invoke-Expression (1..10 -join '*')

This code is evaluating 1*2*3 and so on up to 10, with the result

PS {6) > $fact
3628800

Although this is a simple way to calculate factorials, it’s not efficient. Later on you’ll
see more efficient ways of writing this type of expression. For now, let’s look at a more
practical example and do some work with a file. Let’s use a here-string to generate a
test file on disk:

PS {7) > @'
>> line1
>> line2
>> line3
>> '@ > out.txt
>>

Now use the Get-Content cmdlet to read that file into a variable, $text:

PS {8) > $text = Get-Content out.txt

Use the text property to see how long the file was:

PS {9) > $text.Count
3

Clearly this isn’t the number of characters in the file. It’s actually the number of lines
in the file. The Get-Content cmdlet returns the contents of a file as an array of
strings. For example, to see the second line in the file, use this:

PS {10) > $text[1]
line2

To check the type of the value in $text, you can again use the GetType() method:

PS {11) > $text.GetType().FullName
System.Object[]
142 CHAPTER 4 OPERATORS AND EXPRESSIONS

As you can see, it’s an [object] array, which you should be used to by now.
Although this is exactly what you want most of the time, sometimes you just want the
entire file as a single string. The Get-Content cmdlet, as of PowerShell v2, has no
parameter for doing this, so you’ll have to take the array of strings and turn it back
into a single string. You can do this with the binary -join operator if you specify the
line separator as the string to use when joining the array elements. On Windows, the
line separator is two characters: carriage return (`r) and a line feed (`n). In a single
string, this is expressed as “`r`n”. Now you can use this separator string in a -join
expression:

PS {12) > $single = $text -join "`r`n"
PS {13) > $single.Length
19

That’s more like it. And when you check index zero

PS {14) > $single[0]
l

you see that it’s now a single character instead of a string.
Let’s see one more example, which shows how to generate a string containing

comma-separated values—a CSV string:

PS {16) > $csv = -join ('"',($numbers -join '","'), '"')
PS {17) > $csv
"1","2","3"
PS {18) >

You use -join to insert the sequence "," between each element and then use string
concatenation to add double quotes to either end. It’s a very simple one-line CSV
generator.

Now that you know how to put things together, we’ll show you how to take them
apart with -split.

4.4.6 The -split operator

The -split operator performs the opposite operation to -join: it splits strings into
a collection of smaller strings. Again, this operator can be used in both binary and
unary forms. The unary form of split is shown in figure 4.12.

In its unary form, this operator will split a string on whitespace boundaries, where
whitespace is any number of spaces, tabs, or newlines. You saw this in an example
earlier in this chapter.

The binary form of the operator
is much more, ahem, sophisti-
cated. It allows you to specify the
pattern to match on, the type of
matching to do, and the number of
elements to return, as well as match

Split operator -split "a b c" String to split

Figure 4.12 The unary -split operator

allows you to split a string into a collection

of smaller strings.
PATTERN MATCHING AND TEXT MANIPULATION 143

type-specific options. The full (and rather intimidating) syntax for this operator is
shown in figure 4.13.

Although figure 4.13 looks intimidating, most of the time you just need to specify
an argument string and split pattern and let the rest of the options use their default
values. Let’s take a look at the basic application of this operator. First, split a string on
a character other than whitespace:

PS {11) > 'a:b:c:d:e' -split ':'
a
b
c
d
e

This is pretty straightforward. The string is split into five elements at the : character.
But sometimes you don’t want all the matches. The -split operator allows you to
limit the number of elements to return. Do so by specifying an integer after the
match pattern:

PS {12) > 'a:b:c:d:e' -split ':',3
a
b
c:d:e

In this case, you only asked for three elements to be returned. Notice that the third
piece is the entire remaining string. If you specify a split count number less than or
equal to 0, then all the splits take place:

PS {13) > 'a:b:c:d:e' -split ':',0
a
b
c
d
e

You’ll see why this is important in a minute.
By default, -split uses regular expressions just like -match and -replace. But if

the string you’re trying to split contains one of the many characters that have special
meaning in regular expressions, things become a bit more difficult because you’ll have
to escape these characters in the split pattern. This can be inconvenient and error

"a, b ,c" -split "\w*,\w*",n,MatchType,Options

Split operator

String to split
Maximum number

of substrings

Pattern to split

with

Match type

specific options

Type of matching

to use

Figure 4.13 The -split
operator allows you to split a

string into a collection of

smaller strings. It lets you

specify a variety of argu-

ments and options to control

how the target string is split.
144 CHAPTER 4 OPERATORS AND EXPRESSIONS

prone, so -split allows you to choose simple matching through an option known as
simplematch. When you specify simplematch, instead of treating the split pattern
as a regular expression, it’s handled as a simple literal string that must be matched.
For example, say you want to split on *:

PS {14) > 'a*b*c' -split "*"
Bad argument to operator '-split': parsing "*" - Quantifier
 {x,y} following nothing..
At line:1 char:15
+ 'a*b*c' -split <<<< "*"
 + CategoryInfo : InvalidOperation: (:) [],
 RuntimeException
 + FullyQualifiedErrorId : BadOperatorArgument

This results in a regular expression parsing error. Now try it again with simplematch:

PS {15) > 'a*b*c' -split "*",0,"simplematch"
a
b
c

This time it worked properly. This option is particularly handy when you aren’t using
literal split strings but instead are getting them from a script argument or input file.
In those cases, it’s much simpler to use simplematch instead of escaping all the spe-
cial regular expression characters.

-split operator options

The last element shown in the -split operator syntax diagram (figure 4.7) is the
match options string. These options are shown in table 4.9. Multiple options can be
specified in a string with commas between them, like RegexMatch,Ignore-
Case,MultiLine or SimpleMatch,IgnoreCase.

Table 4.9 Match options for the -split operator

Option Description Applies to

IgnoreCase Allows you to override default case-sensitive
behavior when using the -csplit variant of
the operator.

RegexMatch,
SimpleMatch

CultureInvariant Disables any culture-specific matching behav-
ior (e.g., what constitutes uppercase) when
matching the separator strings.

RegexMatch

IgnorePatternWhitespace Ignores unescaped whitespace and comments
embedded in the pattern. This allows for com-
menting complex patterns.

RegexMatch

MultiLine Treat a string as though it’s composed of multi-
ple lines. A line begins at a newline character
and will be matched by the ^ pattern.

RegexMatch
PATTERN MATCHING AND TEXT MANIPULATION 145

We won’t cover all the options here. In practice, you aren’t likely to need most of
them, but we’ll examine the ones that are typically useful, as well as some techniques
for using them. The first one we’ll look at is the IgnoreCase option. This option lets
you change how case is handled when splitting the string. Normally this behavior is
controlled by the name of the operator (case-sensitive for -csplit and case-insensi-
tive for -split or –isplit). This is determined at parse time; then the script is
transformed into an executable form. There are cases where you want to be able to
override the parse time behavior at runtime. You can do this by using a variable to
pass in the option instead of a constant string. Let’s see how this works. Start with a
$opts variable that contains an empty string:

PS {1) > $opts = ''

Now pass this in the options position for the operator:

PS {2) > 'axbXcxdXe' -csplit 'x',0, $opts
a
bXc
dXe

Because the option variable, $opts, was empty, you get the expected behavior: the
split is done in the case-sensitive manner as determined by -csplit. Assign ignore-
case to the variable, and try it again:

PS {3) > $opts = 'ignorecase'
PS {4) > 'axbXcxdXe' -csplit 'x',0, $opts
a
b
c
d
e

This time the string splits on all instances of x regardless of case, even though the
-csplit operator was used. This shows how the parse-time defaults can be overrid-
den at runtime.

SingleLine This option, which is the default, tells the pat-
tern matcher to treat the entire string as a sin-
gle line. Newlines in the string aren’t
considered the beginning of a line.

RegexMatch

ExplicitCapture This option specifies that the only valid cap-
tures are explicitly named or numbered ones of
the form (?<name>…). This allows unnamed
parentheses to act as noncapturing groups
without the syntactic clumsiness of the
expression (?:…). See section 4.4.3 earlier in
this chapter on how captures work.

RegexMatch

Table 4.9 Match options for the -split operator (continued)

Option Description Applies to
146 CHAPTER 4 OPERATORS AND EXPRESSIONS

The next option we want to look at is the multiline option. This option can
only be used with regular expression matches and changes what the pattern matcher
considers the beginning of the string. In regular expressions, you can match the
beginning of a line with the ^ metacharacter. In the default singleline mode, the
beginning of the line is the beginning of the string. Any newlines in the string aren’t
treated as the beginning of a line. When you use the multiline option, embedded
newlines are treated as the beginning of a line. Here’s an example. First you need
some text to split—let’s use a here-string to put this text into the $text variable:

PS {5) > $text = @'
>> 1
>> aaaaaaa
>> aaaaaaa
>> 2
>> bbbbbbb
>> 3
>> ccccccc
>> ccccccc
>> 4
>> ddddddd
>> '@
>>

In the example text, each section of the document is numbered. You want to split
these “chapters” into elements in an array, so $a[1] is chapter 1, $a[2] is chapter 2,
and so on. The pattern you’re using (^\d) will match lines that begin with a number.
Now use this pattern to split the document in multiline mode, assigning the result
to $a:

PS {6) > $a = $text -split '^\d', 0, "multiline"

If all went as planned, $a should now contain four elements:

PS {7) > $a.Length
5

Wait a minute—the result is 5! But there were only four sections! There are actually
five sections because the empty text before the 1 gets its own chapter. Now let’s look
at chapter 1, which should be in $a[1]

PS {8) > $a[1]

aaaaaaa
aaaaaaa

and chapter 2 in $a[2]:

PS {9) > $a[2]

bbbbbbb

PS {10) >
PATTERN MATCHING AND TEXT MANIPULATION 147

As you can see, the multiline option with regular expressions allows for some pretty
slick text processing.

Using scriptblocks with the -split operator

As powerful as regular expressions are, sometimes you may need to split a string in a
way that isn’t convenient or easy to handle with regular expressions. To deal with
these cases, PowerShell allows you to pass a scriptblock to the operator. The script-
block is used as a predicate function that determines whether there’s a match. Here’s an
example. First set up a string to split. This string contains a list of colors that you
want to split into pairs, two colors per pair:

PS {17) > $colors = "Black,Brown,Red,Orange,Yellow," +
>> "Green,Blue,Violet,Gray,White'"

Next initialize a counter variable that will be used by the scriptblock. You’re using an
array here because you need to be able to modify the contents of this variable.
Because the scriptblock is executed in its own scope, you must pass it an array so it
can modify the value:

PS {18) > $count=@(0)

And now split the string. The scriptblock, in braces in the example, splits the string
on every other comma:

PS {19) > $colors -split {$_ -eq "," -and ++$count[0] % 2 -eq 0 }
Black,Brown
Red,Orange
Yellow,Green
Blue,Violet
Gray,White'

This gives you the color pairs you were looking for.
Whew! So that’s it for the pattern-matching and text-manipulation operators. In

this section, we covered the two types of pattern-matching operators—wildcard pat-
terns and regular expressions. Wildcard patterns are pretty simple, but learning to use
regular expressions effectively requires more work. On the other hand, you’ll find
that the power of regular expressions is more than worth the effort invested to learn
them. (We’ll come back to these patterns again in chapter 6 when we discuss the
switch statement.) We also looked at how to split strings into collections and join
collections into strings. All very spiffy, but let’s come back down to Earth now and
cover the last of the basic operators in the PowerShell language. These are the logical
operators (-and, -or, -not) and their bitwise equivalents (-band, -bor, -bnot).

4.5 LOGICAL AND BITWISE OPERATORS

Finally, PowerShell has logical operators -and, -or, -xor, and -not for combining
simpler comparisons into more complex expressions. The logical operators convert
their operands into Boolean values and then perform the logical operation.
148 CHAPTER 4 OPERATORS AND EXPRESSIONS

PowerShell also provides corresponding bitwise operators for doing binary operations
on integer values. These operators can be used to test and mask bit fields. Both of
these sets of operators are shown in figure 4.14.

Table 4.10 lists these operators with examples showing how each of these opera-
tors can be used.

As with most languages based on C/C++, the PowerShell logical operators are short-
circuit operators—they only do as much work as they need to. With the -and opera-
tor, if the left operand evaluates to $false, then the right operand expression isn’t
executed. With the -or operator, if the left operand evaluates to $true, then the
right operand isn’t evaluated.

NOTE In PowerShell v1, the bitwise operators were limited in that
they only supported 32-bit integers ([int]). In v2, support was added
for 64-bit integers ([long]). If the arguments to the operators are

Table 4.10 Logical and bitwise operators

Operator Description Example Result

-and Do a logical and of the left and right
values.

0xff -and $false $false

-or Do a logical or of the left and right
values.

$false –or 0x55 $true

-xor Do a logical exclusive-or of the left and
right values.

$false –xor $true
$true –xor $true

$true

$false

-not Do the logical complement of the
argument value.

-not $true $false

-band Do a binary and of the bits in the values
on the left and right side.

0xff –band 0x55 85 (0x55)

-bor Do a binary or of the bits in the values
on the left and right side.

0x55 -bor 0xaa 255 (0xff)

-bxor Do a binary exclusive-or of the left and
right values.

0x55 -bxor 0xaa
0x55 -bxor 0xa5

255 (0xff)
240 (0xf0)

-bnot Do the bitwise complement of the
argument value.

-bnot 0xff -256
(0x ffffff00)

-band -bor -bnot -bxor

Bitwise operators

-and -or -not -xor

Logical operators

Figure 4.14 The logical and bitwise

operators available in PowerShell
LOGICAL AND BITWISE OPERATORS 149

neither [int] nor [long], PowerShell will attempt to convert them
into [long] and then perform the operation.

4.6 SUMMARY

That concludes our tour of the basic PowerShell operators. We covered a lot of infor-
mation, much of it in great detail. We explored the basic PowerShell operators and
expressions with semantics and applications of those operators. Here are the impor-
tant points to remember:

• PowerShell operators are polymorphic with special behaviors defined by Power-
Shell for the basic types: numbers, strings, arrays, and hashtables. For other
object types, the op_ methods are invoked.

• The behavior of most of the binary operators is determined by the type of the
operand on the left.

• PowerShell uses widening when working with numeric types. For any arithme-
tic operation, the type of the result will be the narrowest .NET numeric type
that can properly represent the result. Also note that integer division will under-
flow into floating point if the result of the operation isn’t an integer. Casts can
be used to force an integer result.

• There are two types of pattern matching operations in PowerShell: wildcard
patterns (usually used for matching filenames) and regular expressions.

• Because the comparison and pattern-matching operators work on collections, in
many cases you don’t need a looping statement to search through collections.

• Regular expressions are powerful and can be used to do complex text manipula-
tions with very little code. PowerShell uses the .NET regular expression classes
to implement the regular expression operators in the language.

• PowerShell version 2 introduced two new operators for working with text:
-split and -join. With the addition of these two, the set of text-manipula-
tion operators is now complete.

• PowerShell has built-in operators for working with binary values: -band, -bor,
-bxor, and -bnot.

But we’re not done yet! In the next chapter, we’ll finish our discussion of operators
and expressions and also explain how variables are used. Stay tuned!
150 CHAPTER 4 OPERATORS AND EXPRESSIONS

C H A P T E R 5

Advanced operators and
variables

5.1 Operators for working with types 152
5.2 The unary operators 154
5.3 Grouping and subexpressions 157
5.4 Array operators 162
5.5 Property and method operators 173

5.6 The format operator 179
5.7 Redirection and the redirection

operators 181
5.8 Working with variables 184
5.9 Summary 196
The greatest challenge to any thinker is stating the problem in a way that
will allow a solution.

 —Bertrand Russell

The previous chapter covered the basic operators in PowerShell, and in this chapter
we’ll continue our discussion of operators by covering the advanced ones, which
include things that some people don’t think of as operators at all. We’ll break the
operators into related groups, as shown in figure 5.1.

In this chapter, we’ll look at how to work with types, properties, and methods and
how to use these operators to build complex data structures. The chapter concludes
with a detailed discussion of how variables work in PowerShell and how you can use
them with operators to accomplish significant tasks.
151

5.1 OPERATORS FOR WORKING WITH TYPES

The type of an object is fundamental to determining the sorts of operations you can
perform on that object. Up until now, you’ve allowed the type of the object to implic-
itly determine the operations that are performed. But sometimes you want to do this
explicitly. PowerShell provides a set of operators that can work with types, as shown
in figure 5.2. They’re also listed in table 5.1 with examples and more description.

These operators let you test whether an object is of a particular type and enable
you to convert an object to a new type. The -is operator returns true if the object on
the left side is of the type specified on the right side. By “is,” I mean that the left oper-
ator is either of the type specified on the right side or is derived from that type. (See
section 1.3 in chapter 1 for an explanation of derivation.)

The -isnot operator returns true if the left side is not of the type specified on the
right side. The right side of the operator must be represented as a type or a string that
names a type. This means that you can use either a type literal such as [int] or the
literal string “int”. The -as operator will try to convert the left operand into the type

-is -isnot -as

Operators for working with types

-not + - -- ++ [cast] ,

Unary operators

(<pipeline>) $(<statements>)
@(<statements>)

Grouping, expression, and

subexpression operators

[<indexExpr>] , ..

Array operators

<type>::<expr>()
<expr>.<expr>()

Property and method

reference operators

> >> 2> 2>> 2>&1

Redirection operators

<fmtString> -f
<argsList>

Format operator

Figure 5.1 The broad groups of operators we’ll cover in this chapter

<value> -is <type> <expr> -isnot <type> <expr> -as <type>

Operators for working with types

Figure 5.2 The binary operators for working with types
152 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

specified by the right operand. Again, either a type literal can be used, or you can use
a string naming a type.

NOTE The PowerShell -is and -as operators are directly modeled
on the corresponding operators in C#. But PowerShell’s version of -as
uses PowerShell’s more aggressive approach to casting. For example,
C# won’t cast the string “123” into the number 123, whereas the Pow-
erShell operator will do so. The PowerShell -as operator will also work
on any type, and the C# operator is restricted to reference types.

You may be wondering why you need the -as operator when you can just use a cast.
The reason is that the -as operator allows you to use a runtime expression to specify
the type, whereas the cast is fixed at parse time. Here’s an example showing how you
can use this runtime behavior:

PS (1) > foreach ($t in [float],[int],[string]) {"0123.45" -as $t}
123.45
123
0123.45

This example loops over a list of type literals and converts the string into each of the
types. This isn’t possible when types are used as casts.

Finally, there’s one additional difference between a regular cast and using the -as
operator. In a cast, if the conversion doesn’t succeed an error is generated. With the
-as operator, if the cast fails, then the expression returns $null instead of generating
an error.

PS (2) > [int] "abc" -eq $null
Cannot convert "abc" to "System.Int32". Error: "Input string was not
in a correct format."
At line:1 char:6
+ [int] <<<< "abc" -eq $null
PS (3) > ("abc" -as [int]) -eq $null
True
PS (4) >

You can see this here. Casting “abc” to [int] generated an error, but the -as opera-
tor just returned $null instead. Table 5.1 provides several more examples of how to
use the type operators PowerShell provides.

Table 5.1 PowerShell operators for working with types

Operator Example Results Description

-is $true -is [bool] $true True if the type of the left side matches the
type of the object on the right side.

$true -is [object] $true This is always true—everything is an object
except $null.
OPERATORS FOR WORKING WITH TYPES 153

In practice, most of the time the automatic type conversion mechanism will be all
you need, and explicit casts will take care of the majority of the remaining cases. So
why have these operators? They’re mostly used in scripting. For example, if you want
to have a script that behaves differently based on whether it’s passed a string or a
number, you’ll need to use the -is operator to select which operation to perform.
Obvious examples of this kind of functionality are the binary operators described in
the previous chapter. The addition operator has different behavior depending on the
type of its left argument. To write a script that did the same thing, you’d have to use
-is to select the type of the operation to perform and -as to convert the right
operand to the correct type.

5.2 THE UNARY OPERATORS

Now let’s take a detailed look at the unary operators, which take only one argument.
These operators are shown in figure 5.3 and listed with examples in table 5.2.

$true -is [ValueType] $true The left side is an instance of a .NET value
type such as an integer or floating-point
number.

"hi" -is [ValueType] $false A string is not a value type; it’s a reference
type so this expression returns FALSE.

"hi" -is [object] $true A string is still an object.

12 -is [int] $true 12 is an integer.

12 -is "int" $true The right side of the operator can be either
a type literal or a string naming a type.

-isnot $true -isnot [string] $true The object on the left side is not of the
type specified on the right side.

$null -isnot [object] $true The null value is the only thing that isn’t an
object.

-as "123" -as [int] 123 Takes the left side and converts it to the
type specified on the right side.

123 -as "string" "123" Turns the left side into an instance of the
type named by the string on the right.

Table 5.1 PowerShell operators for working with types (continued)

Operator Example Results Description

-not <value> +<value> -<value> [cast] <value> ,<value>

-- <assignableExpr> <assignableExpr> --
++ <assignableExpr> <assignableExpr> ++

Unary operators including increment and decrement operators

Figure 5.3

The binary

various unary

operators
154 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

You’ve seen most of these operators already in previous sections. The unary + and -
operators do what you’d expect for numbers. Applying them to any other type results
in an error.

The use of the type casts as unary operators was discussed at length in chapter 3, so
we won’t go into it again. The interesting operators in this section are the increment
and decrement operators. They match the behavior of the equivalent operators in the
C programming language with both the prefix and postfix forms of the operators.

These operators are special in that they take an assignable expression as an argu-
ment. An assignable expression is, well, anything that can be assigned to. This
includes variables, array elements, and object properties. These operators retrieve the
current value of the assignable expression, increment (add 1) or decrement (subtract
1) that value, and then assign it back to the assignable expression. For example, if
you’re using ++ with a variable, the value of the variable will be retrieved, incre-
mented by 1, and then assigned back to the variable. As with the unary + and - oper-
ators, the increment (++) and decrement (--) operators are only defined for variables
containing numbers. Applying them to a variable containing anything other than
numbers results in an error.

There’s another thing that’s special about these operators. The increment and decre-
ment operators were almost not included in PowerShell because they introduced a
problem. In languages such as C and C#, when you use one of these operators

$a++

Table 5.2 PowerShell unary operators

Operator Example Results Description

- - (2+2) -4 Negation. Tries to convert its argument to a
number, and then negates the result.

+ + "123 " 123 Unary plus. Tries to converts its argument
to a number and returns the result. This is
effectively a cast to a number.

-- --$a ; $a-- Depends on the
current value of
the variable

Pre- and postdecrement operator. Converts
the content of the variable to a number, and
then tries to subtract one from that value.
The prefix version returns the new value;
the postfix version returns the original value.

++ ++$a; $a++ Depends on the
current value of
the variable

Pre- and postincrement. Converts the variable
to a number, and then adds 1 to the result.
The prefix version returns the new value; the
postfix version returns the original value.

[<type>] [int] "0x123" 291 Type cast. Converts the argument into an
instance of the type specified by the cast.

, , (1+2) One-element array
containing the value
of the expression

Unary comma operator. Creates a new
one-element array of type [object[]]
and stores the operand in it.
THE UNARY OPERATORS 155

as a statement, nothing is displayed. This is because statements in C and C# don’t
return values. In PowerShell, all statements return a value, which led to confusion.
People would write scripts like this

$sum=0
$i=0
while ($i -lt 10) { $sum += $i; $i++ }
$sum

and be surprised to see the numbers 0 through 9 displayed. This was because $a++
returned a value and PowerShell was displaying the results of every statement. This was
so confusing that the language design team almost removed these operators from the
language. Then we hit on the idea of a voidable statement. Basically, this means that cer-
tain types of expressions, when used as statements, aren’t displayed. Voidable statements
include assignment statements and the increment/decrement operators. When incre-
ment and decrement are used in an expression, they return a value, but when they’re
used as a stand-alone statement, they return no value. Again, this is one of those details
that won’t affect how you use PowerShell other than to make it work as you expect. Now,
if you do want the value of the expression to be output, there’s a trick you can use. If
the expression is enclosed in parentheses, the result will be returned instead of discarded.
This can be convenient sometimes, especially in string expansions. Let’s try this. Your
task is to print out a list of strings prefixed with the string number. Here’s how:

PS {1) > $l=1
PS {2) > foreach ($s in "one","two","three")
>> { "$($l++): $s" }
>>
: one
: two
: three

The foreach statement loops over the strings and emits your output. The ++ in the
subexpressions (which we’ll get to next) causes the variable to be incremented. But
because the expression is treated as a statement, there’s no output in the string. Here’s
how you can fix it. You’ll make one small change and add parentheses around the
increment expression. Let’s try it again:

PS {3) > $l=1
PS {4) > foreach ($s in "one","two","three")
>> { "$(($l++)): $s" }
>>
1: one
2: two
3: three
PS {5) >

This time it works properly—you see the numbers in the output strings.

NOTE Only some statements are considered voidable. For other state-
ment types, you’ll have to explicitly discard the output of a statement.
156 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

In effect, you want to turn a regular statement into a voidable one. The
way to do this through an explicit cast is to use [void], as in [void]
(Write-Output "discard me"). The statement whose value you
want to discard is enclosed in parentheses, and the whole thing is cast
to void. You’ll see another way to accomplish the same effect using the
redirection operators later in this chapter.

Having touched on subexpressions in our discussion of voidable statements, let’s take
a more formal look at them in the next section, where we’ll cover all the grouping
constructs in the language.

5.3 GROUPING AND SUBEXPRESSIONS

So far you’ve seen a variety of situations where collections of expressions or statements
have been grouped together. You’ve even used these grouping constructs in string
expansions. These operators are shown in figure 5.4.

Now let’s look at them in more detail. Table 5.3 provides more details and some
examples.

(<pipeline>) $(<statementList>) @(<statementList>)

Grouping, expression, and subexpression operators

Figure 5.4 The PowerShell operators for grouping expressions and statements

Table 5.3 Expression and statement grouping operators

Operator Example Results Description

(...) (2 + 2) * 3
(get-date).dayofweek

12
Returns the current
weekday

Parentheses group expression
operations and may contain
either a simple expression or a
simple pipeline. They may not
contain more than one statement
or things like while loops.

$(...) $($p = "a*";
get-process $p)

Returns the pro-
cess objects for all
processes starting
with the letter a

Subexpressions group collec-
tions of statements as opposed
to being limited to a single
expression. If the contained
statements return a single value,
that value will be returned as a
scalar. If the statements return
more than one value, they will be
accumulated in an array.
GROUPING AND SUBEXPRESSIONS 157

The first grouping notation is the simple parenthetical notation. As in most lan-
guages, the conventional use for this notation is to control the order of operations, as
shown by the following example:

PS (1) > 2+3*4
14
PS (2) > (2+3)*4
20

The parentheses in the second expression cause the addition operation to be per-
formed first. In PowerShell, parentheses also have another use. Looking at the syntax
specification shown in figure 5.4 for parenthetical expressions illustrates this:

(<pipeline>)

From the syntax, you can see that pipelines are allowed between simple parentheses.
This allows you to use a command or pipeline as a value in an expression. For exam-
ple, to obtain a count of the number of files in a directory, you can use the dir com-
mand in parentheses, then use the Count property to get the number of objects
returned:

PS (1) > (dir).count
46

Using a pipeline in the parentheses lets you get a count of the number of files match-
ing the wildcard pattern *.doc:

PS (2) > (dir | where {$_.name -like '*.doc'}).count
32

NOTE People familiar with other languages tend to assume that the
expression (1,2,3,4) is an array literal in PowerShell. In fact, as you
learned in chapter 3, this isn’t the case. The comma operator, discussed
in the next section, allows you to easily construct arrays in PowerShell,
but there are no array literals as such in the language. All that the
parentheses do is control the order of operations. Otherwise, there’s
nothing special about them. In fact, the precedence of the comma
operator is such that you typically never need parentheses for this pur-
pose. More on that later.

@(...) @(dir c:\; dir d:\) Returns an array
containing the
FileInfo objects
in the root of the C:
and D: drives

The array subexpression operator
groups collections of statements
in the same manner as the regu-
lar subexpression operator, but
with the additional behavior that
the result will always be returned
as an array.

Table 5.3 Expression and statement grouping operators (continued)

Operator Example Results Description
158 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

Now let’s move on to the next set of grouping constructs—the subexpressions. There
are two forms of the subexpression construct, as shown in the following:

$(<statementList>)
@(<statementList>)

5.3.1 Subexpressions $(...)

The syntactic difference between a subexpression (either form) and a simple paren-
thetical expression is that you can have any list of statements in a subexpression
instead of being restricted to a single pipeline. This means that you can have any
PowerShell language element in these grouping constructs, including loop state-
ments. It also means that you can have several statements in the group. Let’s look at
an example. Earlier in this chapter, you saw a short piece of PowerShell code that cal-
culates the numbers in the Fibonacci sequence below 100. At the time, you didn’t
count the number of elements in that sequence. You can do this easily using the sub-
expression grouping construct:

PS (1) > $($c=$p=1; while ($c -lt 100) {$c; $c,$p=($c+$p),$c}).count
10

By enclosing the statements in $(...), you can retrieve the result of the enclosed
collection of statements as an array.

NOTE Many languages have a special notation for generating collec-
tions of objects. For example, Python and functional languages such as
Haskell have a feature called list comprehensions for doing this. Power-
Shell (and shell languages in general) don’t need special syntax for this
kind of operation. Collections occur naturally as a consequence of the
shell pipeline model. If a set of statements used as a value returns mul-
tiple objects, they’ll automatically be collected into an array.

Another difference between the subexpression construct and simple parentheses is how
voidable statements are treated. We looked at this concept earlier with the increment
and decrement operators. A voidable expression is one whose result is discarded when
used directly as a statement. Here’s an example that illustrates this. First initialize $a to
0; then use a postincrement expression in parentheses and assign it to the variable $x:

PS (1) > $a=0
PS (2) > $x=($a++)

Checking the value of $x, you see that it is 0, as expected, and that $a is now 1:

PS (3) > $x
0
PS (4) > $a
1

Now do a second assignment, this time with the expression in $(...):

PS (5) > $x=$($a++)
GROUPING AND SUBEXPRESSIONS 159

Checking the value, you see that it’s actually $null:

PS (6) > $x
PS (7) > $x -eq $null
True

This is because the result of the postincrement operation was discarded, so the expres-
sion returned nothing. Try a more complex statement in the subexpression:

PS (8) > $x=$($a++;$a;$a++;$a)
PS (9) > $x
3
4

Notice that even though there are four statements in the subexpression, $x only
received two values. Again, the results of the postincrement statements were discarded
so they don’t appear in the output.

Next, let’s take a look at the difference between the array subexpression @(...)
and the regular subexpression.

5.3.2 Array subexpressions @(...)

The difference is that in the case of the array subexpression, the result is always returned
as an array; this is a fairly small but useful difference. In effect, it’s shorthand for

[object[]] $(...)

This shorthand exists because in many cases you don’t know if a pipeline operation is
going to return a single element or a collection. Rather than writing complex checks,
you can use this construction and be assured that the result will always be a collec-
tion. If the pipeline returns an array, no new array is created and the original value is
returned as is. If the pipeline returns a scalar value, that value will be wrapped in a
new one-element array. It’s important to understand how this is different from the
behavior of the comma operator, which always wraps its argument value in a new
one-element array. Doing something like @(@(1)) doesn’t give you a one-element
array containing a second one-element array containing a number. These expressions

@(1)
@(@(1))
@(@(@(1)))

all return the same value. On the other hand,

,1

nests to one level,

,,1

nests to two levels, and so forth.

NOTE How to figure out what the pipeline returns is the single hard-
est thing to explain in the PowerShell language. The problem is that
160 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

people get confused; they see that @(12) returns a one-element array
containing the number 12. Because of prior experience with other lan-
guages, they expect that @(@(12)) should therefore produce a nested
array, an array of one element containing an array of one element,
which is the integer 12. As mentioned previously, this is not the case.
@(@(12)) returns exactly the same thing as @(12). If you think of
rewriting this expression as [object[]]$([object[]] $(12)),
then it’s clear why this is the case—casting an array into an array of the
same type has no effect; it’s already the correct type, so you just get the
original array.

Here’s an example of where this feature is useful: a pipeline expression that sorts some
strings, then returns the first element in the sorted collection. Start by sorting an
array of three elements:

PS (1) > $("bbb","aaa","ccc" | sort)[0]
aaa

This returns “aaa,” as you expect. Now do it with two elements:

PS (2) > $("bbb","aaa" | sort)[0]
aaa

Still “aaa,” so everything makes sense. Now try it with one element:

PS (3) > $("aaa" | sort)[0]
a

Wait a minute—what happened here? Well, what happened is that you sorted one ele-
ment, and in a pipeline, you can’t tell if the commands in the pipeline mean to return
a single object (a scalar) or an array containing a single object. The default behavior in
PowerShell is to assume that if you return one element, you intended to return a scalar.
In this case, the scalar is the string “aaa” and index 0 of this array is the letter a, which
is what the example returns. This is where you use the array subexpression notation
because it ensures that you always get what you want. you know you want the pipeline
to return an array, and by using this notation, you can enforce the correct behavior.
Here are the same three examples again, but this time using the array subexpression:

PS (4) > @("bbb","aaa","ccc" | sort)[0]
aaa
PS (5) > @("bbb","aaa" | sort)[0]
aaa
PS (6) > @("aaa" | sort)[0]
aaa
PS (7) >

This time, all three commands return “aaa” as intended. So why have this notation?
Why not just use the casts? Well, here’s what it looks like using the cast notation:

PS (7) > ([object[]] ("aaa" | sort))[0]
aaa
GROUPING AND SUBEXPRESSIONS 161

Because of the way precedence works, you need an extra set of parentheses to get the
ordering right, which makes the whole expression harder to write. In the end, the
array subexpression notation is easy to use, although it’s a bit difficult to grasp at first.
The advantage is that you only have to learn something once, but you have to use it
over and over again.

Now let’s move on to the other operations PowerShell provides for dealing with
collections and arrays of objects. The ability to manipulate collections of objects
effectively is the heart of any automation system. You can easily perform a single
operation manually, but the problem is performing operations on a large set of
objects. Let’s see what PowerShell has to offer here.

5.4 ARRAY OPERATORS

Arrays or collections of objects occur naturally in many of the operations that you
execute. An operation such as getting a directory listing in the file system results in a
collection of objects. Getting the set of processes running on a machine or a list of
services configured on a server both result in collections of objects. Not surprisingly,
PowerShell has a set of operators and operations for working with arrays and collec-
tions. These operators are shown in figure 5.5.

We’ll go over these operators in the following sections.

5.4.1 The comma operator

You’ve already seen many examples using the comma operator to build arrays. We
covered this topic in some detail in chapter 3, but there are a couple of things we still
need to cover. In terms of precedence, the comma operator has the highest prece-
dence of any operator except for casts and property or array references. This means
that when you’re building an array with expressions, you need to wrap those expres-
sions in parentheses. In the next example, you’ll build an array containing the values
1, 2, and 3. You’ll use addition to calculate the final value. Because the comma opera-
tor binds more strongly than the plus operator, you won’t get what you want:

PS (1) > 1,2,1+2
1
2
1
2

<indexableValue>[<indexExpression>]

<value1> , <value2> , <value3>

<lowerBound> .. <upperBound>

Array operators

Figure 5.5 The

PowerShell array

operators
162 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

The result is an array of the four elements 1,2,1,2 instead of 1,2,3. This is because the
expression was parsed as (1,2,1)+2, building an array of three elements and then
appending a fourth. You have to use parentheses to get the desired effect:

PS (2) > 1,2,(1+2)
1
2
3

Now you get the result you want.

NOTE The comma operator has higher precedence than any other
operator except type casts and property and array references. This is
worth mentioning again because it’s important to keep in mind when
writing expressions. If you don’t remember this, you’ll produce some
strange results.

The next thing we’ll look at is nested arrays. Because a PowerShell array can hold any
type of object, obviously it can also hold another array. You’ve already seen that using
the array subexpression operation was not the way to build a nested array. Now let’s
talk about how you do it using assignments and the comma operator. Your task will
be to build the tree structure shown in figure 5.6.

This data structure starts with an array of two elements. These two elements are
also both arrays of two elements, and they, in turn, contain arrays of two numbers.
Let’s see how to go about constructing something like this.

There are a couple of ways you can approach this. First, you can build nested
arrays one piece at a time using assignments. Alternatively, you can just nest the
comma operator within parentheses. Starting with last things first, here’s how to
build a nested array structure using commas and parentheses. The result is concise:

PS (1) > $a = (((1,2),(3,4)),((5,6),(7,8)))

NOTE LISP users should feel fairly comfortable with this expression if
they ignore the commas. Everybody else is probably shuddering.

1 2 3 4 5 6 7 8

Figure 5.6 A binary tree (arrays of arrays of arrays)
ARRAY OPERATORS 163

And here’s the same construction using intermediate variables and assignments. It’s
rather less concise but hopefully easier to understand.

$t1 = 1,2
$t2 = 3,4
$t3 = 5,6
$t4 = 7,8
$t1_1 = $t1,$t2
$t1_2 = $t3,$t4
$a = $t1_1, $t2_2

In either case, what you’ve done is build a data structure that looks like the tree shown
in figure 5.6.

NOTE For Perl and PHP users: in those languages, you have to do
something special to get reference semantics with arrays. In PowerShell,
arrays are always reference types, so no special notation is needed.

Let’s verify the shape of this data structure. First, use the length property to verify
that $a does hold an array of two elements:

PS (2) > $a.Length
2

Next, check the length of the array stored in the first element of that array:

PS (3) > $a[0].Length
2

It’s also two elements long, as is the array stored in the second element:

PS (4) > $a[1].Length
2

Now let’s look two levels down. This is done by indexing the result of an index as
shown:

PS (5) > $a[1][0].Length
2

Note that $a[0][0] isn’t the same as $a[0,0], which is either a subset of the ele-
ments in the array called a slice if $a is one-dimensional, or a single index if the array is
two-dimensional (see section 5.4.3 for more information on slices). You can compose
index operations as deeply as you need to. This example retrieves the second element
of the first element of the second element stored in $a:

PS (6) > $a[1][0][1]
6

To see exactly what’s going on here, take a look at figure 5.7. In this figure, the dotted
lines show the path followed to get to the value 6.
164 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

Here’s another example. Index with $a[0][0][0], which follows the leftmost edge of
the tree, thus producing 1 (as shown in figure 5.8).

Figure 5.8 Indexing the leftmost edge of the same tree with $a[0][0][0]

These examples show how you can construct arbitrarily complex data structures in
PowerShell. Although this isn’t something you’ll need to use frequently, the capability
is there if you need it. In section 5.4.3, when we discuss array slices, you’ll see an
example using nested arrays to index multidimensional arrays.

5.4.2 The range operator

The next operator we’ll discuss is the range operator (..). This operator is effectively
a shortcut for generating a sequential array of numbers. For example, the expression

1..5

is equivalent to

1,2,3,4,5

although it’s somewhat more efficient than using the commas. The syntax for the
range operator is

<valueExpression> .. <valueExpression>

1 2 3 4 5 6 7 8

[1]

[0]

[1]

$a[1][0][1]

6

Figure 5.7 Indexing through a binary tree with the expression $a[1][0][1]

1 2 3 4 5 6 7 8

[0]

[0]

[0]

$a[0][0][0]

1

ARRAY OPERATORS 165

It has higher precedence than all the binary operators except for the comma operator.
This means that expressions like

PS (1) > 1..3+4..6
1
2
3
4
5
6

work, but the following gives you a syntax error:

PS (2) > 1+3..4+6
Cannot convert "System.Object[]" to "System.Int32".
At line:1 char:3
+ 1+3 <<<< ..4+6

It’s an error because the expression is being parsed like

1 + (3..4) + 6

This is because the range operator has higher precedence than the addition operator.
In a range operator expression, the left and right operands represent bounds, but

either the left or the right can be the upper bound. If the left operand is greater than
the right operand, a descending sequence is generated:

PS (3) > 5..1
5
4
3
2
1

The boundaries can also be negative:

PS (4) > -5..-1
-5
-4
-3
-2
-1

Finally, the upper and lower bounds must resolve to integers after applying the usual
type conversions. A string that looks like a number will automatically be converted
into a number and a floating-point value will automatically be converted to an inte-
ger using the banker’s rounding algorithm described in chapter 4:

PS (5) > "1.1" .. 2.6
1
2
3

The range operator is most commonly used with the foreach loop because it allows
you to easily loop a specific number of times or over a specific range of numbers. This
is done so often that the PowerShell engine treats it in a special way. A range like
166 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

1..10mb doesn’t generate a 10 MB array—it just treats the range endpoints as the
lower and upper bounds of the loop, making it very efficient. (The foreach loop is
described in detail in the next chapter.)

NOTE In version 1 of PowerShell, the range operator was limited to
an upper bound of 40 KB to avoid accidentally creating arrays that
were too large. In practice this was never a problem, so this limit was
removed in version 2 with one exception. In restricted language mode,
this limit is still enforced. Restricted language mode is covered in
appendix D on the book’s website.

The other place where the range operator gets used frequently is with array slices,
which you’ll learn about next.

5.4.3 Array indexing and slicing

Most people don’t think of indexing into an array as involving operators or that [] is
an operator, but in fact, that’s exactly what it is. It has a left operand and a right oper-
and (the “right” operand is inside the square brackets). The syntax for an array index-
ing expression is

<valueExpression> [<valueExpression>]

There are a couple of things to note here. First, this is one of the few areas where you
can’t directly use a pipeline. That’s because square brackets don’t (and can’t) delimit a
pipeline. Square brackets are used in pipeline arguments as wildcard patterns, as
shown in the following command:

dir [abc]*.txt | sort length

This pipeline returns all the text files in the current directory that start with a, b, or c,
sorted by length. Now, if the square bracket ended the pipeline, you’d have to type
this instead:

dir "[abc]*.txt" | sort length

So, if you do want to use a pipeline as an index expression, you have to use parenthe-
ses or the subexpression notation.

The second thing to note is that spaces aren’t allowed between the last character of
the expression being indexed and the opening square bracket. This is necessary to dis-
tinguish array expressions on the command line from wildcard patterns. Here’s an
example to illustrate why this is a problem. First assign an array of three elements to $a:

PS (14) > $a=1,2,3

Now write out the entire array along with the string “[0]” (remember, on the com-
mand line, strings don’t need to be quoted):

PS (15) > write-host $a [0]
1 2 3 [0]
ARRAY OPERATORS 167

Next, just write out the first element of the array:

PS (16) > write-host $a[0]
1

You can see that the only difference between the first and second command lines is
the presence of a space between the array variable and the opening square bracket.
This is why spaces aren’t permitted in array indexing operations. The square bracket
is used for wildcard expressions, and we don’t want those confused with array index-
ing on the command line.

From the syntax (and from previous examples), you can see that array indexing
works on more than just variables; it can be applied to any expression that returns a
value. Because the precedence of the square brackets is high (meaning that they get
evaluated before most other operators), you usually have to put the expression in
parentheses. If you don’t, you’ll get an error, as in the following example:

PS (1) > 1,2,3[0]
Unable to index into an object of type System.Int32.
At line:1 char:7
+ 1,2,3[0 <<<<]

The error occurred because, due to precedence rules, you were in effect trying to
index into the scalar quantity “3”, which is not indexable. If you put the left value
expression in parentheses, it works as desired:

PS (2) > (1,2,3)[0]
1
PS (3) >

In this example, you retrieved the first element in the collection, which is at index 0.
(Like all .NET-based languages, indexes start at 0 in PowerShell.) PowerShell also sup-
ports negative indexes, which index from the end of the array. Let’s try it out:

PS (3) > (1,2,3)[-1]
3
PS (4) > (1,2,3)[-2]
2
PS (5) > (1,2,3)[-3]
1

Specifying -1 retrieves the last element in the array, -2 retrieves the second-to-last ele-
ment, and so on. In fact, negative indexes are exactly equivalent to taking the length
of the array and subtracting the index from the array:

PS (7) > $a[$a.Length - 1]
3
PS (8) > $a[$a.Length - 2]
2
PS (9) > $a[$a.Length - 3]
1

In the example, $a.Length - 1 retrieves the last element of the array just like -1 did.
In effect, negative indexing is just a shorthand for $array.Length - $index.
168 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

Array slices

You’ve seen how to get individual elements out of an array. You can get sequences of
elements out of arrays as well. Extracting these sequences is called array slicing and the
results are array slices, as illustrated in figure 5.9.

Slicing is done by specifying an array of indexes instead of just a single index. The
corresponding element for each index is extracted from the original array and
returned as a new array that’s a slice of the original. From the command line, this
operation looks like this:

PS (1) > $a = 1,2,3,4,5,6,7
PS (2) > $a[2,3,4,5]
3
4
5
6
PS (3) >

This example used the array 2,3,4,5 to get the corresponding elements out of the
array in $a. Here’s a variation on this example:

PS (3) > $indexes = 2,3,4,5
PS (4) > $a[$indexes]
3
4
5
6

This time, the code stored the list of indexes in a variable, and then used the variable
to perform the indexing. The effect was the same. Now let’s process the values that
are stored in the $indexes variable. You’ll use the Foreach-Object cmdlet to pro-
cess each element of the array and assign the results back to the array:

PS (5) > $indexes = 2,3,4,5 | foreach {$_-1}

You want to adjust for the fact that arrays start at index 0, so subtract 1 from each
index element. Now when you do the indexing

:
PS (6) > $a[$indexes]
2
3
4
5

1 2 3 4 5 6 7

3 4 5 6

$a =

$a[2,3,4,5] =

Original array

Array slice

Figure 5.9 How an array

slice is generated from the

original array
ARRAY OPERATORS 169

you get the elements that correspond to the original index value—2 returns 2, and so
on. But do you need to use the intermediate variable? Let’s try it:

PS (7) > $a[2,3,4,5 | foreach {$_-1}]
Missing ']' after array index expression.
At line:1 char:12
+ $a[2,3,4,5 | <<<< foreach {$_-1}]

So you get a parsing error. This doesn’t mean that you can’t do it. It just means that
you have to wrap the expression in brackets so it will be treated as a single value:

PS (8) > $a[(2,3,4,5 | foreach {$_-1})]
2
3
4
5
PS (9) >

This time there was no error, and you get the values you expected.

5.4.4 Using the range operator with arrays

There’s one other tool in the indexing toolkit: the range operator discussed in the pre-
vious section. This operator is a convenient way to get slices of arrays. Say you have
an array of 10 elements, 0 through 9. To get the first four elements of an array, you
can use the range operator as follows:

PS (2) > $a[0..3]
0
1
2
3

By taking advantage of the way negative indexing works, you can get the last four ele-
ments of the array by doing this:

PS (3) > $a[-4..-1]
6
7
8
9

You can even use ranges to reverse an array. To do this, you need to know the length
of the array, which you can get through the length property. You can see this in the
following example, which casts the result of the expression to a string so it will be dis-
played on one line:

PS (6) > [string] $a[($a.Length-1) .. 0]
9 8 7 6 5 4 3 2 1 0

NOTE This isn’t an efficient way of reversing the array. Using the
Reverse static member on the [array] class is more efficient. See
section 5.4.4 for more information on how to use .NET methods in
PowerShell.
170 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

In PowerShell, slicing works for retrieving elements of an array, but you can’t use it for
assignments. You get an error if you try. For example, try to replace the slice [2,3,4]
with a single value 12:

PS (1) > $a = 1,2,3,4,5,6,7,8
PS (2) > $a[2,3,4] = 12
Array assignment to [2,3,4] failed because assignment to slices is
not supported.
At line:1 char:4
+ $a[2 <<<< ,3,4] = 12

As you can see, you get an error telling you that assignment to slices isn’t supported.
Here’s what you have to do to get the desired transformation:

PS (3) > $a = $a[0,1] + 12 + $a[5 .. 7]
PS (4) > $a
1
2
12
6
7
8

Basically, you have to take the array slices before and after the desired values and then
concatenate all three pieces together to produce a new array.

5.4.5 Working with multidimensional arrays

So far we’ve covered one-dimensional arrays as well as arrays of arrays (which are also
called jagged arrays). The reason for the term “jagged” is shown in figure 5.10.

In figure 5.10, $a is an array of arrays as you’ve seen before, but each of the mem-
ber arrays is a different length. So instead of having a regular structure, you have a
jagged one because the counts are uneven.

0 1 2

0 1 2 3

0 1 2 3

4

0 1

0

$a[0]

$a[0][2] -eq 2

$a[1][4] -eq 4

$a[3][3] -eq 3

$a[4][0] -eq 0

$a[5][1] -eq 1

$a[1]

$a[2]

$a[3]

$a[4]

$a[5]

"Hello" "world" $a[2]13] -eq "world"

Figure 5.10 An example of a jagged array in the variable $a. Each member of $a
is also an array but they are all of different lengths—hence the term “jagged.”
ARRAY OPERATORS 171

Now that you understand what a jagged array is, we’ll move on to multidimensional
arrays. PowerShell needs to support multidimensional arrays because .NET allows for
arrays to be multidimensional and PowerShell is built on top of .NET. Figure 5.11
shows a two-dimensional array.

As shown in figure 5.11, PowerShell indexes into multidimensional arrays by
looking at the type of the array and mapping the set of indexes onto the number of
dimensions or rank the array has. If you specify two indexes and the array is one-
dimensional, you’ll get two elements back. If the array is two-dimensional, you’ll get
one element back. Let’s try this.

First, construct a multidimensional array using the New-Object cmdlet:

PS (1) > $2d = new-object 'object[,]' 2,2

This statement created a 2 x 2 array of objects. Look at the dimensions of the array by
retrieving the Rank property from the object:

PS {2) > $2d.Rank
2

Now set the value in the array to particular values. Do this by indexing into the array:

PS (3) > $2d[0,0] = "a"
PS (4) > $2d[1,0] = 'b'
PS (5) > $2d[0,1] = 'c'
PS (6) > $2d[1,1] = 'd'
PS (7) > $2d[1,1]
d

This appears to imply that slices don’t work in multidimensional arrays, but in fact
they do when you use nested arrays of indexes and wrap the expression by using the
comma operator in parentheses:

PS (8) > $2d[(0,0) , (1,0)]
a
b

This example retrieved the elements of the array at indexes (0,0) and (1,0). And, as in
the case of one-dimensional arrays, you can use variables for indexing:

PS (9) > $one=0,0 ; $two=1,0
PS (10) > $2d [$one, $two]
Unexpected token ' $one, $two ' in expression or statement.
At line:1 char:18
+ $2d [$one, $two] <<<<

$a[0, 0] -eq 0

$a[5, 0] -eq 5

$a[0, 3] -eq 18

$a[5, 3] -eq 23

$a = new-object 'object[,]' 6,4

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23
Figure 5.11 A two-dimensional

6 x 4 array of numbers
172 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

PS (11) > $2d[$one, $two]
a
b

And you can even use a variable containing a pair of index arrays:

PS (12) > $pair = $one,$two
PS (13) > $2d[$pair]
a
b

This covers pretty much everything we need to say about arrays. Now let’s move on to
properties and methods. As you’ll remember from chapter 1, properties and methods
are the attributes of an object that let you inspect and manipulate that object. Because
PowerShell is an object-based shell, a good understanding of how properties and
methods work is necessary if you want to master PowerShell. We’re going to be
spending a fair bit of time on these features, so let’s get started.

5.5 PROPERTY AND METHOD OPERATORS

As you’ve seen in many examples so far, the property dereference operator in Power-
Shell is the dot (.). As was the case with array indexing, this is properly considered an
operator in PowerShell with left and right operand expressions. This operator, along
with the static member operator ::, is shown in figure 5.12.

We’ll get to what that means in a second.

NOTE When we say property here, we’re talking about any kind of
data member on an object, regardless of the underlying Common Lan-
guage Runtime representation (or implementation) of the member. If
you don’t know what this means, good—because it doesn’t matter. But
some people do like to know all the details of what’s going on.

First let’s look back at the basics. Everything in PowerShell is an object (even scripts
and functions, as you’ll see later on). As discussed in chapter 1, objects have proper-
ties (data) and methods (code). To get at both, you use the dot operator. To get the
length of a string, you use the length property:

PS (1) > "Hello world!".Length
12

<typeValue>::<memberNameExpr> <typeValue>::<memberNameExpr>(<arguments>)

<value>.<memberNameExpr> <value>.<memberNameExpr>(<arguments>)

Property and method reference operators

Figure 5.12 The property and method operators in PowerShell
PROPERTY AND METHOD OPERATORS 173

In a similar fashion, you can get the length of an array:

PS (3) > (1,2,3,4,5).Length
5

As was the case with the left square bracket in array indexing, spaces aren’t permitted
between the left operand and the dot:

PS (4) > (1,2,3,4,5) .count
Unexpected token '.count' in expression or statement.
At line:1 char:18
+ (1,2,3,4,5) .count <<<<

This is necessary to make sure that arguments to cmdlets aren’t mistaken for property
reference operations:

PS (5) > write-output (1,2,3,4,5) .count
1
2
3
4
5
.count

5.5.1 The dot operator

So much for the basics—now let’s get back to this statement about the dot being an
operator. What’s special about it? Well, just as the left operand can be an expression,
so can the right operand. The right operand is evaluated, which results in a value.
That value is then used as the name of the property on the left operand to retrieve.
This series of steps is illustrated in figure 5.13.

Initial expression

5

("*" * 5) . length

("*" * 5) . ("len" + "gth")

"*****" . length

Evaluates right-hand side

to get property name

Evaluates left-hand side

to get object from which

to retrieve property

Evaluates . to retrieve

value of property

Figure 5.13 The steps performed to retrieve a calculated property from an object
174 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

Let’s look at an example of how this process can be used with variables. First define a
variable to hold the name of the property you want to retrieve:

PS (6) > $prop = "length"

Now, use that variable in an expression to retrieve the property:

PS (7) > "Hello world".$prop
11

This mechanism gives you that magic “one more level of indirection” computer sci-
ence people are so fond of. Let’s expand on this. To get a list of all the properties on
an object, use the Get-Member (or gm) cmdlet on an object. This example uses dir to
get a FileInfo object to work with:

PS (1) > @(dir c:\windows*.dll)[0] | gm -type property

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes ...
CreationTime Property System.DateTime CreationTime {get;s ...
CreationTimeUtc Property System.DateTime CreationTimeUtc {ge ...
Directory Property System.IO.DirectoryInfo Directory ...
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;s ...
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {ge ...
LastWriteTime Property System.DateTime LastWriteTime {get;se ...
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get ...
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

This gives you a list of all the properties. Of course, you only need the name, so you
can use the Name property on these objects:

PS (2) > @(dir c:\windows*.dll)[0] | gm -type property |
>>> foreach {$_.name}
Attributes
CreationTime
CreationTimeUtc
Directory
DirectoryName
Exists
Extension
FullName
IsReadOnly
LastAccessTime
LastAccessTimeUtc
LastWriteTime
PROPERTY AND METHOD OPERATORS 175

LastWriteTimeUtc
Length
Name

Next you’ll use this list of names to get the corresponding values from the original
object. First get the object into a variable:

PS (1) > $obj = @(dir c:\windows*.dll)[0]

And get the list of names; for brevity’s sake, just get the properties that start with the
letter l:

PS (2) > $names = $obj | gm -type property l* | foreach {$_.name}

Finally, use the list of names to print out the value:

PS (3) > $names | foreach { "$_ = $($obj.$_)" }
LastAccessTime = 3/25/2006 2:18:50 AM
LastAccessTimeUtc = 3/25/2006 10:18:50 AM
LastWriteTime = 8/10/2004 12:00:00 PM
LastWriteTimeUtc = 8/10/2004 7:00:00 PM
Length = 94784
PS (4) >

Next let’s look at using methods. The method call syntax is

<valueExpression> . <methodName> (<argument> , <argument> , ...)

As always, spaces aren’t allowed before or after the dot or before the opening paren-
thesis for the reasons discussed earlier. Here’s a basic example:

PS (1) > "Hello world!".substring(0,5)
Hello

This example uses the Substring method to extract the first five characters from the
left operand string. As you can see, the syntax for method invocations in PowerShell
matches what you see in pretty much every other language that has methods. Con-
trast this with how commands are called. In method calls, arguments in the argument
list are separated by commas and the whole list is enclosed in parentheses. With com-
mands, the arguments are separated with spaces and the command ends at the end of
line or at a command terminator, such as the semicolon or the pipe symbol.

This is another area where the language design team experimented with alternate
syntaxes. One of the experiments we conducted resulted in a command-like method
invocation syntax that looked something like

"Hello world!".(substring 0 5)

The team chose not to use this syntax for two reasons (which, by the way, means that
you’ll get an error if you try using it). First, it collided with the ability to perform indi-
rect property name retrievals. The second (and more important) reason was that people
also found it uncomfortably strange. Empirically, a programmer-style syntax for pro-
grammer-style activities like method invocations and a shell-style syntax for shell-style
176 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

activities like command invocation seems to work best. This approach is not without
some small issues. First, if you want to pass an expression to a method, you have to wrap
that array in parentheses so the array comma operator isn’t confused with the argument
separator commas. Second, if you want to use the output of a command as an argu-
ment, you have to wrap the command in parentheses. Here’s an example:

PS (1) > [string]::join('+',(1,2,3))
1+2+3

This example uses the [string]::Join method to create a string out of the array
1,2,3 with a plus sign between each one. Now let’s do the same thing with the out-
put of a command. Here’s a command that returns the handle count for the rundll
processes:

PS (1) > get-process rundll* | foreach{$_.handles}
58
109

Now join that output into a string, again separated with the plus sign (with spaces on
either side this time):

PS (2) > [string]::join(" + ", (get-process rundll* |
>>> foreach{$_.handles}))
58 + 109

The observant reader will have noticed the use of the double-colon operator (::) in
these examples. We briefly discussed this operator in chapter 3 as part of our discus-
sion of types in PowerShell. In the next section, we’ll look at it in more detail.

5.5.2 Static methods and the double-colon operator

The :: operator is the static member accessor. Whereas the dot operator retrieved
instance members, the double-colon operator accesses static members on a class, as is
the case with the join method in the example at the end of the last section. The left
operand to the static member accessor is required to be a type—either a type literal or
an expression returning a type as you see here:

PS (1) > $t = [string]
PS (2) > $t::join('+',(1,2,3))
1+2+3
PS (3) >

The language design team chose to use a separate operator for accessing static meth-
ods because of the way static methods are accessed. Here’s the problem. If you had a
type MyModule with a static property called Module, then the expression

[MyModule].Module

is ambiguous. This is because there’s also an instance member Module on the System
.Type instance representing the type MyModule. Now you can’t tell if the “Module”
PROPERTY AND METHOD OPERATORS 177

instance member on System.Type or the “Module” static member on MyModule
should be retrieved. By using the double-colon operator, you remove this ambiguity.

NOTE Other languages get around this ambiguity by using the
typeof() operator. Using typeof() in this example, typeof(My
Module).Module retrieves the instance property on the Type object
and MyModule.Module retrieves the static property implemented by
the MyModule class.

5.5.3 Indirect method invocation

Earlier we talked about how you could do indirect property references by using a vari-
able on the right side of the dot operator. You can do the same thing with methods,
but it’s a bit more complicated. The obvious approach

$x.$y(2)

doesn’t work. What happens is that $x.$y returns an object that describes the
method you want to invoke:

PS {1) > "abc".substring

MemberType : Method
OverloadDefinitions : {string Substring(int startIndex), st
 ring Substring(int startIndex, int le
 ngth)}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : string Substring(int startIndex), str
 ing Substring(int startIndex, int len
 gth)
Name : Substring
IsInstance : True

This turns out to be a handy way to get information about a method. Let’s pick out the
overloads for Substring—that is, the different forms of this method that you can use:

PS {2) > "abc".substring | foreach {
>> $_.OverloadDefinitions -split '\),' }
>>
string Substring(int startIndex)
string Substring(int startIndex, int length)
PS {3) >

Now you have this information object—what else can you do with it? The thing you
most probably want to do is to invoke it. The way to do this is to use the Invoke
method on the method information object:

PS {3) > "abc".substring.Invoke(1)
bc

In version 2 of PowerShell, this also works for static methods. First assign the name of
the operation to invoke to a variable:

PS {4) > $method = "sin"
178 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

Look at the information about that method:

PS {5) > [math]::$method

MemberType : Method
OverloadDefinitions : {static double Sin(double a)}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : static double Sin(double a)
Name : Sin
IsInstance : True

And, finally, invoke it:

PS {6) > [math]::$method.invoke(3.14)
0.00159265291648683

Although it’s an advanced technique, the ability to invoke properties and methods
indirectly turns out to be powerful because it means that the behavior of your script
can be configured at runtime. You’ll learn how this can be used when we talk about
scriptblocks in chapter 8.

This finishes our discussion of properties and methods. You may have noticed
that in some of the examples so far, you’ve had to do some fairly complicated things
to display the results in the way you want. Clearly, on occasion you’ll need a better
way to present output, and that’s the purpose of the format operator, covered in the
next section.

5.6 THE FORMAT OPERATOR
Most of the time, PowerShell’s
built-in formatting and output
system will take care of present-
ing your results, but some-
times you need more explicit
control over the formatting of
your output. You may also
want to format text strings in a specific way, like displaying numbers in hexadecimal
format. PowerShell allows you to do these things with the format operator, shown in
figure 5.14.

The format operator (-f) is a binary operator that takes a format string as its left
operand and an array of values to format as its right operand. Here’s an example:

PS (1) > '{2} {1} {0}' -f 1,2,3
3 2 1

In the format string, the values enclosed in braces correspond to the index of the ele-
ment in the right operand array. The element is converted into a string and then dis-
played. Along with reordering, when the elements are displayed, you can control how
they’re laid out.

<formatSpecificationString> -f <argumentList>

Format operator

Figure 5.14 The format operator lets you control the

formatting of your output.
THE FORMAT OPERATOR 179

NOTE For people familiar with the Python language, the PowerShell
format operator is modeled on the Python % operator. But because
PowerShell doesn’t use the % character as part of its formatting direc-
tives, it didn’t make mnemonic sense for the format operator in Power-
Shell to be %. Instead, the language design team chose -f.

Here are some more examples:

PS (3) > '|{0,10}| 0x{1:x}|{2,-10}|' -f 10,20,30
| 10| 0x14|30 |

Here, the first format specifier element (,10) tells the system to pad the text out to 10
characters. The next element is printed with the specifier :x, telling the system to dis-
play the number as a hexadecimal value. The final display specification has a field
width specifier, but this time it’s a negative value, indicating that the field should be
padded to the right instead of to the left.

The -f operator is shorthand for calling the .NET Format method on the
System.String class. The previous example can be rewritten as

PS (4) > [string]::Format('|{0,10}| 0x{1:x}|{2,-10}|',10,20,30)
| 10| 0x14|30 |

and you’ll get exactly the same results. The key benefit of the -f operator is that it’s a
lot shorter to type. This is useful when you’re typing on the command line. The
underlying Format() method has a rich set of specifiers. The basic syntax of these
specifiers is

{<index>[,<alignment>][:<formatString>]}

Some examples of using format specifiers are shown in table 5.4.

Table 5.4 Examples of using format specifiers

Format

specifier
Description Example Output

{0} Displays a particular element "{0} {1}" -f "a","b" a b

{0:x} Displays a number in hexadecimal "0x{0:x}" -f 181342 0x2c45e

{0:X} Displays a number in hexadecimal with
the letters in uppercase

"0x{0:X}" -f 181342 0x2C45E

{0:dn} Displays a decimal number left-justified,
padded with zeros

"{0:d8}" -f 3 00000003

{0:p} Displays a number as a percentage "{0:p}" -f .123 12.30 %

{0:C} Display a number as currency "{0:c}" -f 12.34 $12.34

{0,n} Displays with field width n, left-aligned "|{0,5}|" -f "hi" | hi|

{0,-n) Displays with field width n, right-
aligned

"|{0,-5}|" -f "hi" |hi |
180 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

There are many more things you can do with formatting. Refer to the Microsoft
MSDN documentation for the full details of the various options.

Now that you know how to format strings, let’s look at how you can direct your
output to files with the redirection operators.

5.7 REDIRECTION AND THE REDIRECTION OPERATORS

All modern shell languages have input and output redirection operators, and Power-
Shell is no different. The redirection operators supported in PowerShell are shown in
figure 5.15.

Table 5.5 presents the operators with examples and more details about their
semantics.

{0:hh}
{0:mm}

Displays the hours and minutes from a
DateTime value

"{0:hh}:{0:mm}" -f
(get-date)

01:34

{0:C} Displays using the currency symbol for
the current culture

"|{0,10:C}|" -f 12.4 | $12.40|

Table 5.4 Examples of using format specifiers (continued)

Format

specifier
Description Example Output

<pipeline> > <outputFile> <pipeline> >> <outputFile>
<pipeline> 2> <errorFile> <pipeline> 2>> <errorFile>

<pipeline> 2>&1

Redirection operators

Figure 5.15 The redirection operators that are available in PowerShell

Table 5.5 PowerShell redirection operators

Operator Example Results Description

> dir > out.txt Contents of out.txt are
replaced.

Redirect pipeline output to a file,
overwriting the current contents.

>> dir >> out.txt Contents of out.txt are
appended to.

Redirect pipeline output to a file,
appending to the existing content.

2> dir nosuchfile.txt
2> err.txt

Contents of err.txt are
replaced by the error
messages.

Redirect error output to a file, over-
writing the current contents.

2>> dir nosuchfile.txt
2>> err.txt

Contents of err.txt are
appended with the
error messages.

Redirect error output to a file,
appending to the current contents.

2>&1 dir nosuchfile.txt
2>&1

The error message is
written to the output.

The error messages are written to
the output pipe instead of the error
pipe.
REDIRECTION AND THE REDIRECTION OPERATORS 181

The redirection operators allow you to control where output and error objects are
written (including discarding them if that’s what you want to do). The following
example saves the output of the Get-Date cmdlet to a file called out.txt:

PS (1) > get-date > out.txt

Now display the contents of this file:

PS (2) > type out.txt

Tuesday, January 31, 2006 9:56:25 PM

You can see that the object has been rendered to text using the same mechanism as
you’d use when displaying on the console. Now let’s see what happens when you redi-
rect the error output from a cmdlet. You’ll let the output be displayed normally:

PS (3) > dir out.txt,nosuchfile 2> err.txt

 Directory: Microsoft.Management.Automation.Core\FileSystem::C:\
 working

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/31/2006 9:56 PM 40 out.txt

Obviously no error was displayed on the console. Let’s see what was written to the
error file:

PS (4) > type err.txt
get-childitem : Cannot find path 'C:\working\nosuchfile' because it
 does not exist.
At line:1 char:4
+ dir <<<< out.txt,nosuchfile 2> err.txt

You see the full error message that would’ve been displayed on the console. Now try
the append operator. Add another line to the output file you created earlier and dis-
play the contents of the file:

PS (5) > get-date >> out.txt
PS (6) > type out.txt

Tuesday, January 31, 2006 9:56:25 PM

Tuesday, January 31, 2006 9:57:33 PM

< Not implemented in
PowerShell v1.0 or v2.0

This operator is reserved for input
redirection, which isn’t imple-
mented in v1.0 or v2.0 of Power-
Shell. Using this operator in an
expression will result in a syntax
error.

Table 5.5 PowerShell redirection operators (continued)

Operator Example Results Description
182 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

You see that there are now two records containing the current date. You can also
append error records to a file using the 2>> operator.

The next operator to discuss is the stream combiner, 2>&1. This operator causes
error objects to be routed into the output stream instead of going to the error stream.
This allows you to capture error records along with your output. For example, if you
want to get all the output and error records from a script to go to the same file, you’d
just do

myScript > output.txt 2>&1

or

myScript 2>&1 > output.txt

The order doesn’t matter. Now all the error records will appear inline with the output
records in the file. This technique also works with assignment.

$a = myScript 2>&1

This code causes all the output and error objects from myScript to be placed in $a.
You can then separate the errors by checking for their type with the -is operator, but
it’d be easier to separate them up front. This is another place where you can use the
grouping constructs. The following construction allows you to capture the output
objects in $output and the error objects in $error:

$error = $($output = myScript) 2>&1

You’d use this idiom when you wanted to take some additional action on the error
objects. For example, you might be deleting a set of files in a directory. Some of the
deletions might fail. These will be recorded in $error, allowing you to take addi-
tional actions after the deletion operation has completed.

Sometimes you want to discard output or errors. In PowerShell, you do this by
redirecting to $null. For example, if you don’t care about the output from
myScript, then you’d write

myScript > $null

and to discard the errors, you’d write

myScript 2> $null

The last thing to mention for I/O redirection is that, under the covers, redirection is
done using the Out-File cmdlet. In fact,

myScript > file.txt

is just “syntactic sugar” for

myScript | out-file -path file.txt

In some cases, you’ll want to use Out-File directly because it gives you more control
over the way the output is written. The synopsis for Out-File is
REDIRECTION AND THE REDIRECTION OPERATORS 183

Out-File [-FilePath] <String> [[-Encoding] <String>]
[-Append] [-Force] [-NoClobber] [-Width <Int32>]
[-InputObject <PSObject>]
[-Verbose] [-Debug] [-ErrorAction <ActionPreference>]
[-ErrorVariable <String>] [-OutVariable <String>]
[-OutBuffer <Int32>] [-WhatIf] [-Confirm]]

The interesting parameters are -encoding, which lets you specify the encoding
(such as ASCII, Unicode, UTF8, and so on); -append, which appends to an existing
file instead of overwriting it; -noclobber, which prevents you from overwriting
(clobbering) an existing file; and -width, which tells the cmdlet how wide you want
the output formatted. The full details for this cmdlet are available by running the
command

get-help out-file

at the PowerShell command line.
Earlier in this section, we talked about assignment as being a kind of output redi-

rection. This analogy is even more significant than we alluded to there. We’ll go into
details in the next section, when we finally cover variables themselves.

5.8 WORKING WITH VARIABLES

In many of the examples so far, you’ve used variables. Now let’s look at the details of
PowerShell variables. First, PowerShell variables aren’t declared; they’re just created as
needed on first assignment. There also isn’t any such thing as an uninitialized vari-
able. If you reference a variable that doesn’t yet exist, the system will return the value
$null (although it won’t create a variable):

PS (1) > $NoSuchVariable
PS (2) > $NoSuchVariable -eq $null
True

This example looks at a variable that doesn’t exist and returns $null.

NOTE $null, like $true and $false, is a special constant variable
that’s defined by the system. You can’t change the value of these variables.

You can tell whether a variable exists by using the Test-Path cmdlet:

PS (3) > test-path variable:NoSuchVariable
False

This works because variables are part of the PowerShell unified namespaces. Just as
files and the Registry are available through virtual drives, so are PowerShell variables.
You can get a list of all of the variables that currently exist by using

dir variable:/

So how do you create a variable? Let’s find out.
184 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

5.8.1 Creating variables

There are a number of variables that are defined by the system: $true, $false, and
$null are the ones you’ve seen so far (we’ll look at the others as we come to them).
User variables are created on first assignment, as you can see here:

PS (3) > $var = 1
PS (4) > $var
1
PS (5) > $var = "Hi there"
PS (6) > $var
Hi there
PS (7) > $var = get-date
PS (8) > $var

Sunday, January 29, 2006 7:23:29 PM

In this example, first you assigned a number, then a string, then a DateTime object.
This illustrates that PowerShell variables can hold any type of object. If you do want
to add a type attribute to a variable, you use the cast notation on the left of the vari-
able. Let’s add a type attribute to the variable $val:

PS (1) > [int] $var = 2

Looking at the result, you see the number 2.

PS (2) > $var
2

That’s fine. What happens if you try to assign a string to the variable?

PS (3) > $var = "0123"
PS (4) > $var
123

First, there was no error. Second, by looking at the output of the variable, you can see
that the string “0123” was converted into the number 123. This is why we say that
the variable has a type attribute. Unlike strongly typed languages where a variable can
only be assigned an object of the correct type, PowerShell will allow you to assign any
object as long as it’s convertible to the target type using the rules described in chapter
3. If the type isn’t convertible, you’ll get a runtime type-conversion error (as opposed
to a “compile-time” error):

PS (5) > $var = "abc"
Cannot convert "abc" to "System.Int32". Error: "Input string was no
t in a correct format."
At line:1 char:5
+ $var <<<< = "abc"

This code tried to assign “abc” to a variable with the type attribute [int]. Because
“abc” can’t be can’t be converted to a number, you see a type-conversion error.
WORKING WITH VARIABLES 185

5.8.2 Variable name syntax

Now what about variable names? What characters are allowed in a variable name?
The answer is, any character you want, with some caveats. There are two notations
for variables. The simple notation starts with a dollar sign followed by a sequence of
characters, which can include letters, numbers, the underscore, and the colon. The
colon has a special meaning that we’ll get to in a minute. The second notation allows
you to use any character in a variable name. It looks like this:

${This is a variable name}

You can use any character you want in the braces. You can even use a close brace if
you escape it, as you see here:

PS (7) > ${this is a variable name with a `} in it}
PS (8) > ${this is a variable name with a `} in it} = 13
PS (9) > ${this is a variable name with a `} in it}
13

Earlier, we said that the colon character was special in a variable name. This is used to
delimit the namespace that the system uses to locate the variable. For example, to
access PowerShell global variables, you use the global namespace:

PS (1) > $global:var = 13
PS (2) > $global:var
13

This example set the variable var in the global context to the value 13. You can also
use the namespace notation to access variables at other scopes. This is called a scope
modifier. Scopes will be covered in chapter 7, so we won’t say anything more about
that here.

Along with the scope modifiers, the namespace notation lets you get at any of the
resources surfaced in PowerShell as drives. For example, to get at the environment
variables, you use the env namespace:

PS (1) > $env:SystemRoot
C:\WINDOWS

In this example, you retrieved the contents of the SystemRoot environment variable.
You can use these variables directly in paths. For example:

PS (3) > dir $env:systemroot\explorer.exe

 Directory: Microsoft.Management.Automation.Core\FileSystem::C:\
 WINDOWS

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/10/2004 12:00 PM 1032192 explorer.exe

This expression retrieved the file system information for explorer.exe.
186 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

NOTE For cmd.exe or command.com users, the equivalent syntax
would be %systemroot%\explorer.exe. There, the percent signs
delimit the variable. In PowerShell, this is done with braces.

Many of the namespace providers are also available through the variable notation (but
you usually have to wrap the path in braces). Let’s look back at an example you saw at
the beginning of chapter 4:

${c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

The initial construct should now start to make sense. The sequence ${c:old.txt} is
a variable that references the file system provider through the C: drive and retrieves
the contexts of the file named old.txt. With this simple notation, you read the con-
tents of a file. No open/read/close—you treat the file itself as an atomic value.

NOTE Using variable notation to access a file can be startling at first,
but it’s a logical consequence of the unified data model in PowerShell.
Because things like variables and functions are available as drives,
things such as drives are also available using the variable notation. In
effect, this is an application of the Model-View-Controller (MVC) pat-
tern. Each type of data store (file system, variables, Registry, and so
forth) is a “model.” The PowerShell provider infrastructure acts as the
controller, and there are (by default) two views: the “file system” navi-
gation view and the variable view. The user is free to choose and use
the view most suitable to the task at hand.

You can also write to a file using the namespace variable notation. Here’s that example
rewritten to use variable assignment instead of a redirection operator (remember, ear-
lier we said that assignment can be considered a form of redirection in PowerShell):

${c:new.txt} = ${c:old.txt} -replace 'is (red|blue)','was $1'

You can even do an in-place update of a file by using the same variable on both sides
of the assignment operator. To update the file old.txt instead of making a copy, use

${c:old.txt} = ${c:old.txt} -replace 'is (red|blue)','was $1'

All you did was change the name in the variable reference from new.txt to old.txt.
This won’t work if you use the redirection operator, because the output file is opened
before the input file is read. This would have the unfortunate effect of truncating the
previous contents of the output file. In the assignment case, the file is read atomically;
that is, all at once, processed, then written atomically. This allows for “in-place” edits
because the file is buffered entirely in memory instead of in a temporary file. To do
this with redirection, you’d have to save the output to a temporary file and then
rename the temporary file so it replaces the original. Now let’s leverage this feature
along with multiple assignments to swap two files, f1.txt and f2.txt. Earlier in this
WORKING WITH VARIABLES 187

chapter you saw how to swap two variables. You can use the same technique to swap
two files:

${c:f1.txt},${c:f2.txt} = ${c:f2.txt},${c:f1.txt}

NOTE All of these examples using variables to read and write files
cause the entire contents of files to be loaded into memory as a collec-
tion of strings. On modern computers it’s possible to handle moder-
ately large files this way, but doing it with large files is memory
intensive and inefficient, and might even fail under some conditions.
Keep this in mind when using these techniques.

When the file system provider reads the file, it returns the file as an array of strings.

NOTE When accessing a file using the variable namespace notation,
PowerShell assumes that it’s working with a text file. Because the nota-
tion doesn’t provide a mechanism for specifying the encoding, you
can’t use this technique on binary files. You’ll have to use the Get-
Content and Set-Content cmdlets instead.

This provides a simple way to get the length of a file:

${c:file.txt}.Length

The downside of this simple construct is that it requires reading the entire file into
memory and then counting the result. It works fine for small files (a few megabytes),
but it won’t work on files that are gigabytes in size.

5.8.3 Working with the variable cmdlets

So far you’ve been using the PowerShell language features to access variables, but you
can also work with variables using the variable cmdlets. These cmdlets let you do a
couple of things you can’t do directly from the language.

Indirectly setting a variable

Sometimes it’s useful to be able to get or set a variable when you won’t know the
name of that variable until runtime. For example, you might want to initialize a set of
variables from a CSV file. You can’t do this using the variable syntax in the language
because the name of the variable to set is resolved at parse time. Let’s work through
this example. First you need a CSV file:

PS (1) > cat variables.csv
"Name", "Value"
"srcHost", "machine1"
"srcPath", "c:\data\source\mailbox.pst"
"destHost", "machine2"
"destPath", "d:\backup"
188 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

As you can see, the CSV file is simply a text file with rows of values separated by com-
mas, hence CSV or comma-separated values. Now you’ll use the Import-CSV cmdlet
to import this file as structured objects:

PS (2) > import-csv variables.csv

Name Value
---- -----
srcHost machine1
srcPath c:\data\source\mailbox.pst
destHost machine2
destPath d:\backup

You can see the cmdlet has treated the first row in the table as the names of the prop-
erties to use on the objects and then added the name and value property to each
object. The choice of Name and Value was deliberate because these are the names of
the parameters on the Set-Variable cmdlet. This cmdlet takes input from the pipe-
line by property name so you can pipe the output of Import-CSV directly into Set-
Variable

PS (3) > import-csv variables.csv | set-variable

and it’s as simple as that. If you wanted to see the full details, you could specify the
-verbose parameter to the cmdlet and it would display each variable as it was set.
Now use the normal variable syntax to verify that you’ve set things up the way you
planned:

PS (4) > $srcHost

Name Value
---- -----
srcHost machine1

Okay, good. You can use the parameters on the cmdlet to directly set this variable

PS (5) > set-variable -name srcHost -value machine3
PS (6) > $srcHost
machine3

or use the (much) shorter alias sv to do it:

PS (7) > sv srcHost machine4
PS (8) > $srcHost
machine4

Now let’s see what else you can do with the cmdlets.

Getting and setting variable options

If there’s a cmdlet to set a variable, obviously there should also be a variable to get
variables—the Get-Variable cmdlet:

PS (9) > get-variable -value srcHost
machine4
WORKING WITH VARIABLES 189

Notice that this example specified the -Value parameter. What happens if you don’t
do that?

PS (10) > get-variable srcHost | gm

 TypeName: System.Management.Automation.PSVariable

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
IsValidValue Method bool IsValidValue(System.Object ...
ToString Method string ToString()
Attributes Property System.Collections.ObjectModel.C...
Description Property System.String Description {get;s...
Module Property System.Management.Automation.PSM...
ModuleName Property System.String ModuleName {get;}
Name Property System.String Name {get;}
Options Property System.Management.Automation.Sco...
Value Property System.Object Value {get;set;}
Visibility Property System.Management.Automation.Ses...

If a value for -Variable isn’t specified, Get-Variable returns the PSVariable
object that PowerShell uses to represent this object. You can see the Name and Value
properties on this object, but there are a lot of other properties as well. Let’s explore
the Options property. This property allows us to set options on the variable includ-
ing things like ReadOnly and Constant. The variables you’ve read from the CSV file
are still changeable:

PS (11) > $srcHost = "machine9"
PS (12) > $srcHost
machine9

But, if you’re using them to configure the environment, you may not want them to
be. To address this, you can set the ReadOnly option using Set-Variable and the
-Option parameter:

PS (13) > set-variable -option readonly srcHost machine1
PS (14) > $srcHost = "machine4"
Cannot overwrite variable srcHost because it is read-only o
r constant.
At line:1 char:9
+ $srcHost <<<< = "machine4"
 + CategoryInfo : WriteError: (srcHost:String)
 [], SessionStateUnauthorizedAccessException
 + FullyQualifiedErrorId : VariableNotWritable

Now when you try and change the value of this variable, you get an error. The vari-
able is unchanged:
190 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

PS (15) > get-variable -value srcHost

Name Value
---- -----
srcHost machine1

If you can’t change it, how about removing it? Try just the remove command:

PS (16) > remove-variable srcHost
Remove-Variable : Cannot remove variable srcHost because it
 is constant or read-only. If the variable is read-only, tr
y the operation again specifying the Force option.
At line:1 char:16
+ remove-variable <<<< srcHost
 + CategoryInfo : WriteError: (srcHost:String)
 [Remove-Variable], SessionStateUnauthorizedAccessExce
 ption
 + FullyQualifiedErrorId : VariableNotRemovable,Microso
 ft.PowerShell.Commands.RemoveVariableCommand

This failed with the expected error. But you can still force the removal of a read-only
variable by using the -Force parameter on Remove-Variable:

PS (17) > remove-variable -force srcHost

When you specify -Force, the variable is removed and there’s no error. If you don’t
want the value to be changed, you can use the Constant option:

PS (18) > set-variable -option constant srcHost machine1

When this option is specified, even using -Force will fail:

PS (19) > remove-variable -force srcHost
Remove-Variable : Cannot remove variable srcHost because it
 is constant or read-only. If the variable is read-only, tr
y the operation again specifying the Force option.
At line:1 char:16
+ remove-variable <<<< -force srcHost
 + CategoryInfo : WriteError: (srcHost:String)
 [Remove-Variable], SessionStateUnauthorizedAccessExce
 ption
 + FullyQualifiedErrorId : VariableNotRemovable,Microso
 ft.PowerShell.Commands.RemoveVariableCommand

And now for one last trick. You’ve looked at how to use the name of a variable to
access it indirectly. You can bypass the name-lookup process and use the variable ref-
erence directly. Let’s see how this works.

Using PSVariable objects as references

To use a PSVariable object as a reference, first you have to get one. Earlier you saw
how to do this with Get-Variable (or its alias gv):

PS (21) > $ref = gv destHost
WORKING WITH VARIABLES 191

Now that you have a reference, you can use the reference to get the variable’s name

PS (22) > $ref.Name
destHost

or its value:

PS (23) > $ref.Value
machine2

Having the reference also allows you to set the variable’s value:

PS (24) > $ref.Value = "machine12"

When you check the variable using the language syntax, you see the change.

PS (25) > $destHost
machine12

Variable names vs. variable values

Here’s a tip to keep in mind if you’re trying to do these tricks. You need to keep vari-
able name and variable value firmly separated in your thinking. If you don’t think
about what you’re doing closely enough, trying to use $name to get the value of the
variable seems reasonable:

PS (26) > gv $srcPath
Get-Variable : Cannot find a variable with name '@{Name=src
Path; Value=c:\data\source\mailbox.pst}'.
At line:1 char:3
+ gv <<<< $srcPath
 + CategoryInfo : ObjectNotFound: (@{Name=srcP
 ath;...ce\mailbox.pst}:String) [Get-Variable], ItemNot
 FoundException
 + FullyQualifiedErrorId : VariableNotFound,Microsoft.P
 owerShell.Commands.GetVariableCommand

But it gives you a rather confusing error. This is because PowerShell resolved the
token $srcPath and passed its value to the cmdlet, not the name. Even quoting it but
still having the $ sign in the string is wrong:

PS (27) > gv '$srcPath'
Get-Variable : Cannot find a variable with name '$srcPath'.
At line:1 char:3
+ gv <<<< '$srcPath'
 + CategoryInfo : ObjectNotFound: ($srcPath:St
 ring) [Get-Variable], ItemNotFoundException
 + FullyQualifiedErrorId : VariableNotFound,Microsoft.P
 owerShell.Commands.GetVariableCommand

This error seems bizarre because you know that there’s such a variable. The reason it
fails is because $ isn’t part of the variable’s name. It’s part of a token in the PowerShell
language indicating that whatever follows the $ is the name of a variable.

The correct way to do this is to use the variable name without the leading $.
192 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

PS (28) > gv srcPath

Name Value
---- -----
srcPath @{Name=srcPath; Value=c:\...

Finally, here’s why all of this works the way it does. Define a variable $n that has part
of the path name:

PS (29) > $n = 'src'

Now combine that variable with another fragment using string expansion, and it
works properly:

PS (30) > gv "${n}Path"

Name Value
---- -----
srcPath @{Name=srcPath; Value=c:\...

PS (31) >

This gives you a great deal of flexibility when dealing with variable names. It can be
complex but any situation where you need to do this is, by definition, complex. Hav-
ing this facility doesn’t complicate normal day-to-day activities but does make some
more sophisticated scenarios possible. Now let’s look at another set of potentially
complex scenarios that can be solved by using variables in a special way.

5.8.4 Splatting a variable

The last topic that we’re going to touch on in this chapter is something called variable
splatting, which was added to PowerShell in version 2. This is a term taken from the
Ruby scripting language and affects how argument variables are passed to commands.

Normally, when you have a variable containing an array or hashtable and you use
this variable as a command argument, its value is passed as a single argument. Splat-
ting turns each value in the collection into individual arguments. So, if you have an
array with three elements in it, those elements will be passed as three individual argu-
ments. If you have a hashtable, each name-value pair becomes a named parame-
ter–argument pair for the command.

To do this is, when referencing the variable that you want to pass to the com-
mand, you use @ instead of $ as the prefix to the variable. Here’s an example to show
how this works. First you need a command to work with—you’ll define a function
(see chapter 7) that takes three arguments:

PS {1) > function s ($x, $y, $z) { "x=$x, y=$y, z=$z" }

This function uses string expansion to display the value of each of its parameters.
Now create an array to pass into this command:

PS {2) > $list = 1,2,3
WORKING WITH VARIABLES 193

The variable $list contains three integers. Pass this using the normal variable
notation:

PS {3) > s $list
x=1 2 3, y=, z=

From the output, you can see that all three values in the argument were assigned to
the $x parameter. The other two parameters didn’t get assigned anything. Next, splat
the variable by calling the function with @list instead of $list:

PS {4) > s @list
x=1, y=2, z=3

This time the output shows that each parameter was assigned one member of the
array in the variable. What happens if there are more elements than there are vari-
ables? Let’s try it. First add some elements to your $list variable:

PS {5) > $list += 5,6,7
PS {6) > $list
1
2
3
5
6
7

Now the variable contains seven elements. Pass this to the function:

PS {7) > s @list
x=1, y=2, z=3

It appears that the last four arguments have vanished. In fact, what has happened is that
they’re assigned to the special variable $args. Let’s redefine the function to show this:

PS {8) > function s ($x, $y, $z) { "$x,$y,$z args=$args" }

Print out the three formal arguments $x, $, and $z along with the special $args vari-
able. When you run the new function

PS {9) > s @list
1,2,3 args=5 6 7

you see that the missing arguments have ended up in $args. The most important use
for splatting is for enabling one command to effectively call another. You’ll see how
this can be used to wrap existing commands and either extend or restrict their behav-
ior in later chapters. (Variable parameters and how they’re bound is covered in much
more detail in chapter 7.)

Now that you understand how an array of values can be splatted, let’s look at how
you work with named parameters. In the previous example, you could have used the
explicit names of the parameters to pass things in instead of relying on position. For
example, you can use the names to explicitly pass in values for -x and -y, in the
reverse order
194 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

PS {10) > s -y first -x second
second,first, args=

and you see that second is in the first (x) position and first is in the second posi-
tion. How can you use splatting to do this? Well, parameters and their values are
name-value pairs, and in PowerShell, the way to work with name-value pairs is with
hashtables. Let’s try this out. First create a hashtable with the values you want:

PS {11) > $h = @{x='second'; y='first'}

Now splat the hashtable the same way you splatted the variable containing an array

PS {12) > s @h
second,first, args=

and, as before, the x parameter gets the value second and the y parameter gets the
value first. The next question you should have is, what happens if you also want to
explicitly pass in -z? Try it:

PS {13) > s -z third @h 1 2 3
second,first,third args=1 2 3

It works exactly the way you want. If you specify the parameter both in the hashtable
and explicitly on the command line, you’ll get an error:

PS {14) > s -x boo @h 1 2 3
s : Cannot bind parameter because parameter 'x' is specifie
d more than once. To provide multiple values to parameters
that can accept multiple values, use the array syntax. For
example, "-parameter value1,value2,value3".
At line:1 char:2
+ s <<<< -x boo @h 1 2 3
 + CategoryInfo : InvalidArgument: (:) [s], Pa
 rameterBindingException
 + FullyQualifiedErrorId : ParameterAlreadyBound,s

Let’s look at a practical example using this feature. The Write-Host cmdlet allows
you to write strings to the screen specifying the foreground and background colors.
This is great, but if you need to write a lot of strings or parameterize the colors that
are used, repeatedly setting both parameters will get a bit tedious:

PS {16) > write-host -foreground black -background white Hi
Hi

Specifying the parameters takes up more space than the string you want to write!
Using splatting, instead of passing in both parameters all the time, you can set up a
hashtable once and pass that around instead:

PS {17) > $colors = @{foreground="black";background="white"}
PS {18) > write-host @colors "Hi there"
Hi there
WORKING WITH VARIABLES 195

This approach is more convenient and less error prone than having to explicitly pass
both color parameters, making it an effective way to “style” your output using a single
variable.

NOTE By now I’m sure you’re wondering why this technique is it
called splatting. Here’s the reasoning behind this term. Think of a rock
hitting a car windshield. A rock is a solid object that remains intact
after it bounces off your car. Next, think of a bug hitting the wind-
shield instead of a rock. Splat! The contents of the bug are distributed
over the windshield instead of remaining as a single object. This is
what splatting does to a variable argument. It distributes the members
of the argument collection as individual arguments instead of remain-
ing a single intact argument. (The other rational behind this term is
that, in Ruby, the operator is *, which is what the aforementioned
insect looks like post-impact. PowerShell can’t use * because it would
be confused with the wildcard character. Instead it uses @ because splat-
ting involves arrays and PowerShell uses @ for many array operations.) I
submit that this is the most visceral mnemonic in the programming
language field (at least that I’m aware of).

This is all we’re going to say about variables here. In chapter 7, we’ll return to vari-
ables and talk about how variables are defined in functions and how they’re scoped in
the PowerShell language. We’ll also look at splatting again when we cover how com-
mands can call other commands.

5.9 SUMMARY

In this chapter, we finished our coverage of PowerShell operators and expressions. We
looked at how to build complex data structures in PowerShell and how to use the
redirection operators to write output to files. We covered arrays, properties, and
methods. Finally, we explored the basics of PowerShell variable semantics and variable
namespaces. Here are the important points to remember:

• The type operators allow you to write scripts that have polymorphic behavior. By
using these operators to examine the types of objects, you can decide how to
process different types of objects. You can also use the operators to dynamically
convert from one type of object to another.

• The prefix and postfix operators ++ and -- are a convenient way of increment-
ing and decrementing variables.

• The subexpression operator $(...) allows you to use arbitrary PowerShell
script code anywhere that you can use a value expression. The array subexpres-
sion operator @(...) also guarantees that the result of an expression will
always be an array.
196 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

• PowerShell arrays support both jagged arrays—that is, arrays that contain or ref-
erence other arrays and multidimensional arrays. Array slicing is supported,
both for one-dimensional and multidimensional arrays when retrieving values.
It isn’t supported when assigning to an array index.

• Use the comma operator (,)to build arrays and complex nested data structures
such as jagged arrays.

• Use the dot operator (.) for accessing instance members and the double-colon
(::) operator for accessing static members. We looked at how to indirectly
invoke both properties and methods using these operators.

• The PowerShell redirection operators allow you to control where the output
and error objects are written. They also allow you to easily discard these objects
if so desired by redirecting to $null. The redirection operators are just “syntac-
tic sugar” for the Out-File cmdlet. Using the cmdlet directly allows you to
control things such as what file encoding will be used when writing to a file.

• The format operator -f can be used to perform complex formatting tasks when
the default formatting doesn’t produce the desired results. The formatting
sequences are the same as the sequences used by the System.String.Format()
method in the .NET Framework.

• PowerShell variable namespaces let you access a variety of Windows “data
stores,” including environment variables and the file system using the variable
notation.

• It’s possible to use the variable cmdlets to set options on variables and do indi-
rect variable accesses using either the variable name or a PSVariable object.

• PowerShell version 2 introduced a new variable notation called splatting that
allows you to take collections of values, either arrays or hashtables, and distrib-
ute the members of these collections as individual arguments to a command.
SUMMARY 197

C H A P T E R 6

Flow control in scripts

6.1 The conditional statement 200
6.2 Looping statements 203
6.3 Labels, break, and continue 212
6.4 The switch statement 215

6.5 Flow control using cmdlets 223
6.6 Statements as values 231
6.7 A word about performance 233
6.8 Summary 234
I may not have gone where I intended to go, but I think I have ended up where
I needed to be.

 —Douglas Adams, The Long Dark Tea-Time of the Soul

Previous chapters showed how you can solve surprisingly complex problems in
PowerShell using only commands and operators. You can select, sort, edit,you and
present all manner of data by composing these elements into pipelines and expres-
sions. In fact, commands and operators were the only elements available in the earli-
est prototypes of PowerShell. Sooner or later, though, if you want to write significant
programs or scripts, you must add custom looping or branch logic to your solution.
This is what we’re going to cover in this chapter: PowerShell’s take on the traditional
programming constructs that all languages possess.

The PowerShell flow-control statements and cmdlets are listed in figure 6.1,
arranged in groups.

We’ll go through each group in this chapter. As always, behavioral differences
exist with the PowerShell flow-control statements that new users should be aware of.
198

The most obvious difference is that PowerShell typically allows the use of pipelines
in places where other programming languages only allow simple expressions. An
interesting implication of this pipeline usage is that the PowerShell switch state-
ment is both a looping construct and a conditional statement—which is why it gets
its own group.

This is also the first time we’ve dealt with keywords in PowerShell. Keywords are
part of the core PowerShell language. This means that, unlike cmdlets, keywords
can’t be redefined or aliased. Keywords are also case insensitive so you can write
foreach, ForEach, or FOREACH and they’ll all be accepted by the interpreter. (By
convention, though, keywords in PowerShell scripts are usually written in lower-
case.) Keywords are also context sensitive, which means that they’re only treated as
keywords in a statement context—usually as the first word in a statement. This is
important because it lets you have both a foreach loop statement and a foreach
filter cmdlet, as you’ll see later in this chapter. Let’s begin our discussion with the
conditional statement.

break break <label>
continue continue <label>

if (<expr>) { <statements> }
if (<expr>) { <statements> } else { <statements> }
if (<expr>) { <statements> } elseif (<expr>) { <statements> } else { <statements> }

Conditional statements

while (<expr>) { <statements> }
do { <statements> } while (<expr>)
do { <statements> } until (<expr>)
for (<expr> ; <expr> ; <expr>) { <statements> }
foreach ($var in <pipeline>) { <statements> }

Loop statements

Break and continue statements

switch (<expr>) { <pattern1> { <statements> } <pattern2> { <statements> } }
switch (<expr>) { <pattern1> { <statements> } default { <statements> } }

The switch statement

Flow-control cmdlets

… | ForEach-Object <scriptBlock>
… | ForEach-Object -Begin <scriptBlock> -Process <scriptBlock> -End <scriptBlock>
… | Where-Object <scriptBlock>

Figure 6.1 The PowerShell flow-control statements
199

6.1 THE CONDITIONAL STATEMENT
PowerShell has one main conditional statement: the if statement shown in figure 6.2.

This statement lets a script decide whether an action should be performed by eval-
uating a conditional expression, then selecting the path to follow based on the results
of that evaluation. The PowerShell if statement is similar to the if statement found
in most programming languages. The one thing that’s a bit different syntactically is
the use of elseif as a single keyword for subsequent clauses. Figure 6.3 shows the
structure and syntax of this statement in detail.

Let’s work through some examples that illustrate how the if statement works.
You’ll use all three of the elements—if, elseif, and else—in this example:

if ($x -gt 100)
{
 "It's greater than one hundred"
}
elseif ($x -gt 50)
{
 "It's greater than 50"
} else
{
 "It's not very big."
}

In this example, if the variable $x holds a value greater than 100, the string “It’s
greater than one hundred” will be emitted. If $x is greater than 50 but less than 100,
it will emit “It’s greater than 50”; otherwise, you’ll get “It’s not very big.” Of course,

if (<expr>) { <statements> }
if (<expr>) { <statements> } else { <statements> }
if (<expr>) { <statements> } elseif (<expr>) { <statements> } else { <statements> }

Conditional statements

Figure 6.2 The syntax of the PowerShell conditional statements

if (<pipeline>) {<statementList>} elseif (<pipeline>) {<statementList>} else {<statementList>}

if keyword

 Executed when if
condition is true

Pipeline to test, enclosed in

parentheses

else keyword

 Executed when elseif
condition is true

Braces marking beginning and

end of blocks

elseif keyword
elseif pipeline to test

Figure 6.3 PowerShell’s version of the if statement, which is the basic conditional state-

ment found in all scripting and programming languages
200 CHAPTER 6 FLOW CONTROL IN SCRIPTS

you can have zero or more elseif clauses to test different things. The elseif and
else parts are optional, as is the case in other languages.

As you might have noticed, the PowerShell if statement is modeled on the if
statement found in C-derived languages, including C#, but a couple of differences
exist. First, elseif is a single keyword with no spaces allowed between the words.
Second, the braces are mandatory around the statement lists, even when you have
only a single statement in the list (or no statements for that matter, in which case you
would have to type {}). If you try to write something like

if ($x -gt 100) "It's greater than one hundred"

you’ll get a syntax error:

PS (1) > if ($x -gt 100) "It's greater than one hundred"
Missing statement block after if (condition).
At line:1 char:17
+ if ($x -gt 100) " <<<< It's greater than one hundred"
PS (2) >

In general, the syntax of the if statement (and all the PowerShell flow-control state-
ments) is freeform with respect to whitespace. In other words, you can lay out your
code pretty much any way you want. You can write an if statement that looks like this

if($true){"true"}else{"false"}

with no whitespace whatsoever. Alternatively, you could also write it like this

if
(
$true
)
{
"true"
}
else

Grammar lessons

The PowerShell grammar technically could support the construction shown in the
preceding example. In fact, we did enable this feature at one point, but when people
tried it out, it resulted in a lot of errors. The problem is that a newline or a semicolon is
required to terminate a command. This leads to the situation where you write
something like

if ($x -gt 3) write x is $x while ($x--) $x

and discover that, because you’ve missed the semicolon before the while statement,
it writes out the while statement instead of executing it. In the end, the cost of typing
a couple of additional characters was more than offset by a decreased error rate. For
this reason, the language design team decided to make the braces mandatory.
THE CONDITIONAL STATEMENT 201

{
"false"
}

where each element is on a separate line.
There’s one constraint on how you can format an if statement: when PowerShell

is being used interactively, the else or elseif keyword has to be on the same line as
the previous closing brace; otherwise, the interpreter will consider the statement com-
plete and execute it immediately.

It’s important to note that the PowerShell if statement allows a pipeline in the con-
dition clause, not just a simple expression. This means it’s possible to do the following:

if (dir telly*.txt | select-string penguin)
{
 "There's a penguin on the telly."
}

In this example, the pipeline in the condition part of the if statement will scan all
the text files whose names start with “telly” to see whether they contain the word
“penguin.” If at least one of the files contains this word, the statement block will be
executed, printing out

 There's a penguin on the telly.

Here’s another example:

if ((dir *.txt | select-string -List spam).Length -eq 3)
{
 "Spam! Spam! Spam!"
}

In this case, you search all the text files in the current directory looking for the word
“spam.” If exactly three files contain this word, then you print out

Spam! Spam! Spam!

NOTE Yes, these are, in fact, Monty Python references. This is where
the Python language got its name. If you’re familiar with Python or
Perl, you’ll occasionally recognize cultural references from those lan-
guages in PowerShell examples here and elsewhere. Many of the Pow-
erShell development team members had their first scripting experiences
with those languages.

Because you can use pipelines and subexpressions in the conditional part of an if
statement, you can write quite complex conditional expressions in PowerShell. With
subexpressions, you can even use an if statement inside the condition part of another
if statement. Here’s what this looks like:

PS (2) > $x = 10
PS (3) > if ($(if ($x -lt 5) { $false } else { $x }) -gt
202 CHAPTER 6 FLOW CONTROL IN SCRIPTS

>>> 20) { $false } else {$true}
True
PS (4) > $x = 25
PS (5) > if ($(if ($x -lt 5) { $false } else { $x }) -gt
>>> 20) { $false } else {$true}
False
PS (6) > $x = 4
PS (7) > if ($(if ($x -lt 5) { $false } else { $x }) -gt
>>> 20) { $false } else {$true}
True
PS (8) >

If looking at this makes your head hurt, welcome to the club—it made mine hurt to
write it. Let’s dissect this statement and see what it’s doing. Let’s take the inner if
statement first:

if ($x -lt 5) { $false } else { $x }

You can see that this statement is straightforward. If $x is less than the number 5, it
returns false; otherwise, it returns the value of $x. Based on this, let’s split the code
into two separate statements:

$temp = $(if ($x -lt 5) { $false } else { $x })
if ($temp -gt 20) { $false } else {$true}

What the outer if statement is doing is also pretty obvious: if the result of the first
(formally inner) statement is greater than 20, return $false; otherwise return $true.

Now that you can do branching, let’s move on to the looping statements.

6.2 LOOPING STATEMENTS

Looping is the ability to repeat a set of actions some specific number of times, either
based on a count or a condition expression. The PowerShell loop statements cover
both of these cases and are shown in figure 6.4.

6.2.1 The while loop

In this section, we’ll cover the basic looping statement in PowerShell: the while state-
ment. The while statement (also known as a while loop) is the most basic Power-
Shell language construct for creating a loop. It executes the commands in the

while (<expr>) { <statements> }
do { <statements> } while (<expr>)
do { <statements> } until (<expr>)
for (<expr> ; <expr> ; <expr>) { <statements> }
foreach ($var in <pipeline>) { <statements> }

Loop statements

Figure 6.4 The PowerShell loop statements
LOOPING STATEMENTS 203

statement list as long as a conditional test evaluates to true. Figure 6.5 shows the
while statement syntax.

When you execute a while statement, PowerShell evaluates the <pipeline> sec-
tion of the statement before entering the <statementList> section. The output
from the pipeline is then converted to either true or false, following the rules for the
Boolean interpretation of values described in chapter 3. As long as this result converts
to true, PowerShell reruns the <statementList> section, executing each statement
in the list.

For example, the following while statement displays the numbers 1 through 3:

$val = 0
while($val -ne 3)
{
 $val++
 write-host "The number is $val"
}

In this example, the condition ($val isn’t equal to 3) is true while $val is 0, 1, and 2.
Each time through the loop, $val is incremented by 1 using the unary ++ increment
operator ($val++). The last time through the loop, $val is 3. When $val equals 3,
the condition statement evaluates to false and the loop exits.

To more conveniently enter this command at the PowerShell command prompt,
you can simply enter it all on one line:

$val=0; while ($val -ne 3){$val++; write-host "The number is $val"}

Notice that the semicolon separates the first command that adds 1 to $val from the
second command, which writes the value of $val to the console.

You can accomplish all the basic iterative patterns just using the while loop, but
PowerShell provides several other looping statements for common cases. Let’s look at
those next.

6.2.2 The do-while loop

The other while loop variant in PowerShell is the do-while loop. This is a bottom-
tested variant of the while loop. In other words, it always executes the statement list

while (<pipelineToTest>) { <statementList> }

while keyword

Pipeline to test, enclosed

in parentheses

 Statement list, executed while

pipeline to test evaluates to true

Braces marking beginning and

end of statement block

Figure 6.5 The PowerShell while loop statement syntax
204 CHAPTER 6 FLOW CONTROL IN SCRIPTS

at least once before checking the condition. The syntax of the do-while loop is
shown in figure 6.6.

The do-while loop is effectively equivalent to

<statementList>
while (<pipeLine>)
{
 <statementList>
}

where the two statement lists are identical. The final variation of the while loop is
the do/until statement. It’s identical to the do/while loop except that the sense of
the test is inverted and the statement will loop until the condition is true instead of
while it is true, as shown in this example:

PS (1) > $i=0
PS (2) > do { $i } until ($i++ -gt 3)
0
1
2
3
4

In this case, the statement loops until $i is greater than 3.
Having covered the two variations of the while loop, we’ll look at the for and

foreach loops next.

6.2.3 The for loop

The for loop is the basic counting loop in PowerShell. It’s typically used to step
through a collection of objects. It’s not used as often in PowerShell as in other lan-
guages because there are usually better ways for processing a collection, as you’ll see
with the foreach statement in the next section. But the for loop is useful when you
need to know explicitly which element in the collection you’re working with. Figure
6.7 shows the for loop syntax.

Notice that the three pipelines in the parentheses are just general pipelines. Con-
ventionally, the initialization pipeline initializes the loop counter variable, the test

do { <statementList> } while (<pipelineToTest>)

do keyword

Pipeline to test, enclosed

in parentheses

 Statement list, executed while

pipeline to test evaluates to true

Braces marking beginning and

end of statement block

while keyword

Figure 6.6 The PowerShell do-while loop statement syntax
LOOPING STATEMENTS 205

pipeline tests this variable against some condition, and the increment pipeline incre-
ments the loop counter. The canonical example is

PS (1) > for ($i=0; $i -lt 5; $i++) { $i }
0
1
2
3
4
PS (2) >

But because these are arbitrary pipelines, they can do anything. (Note that if initial-
ization and increment pipelines produce output, it’s simply discarded by the inter-
preter.) Here’s an example where the condition test is used to generate a side effect
that’s then used in the statement list body:

PS (2) > for ($i=0; $($y = $i*2; $i -lt 5); $i++) { $y }
0
2
4
6
8
PS (3) >

In this example, the pipeline to be tested is a subexpression that first sets $y to be
twice the current value of $i and then compares $i to 5. In the loop body, you use
the value in $y to emit the current loop counter times 2. A more practical example
would be initializing two values in the initialization pipeline:

PS (3) > for ($($result=@(); $i=0); $i -lt 5; $i++) {$result += $i }
PS (4) > "$result"
0 1 2 3 4

Here you use a subexpression in the initialization pipeline to set $result to the
empty array and the counter variable $i to 0. Then the loop counts up to 5, adding
each value to the result array.

NOTE It’s a little funny to talk about the initialization and increment
pipelines. You usually think of pipelines as producing some output. In
the for statement, the output from these pipelines is discarded and
the side effects of their execution are the interesting parts.

for (<pipeline> ; <pipeline> ; <pipeline>) { <statementList> }

for keyword

Initialization pipeline

 Statement list, executed while

pipeline to test evaluates to true

Braces marking beginning and

end of statement block

Pipeline to test

Increment pipeline

Figure 6.7 The PowerShell for loop statement syntax
206 CHAPTER 6 FLOW CONTROL IN SCRIPTS

Now let’s look at one more example using the for loop. Here you’ll use it to sum up
the number of handles used by the svchost processes. First you’ll get a list of these
processes:

PS (1) > $svchosts = get-process svchost

You’ll loop through this list and add the handle count for the process to $total

PS (2) > for ($($total=0;$i=0); $i -lt $svchosts.count; $i++)
>> {$total+=$svchosts[$i].handles}
>>

and then print out the total:

PS (3) > $total
3457

So using the for loop is straightforward, but it’s somewhat annoying to have to manage
the loop counter. Wouldn’t it be nice if you could just let the loop counter count take
care of itself? That’s exactly what the foreach loop does for you, so let’s move on.

6.2.4 The foreach loop

Collections are important in any shell (or programming) environment. The whole
point of using a scripting language for automation is so that you can operate on more
than one object at a time. As you’ve seen in chapters 3 and 4, PowerShell provides
many ways of operating on collections. Perhaps the most straightforward of these
mechanisms is the foreach loop.

NOTE Astute readers will remember that we mentioned a foreach
cmdlet (which is an alias for the ForEach-Object cmdlet) as well as
the foreach statement at the beginning of the chapter. To reiterate,
when the word “foreach” is used at the beginning of a statement, it’s
recognized as the foreach keyword. When it appears in the middle of
a pipeline, it’s treated as the name of a command.

This statement is syntactically identical to the C# foreach loop with the exception
that you don’t have to declare the type of the loop variable (in fact, you can’t do this).
Figure 6.8 shows you the syntax for the foreach statement.

foreach (<variable> in <pipeline>) { <statementList> }

foreach keyword

Loop variable

Statement list, executed once for each element

produced by pipeline to loop over

Braces marking beginning and

end of statement block

in keyword

Pipeline to loop over

Figure 6.8 The PowerShell foreach loop statement syntax
LOOPING STATEMENTS 207

Here’s an example. This example loops over all the text files in the current directory,
calculating the total size of all the files:

$l = 0; foreach ($f in dir *.txt) { $l += $f.length }

First you set the variable that will hold the total length to 0. Then, in the foreach
loop, you use the dir command to get a list of the text files in the current directory
(that is, files with the .txt extension). The foreach statement assigns elements from
this list one at a time to the loop variable $f and then executes the statement list with
this variable set. At the end of the statement, $f will retain the last value that was
assigned to it, which is the last value in the list. Compare this example to the for
loop example at the end of the previous section. Because you don’t have to manually
deal with the loop counter and explicit indexing, this example is significantly simpler.

NOTE In C#, the foreach loop variable is local to the body of the
loop and is undefined outside of the loop. This isn’t the case in Power-
Shell; the loop variable is simply another variable in the current scope.
After the loop has finished executing, the variable is still visible and
accessible outside the loop and will be set to the last element in the list.
If you do want to have a locally scoped variable, you can do this with
scriptblocks, which are discussed in detail in chapter 8.

Now let’s use a variation of a previous example. Say you want to find out the number
of text files in the current directory and the total length of those files. First you’ll ini-
tialize two variables: $c to hold the count of the files and $l to hold the total length:

PS (1) > $c=0
PS (2) > $l=0

Next run the foreach statement:

PS (3) > foreach ($f in dir *.txt) {$c += 1; $l += $f.length }

Finally display the results accumulated in the variables:

PS (4) > $c
5
PS (5) > $l
105
PS (6) >

Let’s look at the actual foreach statement in detail now. The <pipeline> part in
this example is

dir *.txt

This produces a collection of System.IO.FileInfo objects representing the files in
the current directory. The foreach statement loops over this collection, binding each
object to the variable $f and then executing the loop body.
208 CHAPTER 6 FLOW CONTROL IN SCRIPTS

Evaluation order in the foreach loop

It’s important to note that this statement doesn’t stream the results of the pipeline.
The pipeline to loop over is run to completion and only then does the loop body
begin executing. Let’s take a second to compare this behavior with the way the
ForEach-Object cmdlet works. Using the ForEach-Object cmdlet, this statement
would look like

dir *.txt | foreach-object { $c += 1; $l += $_.length }

In the case of the ForEach-Object, the statement body is executed as soon as each
object is produced. In the foreach statement, all the objects are collected before the
loop body begins to execute. This has two implications.

First, because in the foreach statement case all the objects are gathered at once,
you need to have enough memory to hold all these objects. In the ForEach-Object
case, only one object is read at a time, so less storage is required. From this, you’d
think that ForEach-Object should always be preferred. In the bulk-read case,
though, there are some optimizations that the foreach statement does that allow it
to perform significantly faster than the ForEach-Object cmdlet. The result is a clas-
sic speed versus space trade-off. In practice, you rarely need to consider these issues,
so use whichever seems most appropriate to the solution at hand.

NOTE The ForEach-Object cmdlet is covered later on in this chap-
ter. For Ruby language fans, ForEach-Object is effectively equivalent
to the .map() operator.

The second difference is that, in the ForEach-Object case, the execution of the
pipeline element generating the object is interleaved with the execution of the
ForEach-Object cmdlet. In other words, the command generates one object at a
time and then passes it to foreach for processing before generating the next element.
This means that the statement list can affect how subsequent pipeline input objects
are generated.

NOTE Unlike traditional shells where each command is run in a sepa-
rate process and can therefore run at the same time, in PowerShell
they’re alternating—the command on the left side runs and produces
an object, and then the command on the right side runs.

Using the $foreach loop enumerator in the foreach statement

Executing the foreach statement also defines a special variable for the duration of
the loop. This is the $foreach variable, and it’s bound to the loop enumerator. (An
enumerator is a .NET object that captures the current position in a sequence of
objects. The foreach statement keeps track of where it is in the collection through
LOOPING STATEMENTS 209

the loop enumerator.) By manipulating the loop enumerator, you can skip forward in
the loop. Here’s an example:

PS (1) > foreach ($i in 1..10)
>> { [void] $foreach.MoveNext(); $i + $foreach.current }
>>
3
7
11
15
19
PS (2) >

In this example, the foreach loop iterates over the collection of numbers from 1 to
10. In the body of the loop, the enumerator is used to advance the loop to the next
element. It does this by calling the $foreach.MoveNext() method and then retriev-
ing the next value using $foreach.current. This lets you sum up each pair of num-
bers—(1,2), (3,4), and so on as the loop iterates.

NOTE The foreach statement can be used to iterate over anything
PowerShell considers enumerable. This typically includes anything
that implements the .NET IEnumerable interface, but PowerShell
adapts that slightly. In particular, there are some classes that imple-
ment IEnumerable that PowerShell doesn’t consider enumerable.
This includes strings and dictionaries or hashtables. Because Power-
Shell unravels collections freely, you don’t want a string to suddenly be
turned into a stream of characters or a hashtable to be shredded into a
sequence of key-value pairs. Hashtables in particular are commonly
used as lightweight (that is, typeless) objects in the PowerShell environ-
ment, so you need to preserve their scalar nature.

The value stored in $foreach is an instance of an object that implements the [Sys-
tem.Collections.IEnumerator] interface. Here’s a quick example that shows you
how to look at the members that are available on this object:

PS (1) > [System.Collections.IEnumerator].Getmembers()|foreach{"$_"}
Boolean MoveNext()
System.Object get_Current()
Void Reset()
System.Object Current
PS (2) >

The output of this statement shows the Current and MoveNext() members you’ve
used. There’s also a Reset() member that will reset the enumerator back to the start
of the collection.

One final thing you need to know about the foreach statement is how it treats
scalar objects. Because of the way pipelines work, you don’t know ahead of time if the
pipeline will return a collection or a single scalar object. In particular, if the pipeline
210 CHAPTER 6 FLOW CONTROL IN SCRIPTS

returns a single object, you can’t tell if it’s returning a scalar or a collection consisting
of one object. You can use the @(...) construction described in chapter 5 to force
an array interpretation, but this ambiguity is common enough that the foreach
statement takes care of this by itself. A scalar object in the foreach statement is auto-
matically treated as a one-element collection:

PS (2) > foreach ($i in "hi") {$i }
hi

In this example, the value to iterate over is the scalar string “hi”. The loop executes
exactly once, printing hi. This works great most of the time, but there’s one “corner
case” that can cause some problems, as you’ll see in the next section.

The foreach loop and $null

Now here’s something that really surprises (and sometimes irritates) people. What
happens if the value to iterate over is $null? Let’s find out:

PS (3) > foreach ($i in $null) { "executing" }
Executing

So the loop executes. This illustrates that PowerShell treats $null as a scalar value.
Now compare this with the empty array:

PS (4) > foreach ($i in @()) { "executing" }
PS (5) >

This time it doesn’t execute. The empty array is unambiguously a collection with no
elements, which is quite different from a collection having one member whose value
is $null. In other words, @() and @($null) aren’t the same thing. For programmers
who are used to $null being nothing, this is a jarring notion. So why does Power-
Shell work this way? Let’s look at some more examples. First we’ll consider an exam-
ple where you pass in an array of three nulls:

PS {6) > foreach ($i in $null, $null, $null) {"hi"}
hi
hi
hi

The statement prints hi three times because there were three elements in the array.
Now use an array of two elements

PS {7) > foreach ($i in $null, $null) {"hi"}
hi
hi

and it prints hi twice. Logically, if there’s only one $null, it should loop exactly once

PS {8) > foreach ($i in $null) {"hi"}
hi

which is exactly what it does. PowerShell is deeply consistent, even in this case. This is
not, though, the expected or even desired behavior in a foreach loop in many cases,
LOOPING STATEMENTS 211

so here’s how to work around it. You can use the Write-Output cmdlet (aliased to
write) to preprocess the collection you want to iterate over. If the argument to
Write-Output is $null, it doesn’t write anything to the output pipe:

PS {9) > foreach ($i in write $null) {"hi"}
PS {10) >

And you see that the loop didn’t execute. So let’s run through the previous example
with the arrays of nulls. First, with three nulls

PS {10) > foreach ($i in write $null,$null,$null) {"hi"}
hi
hi
hi

and you get three iterations. Now with two

PS {11) > foreach ($i in write $null,$null) {"hi"}
hi
hi

and you get two iterations. Finally, with one $null

PS {12) > foreach ($i in write $null) {"hi"}
PS {13) >

and this time the loop doesn’t execute. Although this is inconsistent behavior, it
matches user expectations and is a good trick to have in your toolkit.

NOTE In the first edition of this book, I called this a corner case and
suggested that most readers didn’t need to know about this. I was
wrong. It comes up on a surprisingly regular basis. In fact, the work-
around using Write-Output was suggested by a user, not by the
PowerShell team. Let’s hear it for the community!

On that note, let’s move on to a slightly different topic and talk about break, con-
tinue, and using labeled loops to exit out of nested loop statements.

6.3 LABELS, BREAK, AND CONTINUE

In this section, we’ll discuss how to do nonstructured exits from the various looping
statements using the break and continue statements shown in figure 6.9. We’ll also
cover labeled loops and how they work with break and continue. But first, some
history.

In the dawn of computer languages, there was only one flow-control statement:
goto. Although it was simple, it also resulted in programs that were hard to

break break <label>
continue continue <label>

The break and continue statements
Figure 6.9 The PowerShell break
and continue statements, which

may optionally take a label indicat-

ing which loop statement to break to
212 CHAPTER 6 FLOW CONTROL IN SCRIPTS

understand and maintain. Then along came structured programming. Structured
programming introduced the idea of loops with single entry and exit points. This
made programs much easier to understand and therefore maintain. Constructs such as
while loops and if/then/else statements made it simpler to write programs that
are easy to follow.

NOTE For the academically inclined reader, Wikipedia.org has a nice
discussion on the topic of structured programming.

So structured programming is great—that is, until you have to exit from a set of deeply
nested while loops. That’s when pure structured programming leads to pathologically
convoluted logic because you have to litter your program with Boolean variables and
conditionals trying to achieve the flow of control you need. This is when being a little
“impure” and allowing the use of unstructured flow-control elements (including the
infamous goto statement) is useful. Now, PowerShell doesn’t actually have a goto
statement. Instead, it has break and continue statements and labeled loops. Let’s look
at some simple examples. Here’s a while loop that stops counting at 5:

PS (1) > $i=0; while ($true) { if ($i++ -ge 5) { break } $i }
1
2
3
4
5
PS (2) >

Notice in this example that the while loop condition is simply $true. Obviously,
this loop would run forever were it not for the break statement. As soon as $i hits 5,
the break statement is executed and the loop terminates. Now let’s look at the con-
tinue statement. In this example, you have a foreach loop that loops over the num-
bers from 1 to 10:

PS (1) > foreach ($i in 1..10)
>> {
>> if ($i % 2)
>> {
>> continue
>> }
>> $i
>> }
>>
2
4
6
8
10
PS (2) >

If the number isn’t evenly divisible by 2, then the continue statement is executed.
Where the break statement immediately terminates the loop, the continue state-
ment causes the flow of execution to jump back to the beginning of the loop and
LABELS, BREAK, AND CONTINUE 213

move on to the next iteration. The end result is that only even numbers are emitted.
The continue statement skips the line that would have printed the odd numbers.

So the basic break and continue statements can handle flow control in a single
loop. But what about nested loops, which was the real problem you wanted to address?
This is where labels come in. Before the initial keyword on any of PowerShell’s loop
statements, you can add a label naming that statement. Then you can use the break
and continue keywords to jump to that statement. Here’s a simple example:

:outer while (1)
{
 while(1)
 {
 break outer;
 }
}

In this example, without the break statement, the loop would repeat forever. Instead,
the break will take you out of both the inner and outer loops.

NOTE In PowerShell, labeled break and continue statements have
one rather strange but occasionally useful characteristic: they’ll con-
tinue to search up the calling stack until a matching label is found. This
search will even cross script and function call boundaries. This means
that a break inside a function inside a script can transfer control to an
enclosing loop in the calling script. This allows for wide-ranging trans-
fer of control. This will make more sense when you get to chapter 7,
where functions are introduced.

One last thing to know about the break and continue statements—the name of the
label to jump to is actually an expression, not a constant value. You could, for exam-
ple, use a variable to name the target of the statement. Let’s try this out. First set up a
variable to hold the target name:

PS (1) > $target = "foo"

Now use it in a loop. In this loop, if the least significant bit in the value stored in $i
is 1 (yet another way to test for odd numbers), you skip to the next iteration of the
loop named by $target

PS (2) > :foo foreach ($i in 1..10) {
>> if ($i -band 1) { continue $target } $i
>> }
>>
2
4
6
8
10
PS (3) >

which produces a list of the even numbers in the range 1..10.
214 CHAPTER 6 FLOW CONTROL IN SCRIPTS

At this point, we’ve covered all of the basic PowerShell flow-control statements, as
well as using labels and break/continue to do nonlocal flow-control transfers. Now
let’s move on to the switch statement, which in PowerShell combines both looping
and branching capabilities.

6.4 THE SWITCH STATEMENT

The switch statement, shown in figure 6.10, is the most powerful statement in the
PowerShell language. This statement combines pattern matching, branching, and
iteration all into a single control structure. This is why it gets its own section instead
of being covered under either loops or conditionals.

At the most basic level, the switch statement in PowerShell is similar to the
switch statement in many other languages—it’s a way of selecting an action based
on a particular value. But the PowerShell switch statement has a number of addi-
tional capabilities. It can be used as a looping construct where it processes a collection
of objects instead of just a single object. It supports the advanced pattern matching
features that you’ve seen with the -match and -like operators. (How the pattern is
matched depends on the flags specified to the switch statement.) Finally, it can be
used to efficiently process an entire file in a single statement.

6.4.1 Basic use of the switch statement

Let’s begin by exploring the basic functions of the switch statement. See figure 6.11
for a look at its syntax in detail.

Figure 6.11 The PowerShell switch statement syntax. The switch options control

how matching is done. These options are -regex, -wildcard, -match, and -case.

The pipeline produces values to switch on; alternatively, you can specify the sequence

-file <expr> instead of (<pipeline>). All matching pattern/action clauses

are executed; the default clause is executed only if there are no other matches.

switch (<expr>) { <pattern1> { <statements> } <pattern2> { <statements> } }
switch (<expr>) { <pattern1> { <statements> } default { <statements> } }

The switch statement

Figure 6.10 The PowerShell switch statement syntax

switch -options (<pipeline>)
{

<pattern> { <statementList> }
<pattern> { <statementList> }
default { <statementList> }

}

switch keyword
Switch options

Default keyword

Pipeline producing values

to switch on

Pattern/action clauses
THE SWITCH STATEMENT 215

This is a pretty complex construct, so let’s start by looking at the simplest form of the
statement. Here’s the basic example:

PS (1) > switch (1) { 1 { "One" } 2 { "two" } }
One

The value to switch on is in the parentheses after the switch keyword. In this exam-
ple, it’s the number 1. That value is matched against the pattern in each clause and all
matching actions are taken. You’ll see how to change this in a second.

In this example, the switch value matches 1 so that clause emits the string “one”.
Of course, if you change the switch value to 2, you get

PS (2) > switch (2) { 1 { "One" } 2 { "two" } }
two

Now try a somewhat different example. In this case, you have two clauses that match
the switch value:

PS (4) > switch (2) { 1 { "One" } 2 { "two" } 2 {"another 2"} }
two
another 2

You can see that both of these actions are executed. As we stated earlier, the switch
statement executes all clauses that match the switch value. If you want to stop at the
first match, you use the break statement:

PS (5) > switch (2) {1 {"One"} 2 {"two"; break} 2 {"another 2"}}
two

This causes the matching process to stop after the first matching statement was exe-
cuted. But what happens if no statements match? Well, the statement quietly returns
nothing:

PS (6) > switch (3) { 1 { "One" } 2 { "two"; break } 2 {"another 2"} }
PS (7) >

To specify a default action, you can use the default clause:

PS (7) > switch (3) { 1 { "One" } 2 { "two" } default {"default"} }
default
PS (8) > switch (2) { 1 { "One" } 2 { "two" } default {"default"} }
Two

In this example, when the switch value is 3, no clause matches and the default clause
is run. But when there’s a match, the default isn’t run, as it’s not considered a match.
This covers the basic mode of operation. Now let’s move on to more advanced features.

6.4.2 Using wildcard patterns with the switch statement

By default, the matching clauses make an equivalence comparison against the object
in the clause. If the matching object is a string, the check is done in a case-insensitive
way, as you see in the next example:
216 CHAPTER 6 FLOW CONTROL IN SCRIPTS

PS (1) > switch ('abc') {'abc' {"one"} 'ABC' {"two"}}
one
two

The switch value “abc” in this example was matched by both “abc” and “ABC”. You
can change this behavior by specifying the -casesensitive option:

PS (2) > switch -case ('abc') {'abc' {"one"} 'ABC' {"two"}}
one

Now the match occurs only when the case of the elements match.

NOTE In this example, we only used the prefix -case instead of the
full option string. In fact, only the first letter of the option is checked.

Next, let’s discuss the next switch option, the -wildcard option. When -wildcard
is specified, the switch value is converted into a string and the tests are conducted
using the wildcard pattern. (Wildcard patterns were discussed in chapter 4 with the
-like operator.) This is shown in the next example:

PS (4) > switch -wildcard ('abc') {a* {"astar"} *c {"starc"}}
astar
starc

In this example, the pattern a* matches anything that begins with the letter “a” and
the pattern *c matches anything that ends with the letter “c.” Again, all matching
clauses are executed.

There’s one more element to mention at this point. When a clause is matched, the
element that matched is assigned to the variable $_ before running the clause. This is
always done, even in the simple examples we discussed earlier, but it wasn’t interest-
ing because you were doing exact comparisons so you already knew what matched.
Once you introduce patterns, it’s much more useful to be able to get at the object
that matched. For example, if you’re matching against filename extensions, you’d
want to be able to get at the full filename to do any processing on that file. We’ll look
at some more practical uses for this feature in later sections. For now, here’s a basic
example that shows how this match works:

PS (5) > switch -wildcard ('abc') {a* {"a*: $_"} *c {"*c: $_"}}
a*: abc
*c: abc

In the result strings, you can see that $_ was replaced by the full string of the actual
switch value.

6.4.3 Using regular expressions with the switch statement

As we discussed in chapter 4, the wildcard patterns, while useful, have limited capa-
bilities. For more sophisticated pattern matching, you used regular expressions.
THE SWITCH STATEMENT 217

Regular expressions are available in the switch statement through the -regex flag.
Let’s rewrite the previous example using regular expressions instead of wildcards:

PS (6) > switch -regex ('abc') {^a {"a*: $_"} 'c$' {"*c: $_"}}
a*: abc
*c: abc

As you see, $_ is still bound to the entire matching key. But one of the most powerful
features of regular expressions is submatches. A submatch, or capture, is a portion of
the regular expression that’s enclosed in parentheses, as discussed in chapter 4 with
the -match operator. With the -match operator, the submatches are made available
through the $matches variable. This same variable is also used in the switch state-
ment. The next example shows how this works:

PS (8) > switch -regex ('abc') {'(^a)(.*$)' {$matches}}

Key Value
--- -----
2 bc
1 a
0 abc

In the result shown here, $matches[0] is the overall key; $matches[1] is the first
submatch, in this case the leading “a”; and $matches[2] is the remainder of the
string. As always, matching is case insensitive by default, but you can specify the
-case option to make it case sensitive, as shown here:

PS (9) > switch -regex ('abc') {'(^A)(.*$)' {$matches}}

Key Value
--- -----
2 bc
1 a
0 abc

PS (10) > switch -regex -case ('abc') {'(^A)(.*$)' {$matches}}

In the first command, you changed the match pattern from a to A and the match still
succeeded because case was ignored. In the second command, you added the -case
flag and this time the match didn’t succeed.

So far we’ve discussed three ways to control how matching against the switch
value works—in other words, three matching modes (actually six, because the -case
flag can be used with any of the previous three). But what if you need something a bit
more sophisticated than a simple pattern match? The switch statement lets you han-
dle this by specifying an expression in braces instead of a pattern. In the next exam-
ple, you specify two expressions that check against the switch value. Again the switch
value is made available through the variable $_:

PS (11) > switch (5) {
>> {$_ -gt 3} {"greater than three"}
>> {$_ -gt 7} {"greater than 7"}}
218 CHAPTER 6 FLOW CONTROL IN SCRIPTS

>>
greater than three
PS (12) > switch (8) {
>> {$_ -gt 3} {"greater than three"}
>> {$_ -gt 7} {"greater than 7"}}
>>
greater than three
greater than 7
PS (13) >

In the first statement, only the first clause was triggered because 5 is greater than 3
but less than 7. In the second statement, both clauses fired.

You can use these matching clauses with any of the other three matching modes:

PS (13) > switch (8) {
>> {$_ -gt 3} {"greater than three"}
>> 8 {"Was $_"}}
>>
greater than three
Was 8

The first expression, {$_ -gt 3}, evaluated to true so “greater than three” was
printed, and the switch value matched 8 so “Was 8” also printed (where $_ was
replaced by the matching value).

Now you have exact matches, pattern matches, conditional matches, and the
default clause. But what about the switch value itself? So far, all the examples have
been simple scalar values. What happens if you specify a collection of values? This is
where the switch statement acts like a form of loop.

NOTE switch works like the other looping statements in that the
expression in the parentheses is fully evaluated before it starts iterating
over the individual values.

Let’s look at another example where you specify an array of values:

PS (2) > switch(1,2,3,4,5,6) {
>> {$_ % 2} {"Odd $_"; continue}
>> 4 {"FOUR"}
>> default {"Even $_"}
>> }
>>
Odd 1
Even 2
Odd 3
FOUR
Odd 5
Even 6

In this example, the switch value is 1,2,3,4,5,6. The switch statement loops over
the collection, testing each element against all the clauses. The first clause returns
“Odd $_” if the current switch element isn’t evenly divisible by 2. The next clause
prints out “FOUR” if the value is 4. The default clause prints out “Even $_” if the
THE SWITCH STATEMENT 219

number is even. Note the use of continue in the first clause. This tells the switch
statement to stop matching any further clauses and move on to the next element in
the collection. In this instance, the switch statement is working in the same way that
the continue statement works in the other loops. It skips the remainder of the body
of the loop and continues on with the next loop iteration. What happens if you used
break instead of continue?

PS (3) > switch(1,2,3,4,5,6) {
>> {$_ % 2} {"Odd $_"; break}
>> 4 {"FOUR"}
>> default {"Even $_"}
>> }
>>
Odd 1

As with the other loops, break doesn’t just skip the remainder of the current itera-
tion; it terminates the overall loop processing. (If you want to continue iterating, use
continue instead. More on that later.)

Of course, iterating over a fixed collection isn’t very interesting. In fact, you can
use a pipeline in the switch value, as the next example shows. In this example, you
want to count the number of DLLs, text files, and log files in the directory c:\win-
dows. First you initialize the counter variables:

PS (1) > $dll=$txt=$log=0

Now you run the actual switch statement. This switch statement uses wildcard pat-
terns to match the extensions on the filenames. The associated actions increment a
variable for each extension type:

PS (2) > switch -wildcard (dir c:\windows)
>> {*.dll {$dll++} *.txt {$txt++} *.log {$log++}}

Once you have the totals, display them:

PS (3) > "dlls: $dll text files: $txt log files: $log"
dlls: 6 text files: 9 log files: 120

Note that in this example the pipeline element is being matched against every clause.
Because a file can’t have more than one extension, this doesn’t affect the output, but it
does affect performance somewhat. It’s faster to include a continue statement after
each clause so the matching process stops as soon as the first match succeeds.

Here’s something else we glossed over earlier in our discussion of $_—it always
contains the object that was matched against. This is important to understand when
you’re using the pattern matching modes of the switch statement. The pattern
matches create a string representation of the object to match against, but $_ is still
bound to the original object. Here’s an example that illustrates this point. This is
basically the same as the previous example, but this time, instead of counting the
number of files, you want to calculate the total size of all the files having a particular
extension. Here are the revised commands:
220 CHAPTER 6 FLOW CONTROL IN SCRIPTS

PS (1) > $dll=$txt=$log=0
PS (2) > switch -wildcard (dir) {
>> *.dll {$dll+= $_.length; continue}
>> *.txt {$txt+=$_.length; continue}
>> *.log {$log+=$_.length; continue}
>> }
>>
PS (3) > "dlls: $dll text files: $txt log files: $log"
dlls: 166913 text files: 1866711 log files: 6669437
PS (4) >

Notice how you’re using $_.length to get the length of the matching file object. If
$_ were bound to the matching string, you’d be counting the lengths of the filenames
instead of the lengths of the actual files.

6.4.4 Processing files with the switch statement

There’s one last mode of operation for the switch statement to discuss: the -file
option. Instead of specifying an expression to iterate over as the switch value, the -file
option allows you to name a file to process. Here’s an example that processes the Win-
dows update log file. Again start by initializing the counter variables:

PS (1) > $au=$du=$su=0

Next use the -regex and -file options to access and scan the file Windows-
Update.log, and check for update requests from Windows Update, Windows
Defender, and SMS:

PS (2) > switch -regex -file c:\windows\windowsupdate.log {
>> 'START.*Finding updates.*AutomaticUpdates' {$au++}
>> 'START.*Finding updates.*Defender' {$du++}
>> 'START.*Finding updates.*SMS' {$su++}
>> }
>>

Print the results:

PS (3) > "Automatic:$au Defender:$du SMS:$su"
Automatic:195 Defender:10 SMS:34

Now it’s possible to do basically the same thing by using Get-Content or even the
file system name trick you learned in chapter 4:

PS (4) > $au=$du=$su=0
PS (5) > switch -regex (${c:windowsupdate.log}) {
>> 'START.*Finding updates.*AutomaticUpdates' {$au++}
>> 'START.*Finding updates.*Defender' {$du++}
>> 'START.*Finding updates.*SMS' {$su++}
>> }
>>
PS (6) > "Automatic:$au Defender:$du SMS:$su"
Automatic:195 Defender:10 SMS:34

This code uses ${c:windowsupdate.log} to access the file content instead of -file.
So why have the -file option? There are two reasons.
THE SWITCH STATEMENT 221

The -file operation reads one line at a time, so it uses less memory than the
Get-Content cmdlet, which has to read the entire file into memory before process-
ing. Also, because -file is part of the PowerShell language, the interpreter can do
some optimizations, which gives -file performance advantages.

So, overall, the -file option can potentially give you both speed and space
advantages in some cases (the space advantage typically being the more significant,
and therefore the more important of the two). When your task involves processing a
lot of text files, the -file switch can be a useful tool.

6.4.5 Using the $switch loop enumerator in the switch statement

One more point: just as the foreach loop used $foreach to hold the loop enumera-
tor, the switch statement uses $switch to hold the switch loop enumerator. This is
useful in a common pattern—processing a list of options. Say you have a list of
options where the option -b takes an argument and -a, -c, and -d don’t. You’ll write
a switch statement to process a list of these arguments. First set up a list of test
options. For convenience, start with a string and then use the -split operator to
break it into an array of elements:

PS (1) > $options= -split "-a -b Hello -c"

Next initialize the set of variables that will correspond to the flags:

PS (2) > $a=$c=$d=$false
PS (3) > $b=$null

Now you can write your switch statement. The interesting clause is the one that
handles -b. This clause uses the enumerator stored in $switch to advance the item
being processed to the next element in the list. Use a cast to [void] to discard the
return value from the call to $switch.movenext()(more on that later). Then use
$switch.current to retrieve the next value and store it in $b. The loop continues
processing the remaining arguments in the list.

PS (4) > switch ($options)
>> {
>> '-a' { $a=$true }
>> '-b' { [void] $switch.movenext(); $b= $switch.current }
>> '-c' { $c=$true }
>> '-d' { $d=$true }
>> }
>>

The last step in this example is to print the arguments in the list to make sure they
were all set properly:

PS (5) > "a=$a b=$b c=$c d=$d"
a=True b=Hello c=True d=False
PS (6) >

You see that $a and $c are true, $b contains the argument “Hello”, and $d is still false
because it wasn’t in your list of test options. The option list has been processed correctly.
222 CHAPTER 6 FLOW CONTROL IN SCRIPTS

NOTE This isn’t a robust example because it’s missing all error hand-
ing. In a complete example, you’d have a default clause that generated
errors for unexpected options. Also, in the clause that processes the
argument for -b, rather than discarding the result of MoveNext() it
should check the result and generate an error if it returns false. This
would indicate that there are no more elements in the collection, so -b
would be missing its mandatory argument.

This finishes the last of the flow-control statements in the PowerShell language, but as
you saw at the beginning of this chapter, there’s another way to do selection and iter-
ation in PowerShell by using cmdlets. In the next section, we’ll go over a couple of the
cmdlets that are a standard part of the PowerShell distribution. These cmdlets let you
control the flow of your script in a manner similar to the flow-control statements. (In
later sections, we’ll look at how you can create your own specialized flow-control ele-
ments in PowerShell.)

6.5 FLOW CONTROL USING CMDLETS

PowerShell’s control statements are part of the language proper, but there are also
some cmdlets, shown in figure 6.12, that can be used to accomplish similar kinds of
things.

Figure 6.12 Flow-control cmdlets

These cmdlets use blocks of PowerShell script enclosed in braces to provide the
“body” of the control statement. These pieces of script are called scriptblocks and are
described in detail in chapter 8. The two most frequent flow-control cmdlets that
you’ll encounter are ForEach-Object and Where-Object.

6.5.1 The ForEach-Object cmdlet

The ForEach-Object cmdlet operates on each object in a pipeline in much the same
way that the foreach statement operates on the set of values that are provided to it.
For example, here’s a foreach statement that prints the size of each text file in the
current directory:

PS (1) > foreach ($f in dir *.txt) { $f.length }
48
889
23723
328
279164

Flow-control cmdlets

… | ForEach-Object <scriptBlock>
… | ForEach-Object -Begin <scriptBlock> -Process <scriptBlock> -End <scriptBlock>
… | Where-Object <scriptBlock>
FLOW CONTROL USING CMDLETS 223

Using the ForEach-Object cmdlet, the same task can be accomplished this way:

PS (2) > dir *.txt | foreach-object {$_.length}
48
889
23723
328
279164

The results are the same, so what’s the difference? One obvious difference is that you
don't have to create a new variable name to hold the loop value. The automatic vari-
able $_ is used as the loop variable.

NOTE Automatic variables are common in scripting languages. These
variables aren’t directly assigned to in scripts. Instead, they are set as
the side effect of an operation. One of the earlier examples of this is in
AWK. When a line is read in AWK, the text of the line is automatically
assigned to $0. The line is also split into fields. The first field is placed
in $1, the second is in $2, and so on. The Perl language is probably the
most significant user of automatic variables. In fact, as mentioned pre-
viously, Perl inspired the use of $_ in PowerShell. Automatic variables
can help reduce the size of a script, but they can also make a script hard
to read and difficult to reuse because your use of automatics may collide
with mine. From a design perspective, our approach with automatic
variables follows the salt curve. A little salt makes everything taste bet-
ter. Too much salt makes food inedible. The language design team
tried to keep the use of automatics in PowerShell at the “just right”
level. Of course, this is always a subjective judgment. Some people
really like salt.

A more subtle difference, as discussed previously, is that the loop is processed one
object at a time. In a normal foreach loop, the entire list of values is generated
before a single value is processed. In the ForEach-Object pipeline, each object is
generated and then passed to the cmdlet for processing.

The ForEach-Object cmdlet has an advantage over the foreach loop in the
amount of space being used at a particular time. For example, if you’re processing a
large file, the foreach loop would have to load the entire file into memory before
processing. When you use the ForEach-Object cmdlet, the file will be processed
one line at a time. This significantly reduces the amount of memory needed to
accomplish a task.

You’ll end up using the ForEach-Object cmdlet a lot in command lines to per-
form simple transformations on objects (you’ve already used it in many examples so
far). Given the frequency of use, there are two standard aliases for this cmdlet. The
first one is (obviously) foreach. But wait a second—didn’t we say earlier in this
chapter that foreach is a keyword and keywords can’t be aliased? This is true, but
224 CHAPTER 6 FLOW CONTROL IN SCRIPTS

remember, keywords are only special when they’re the first unquoted word in a state-
ment (in other words, not a string). If they appear anywhere else (for example, as an
argument or in the middle of a pipeline), they’re just another command with no spe-
cial meaning to the language. Here’s another way to think about it: the first word in a
statement is the key that the PowerShell interpreter uses to decide what kind of state-
ment it’s processing, hence the term “keyword.”

This positional constraint is how the interpreter can distinguish between the key-
word foreach

foreach ($i in 1..10) { $i }

and the aliased cmdlet foreach:

1..10 | foreach {$_}

When foreach is the first word in a statement, it’s a keyword; otherwise it’s the name
of a command.

Now let’s look at the second alias. Even though foreach is significantly shorter
than ForEach-Object, there have still been times when users wanted it to be even
shorter.

NOTE Users wanted to get rid of this notation entirely and have
foreach be implied by an open brace following the pipe symbol. This
would have made about half of PowerShell users very happy. Unfortu-
nately, the other half were adamant that the implied operation be
Where-Object instead of ForEach-Object.

Where extreme brevity is required, there’s a second built-in alias that’s simply the per-
cent sign (%). Now readers are saying, “You told us the percent sign is an operator!”
Well, that’s true, but only when it’s used as a binary operator. If it appears as the first
symbol in a statement, it has no special meaning, so you can use it as an alias for
ForEach-Object. As with keywords, operators are also context sensitive.

The % alias you write results in very concise (but occasionally hard-to-read) state-
ments such as the following, which prints the numbers from 1 to 5, times 2:

PS (1) > 1..5|%{$_*2}
2
4
6
8
10
PS (2) >

Clearly this construction is great for interactive use where brevity is important, but it
probably shouldn’t be used when writing scripts. The issue is that ForEach-Object
is so useful that a single-character symbol for it, one that is easy to distinguish, is
invaluable for experienced PowerShell users. But unlike the word foreach, % isn’t
immediately meaningful to new users. So this notation is great for “conversational”
FLOW CONTROL USING CMDLETS 225

PowerShell, but generally terrible for scripts that you want other people to be able to
read and maintain.

The last thing to know about the ForEach-Object cmdlet is that it can take mul-
tiple scriptblocks. If three scriptblocks are specified, the first one is run before any
objects are processed, the second is run once for each object, and the last is run after
all objects have been processed. This is good for conducting accumulation-type oper-
ations. Here’s another variation that sums the number of handles used by the service
host svchost processes:

PS (3) > gps svchost |%{$t=0}{$t+=$_.handles}{$t}
3238

The standard alias for Get-Process is gps. This is used to get a list of processes
where the process name matches svchost. These process objects are then piped into
ForEach-Object, where the handle counts are summed up in $t and then emitted
in the last scriptblock. This example uses the % alias to show how concise these
expressions can be. In an interactive environment, brevity is important.

And here’s something to keep in mind when using ForEach-Object. The
ForEach-Object cmdlet works like all cmdlets: if the output object is a collection, it
gets unraveled. One way to suppress this behavior is to use the unary comma opera-
tor. For example, in the following, you assign $a an array of two elements, the second
of which is a nested array:

PS (1) > $a = 1,(2,3)

When you check the length, you see that it is 2 as expected

PS (2) > $a.length
2

and the second element is still an array:

PS (3) > $a[1]
2
3

But if you run it through ForEach-Object, you’ll find that the length of the result is
now 3, and the second element in the result is the number 2:

PS (4) > $b = $a | foreach { $_ }
PS (5) > $b.length
3
PS (6) > $b[2]
2

In effect, the result has been “flattened.” But if you use the unary comma operator
before the $_ variable, the result has the same structure as the original array:

PS (7) > $b = $a | foreach { , $_ }
PS (8) > $b.length
2
PS (9) > $b[1]
226 CHAPTER 6 FLOW CONTROL IN SCRIPTS

2
3

When chaining foreach cmdlets, you need to repeat the pattern at each stage:

PS (7) > $b = $a | foreach { , $_ } | foreach { , $_ }
PS (8) > $b.length
2
PS (9) > $b[1]
2
3

Why don't you just preserve the structure as you pass the elements through instead of
unraveling by default? Well, both behaviors are, in fact, useful. Consider the follow-
ing example, which returns a list of loaded module names:

Get-Process | %{$_.modules} | sort -u modulename

Here the unraveling is exactly what you want. When we were designing PowerShell,
we considered both cases; and in applications, on average, unraveling by default was
usually what we needed. Unfortunately, it does present something of a cognitive
bump that surprises users learning to use PowerShell.

Using the return statement with ForEach-Object

Here’s another tidbit of information about something that occasionally causes prob-
lems. Although the ForEach-Object cmdlet looks like a PowerShell statement,
remember that it is in fact a command and the body of code it executes is a script-
block, also known as an anonymous function. (By anonymous, we just mean that we
haven’t given it a name. Again, we cover this in detail in chapter 11.) The important
thing to know is that the return statement (see chapter 7), when used in the script-
block argument to ForEach-Object, only exits from the ForEach-Object script-
block, not from the function or script that is calling ForEach-Object. So, if you do
want to return out of a function or script in a foreach loop, either use the foreach
statement where the return will work as desired, or use the nonlocal labeled break
statement discussed earlier in this chapter.

How ForEach-Object processes its arguments

Let’s talk for a moment about how the ForEach-Object cmdlet processes its argu-
ment scriptblocks. A reader of the first edition of this book observed what he thought
was an inconsistency between how the cmdlet is documented and how the following
example behaves:

$words | ForEach-Object {$h=@{}} {$h[$_] += 1}

The help text for the cmdlet (use help ForEach-Object -Full to see this text) says
that the -Process parameter is the only positional parameter and that it’s in position
1. Therefore, according to the help file, since the -Begin parameter isn’t positional,
the example shouldn’t work. This led the reader to assume that either there was an
error in the help file, or that he misunderstood the idea of positional parameters.
FLOW CONTROL USING CMDLETS 227

In fact the help file is correct (because the cmdlet information is extracted from
the code) but the way it works is tricky.

If you look at the signature of the -Process parameter, you'll see that, yes, it is
positional, but it also takes a collection of scriptblocks and receives all remaining
unbound arguments. So, in the case of

dir | foreach {$sum=0} {$sum++} {$sum}

the -Process parameter is getting an array of three scriptblocks, whereas -Begin and
-End are empty. Now here’s the trick. If -Begin is empty and -Process has more
than two scriptblocks in the collection, then the first one is treated as the -Begin
scriptblock and the second one is treated as the -Process scriptblock. If -Begin is
specified but -End is not and there are two scriptblocks, then the first one is treated as
the Process clause and the second one is the End clause. Finally, if both -Begin and
-End are specified, the remaining arguments will be treated as multiple Process
clauses. This allows

dir | foreach {$sum=0} {$sum++} {$sum}
dir | foreach -begin {$sum=0} {$sum++} {$sum}
dir | foreach {$sum=0} {$sum++} -end {$sum}
dir | foreach -begin {$sum=0} {$sum++} -end {$sum}

and

dir | foreach -begin {$sum=0} -process {$sum++} -end {$sum}

to all work as expected.
On that note, we’re finished with our discussion of ForEach-Object. We’ll

touch on it again in chapter 8 when we discuss scriptblocks, but for now, let’s move
on to the other flow-control cmdlet commonly used in PowerShell (which, by the
way, also uses scriptblocks—you may detect a theme here).

6.5.2 The Where-Object cmdlet

The other common flow-control cmdlet is the Where-Object cmdlet. This cmdlet
is used to select objects from a stream, kind of like a simple switch cmdlet. It takes
each pipeline element it receives as input, executes its scriptblock (see!) argument,
passing in the current pipeline element as $_, and then, if the scriptblock evaluates to
true, the element is written to the pipeline. We’ll show this with yet another way to
select even numbers from a sequence of integers:

PS (4) > 1..10 | where {-not ($_ -band 1)}
2
4
6
8
10

The scriptblock enclosed in the braces receives each pipeline element, one after
another. If the least significant bit in the element is 1, then the scriptblock returns the
228 CHAPTER 6 FLOW CONTROL IN SCRIPTS

logical complement of that value ($false) and that element is discarded. If the least
significant bit is 0, the logical complement of that is $true and the element is written
to the output pipeline. Notice that the common alias for Where-Object is simply
where. And, as with ForEach-Object, because this construction is so commonly
used interactively, there’s an additional alias, which is simply the question mark (?).
This allows the previous example to be written as

PS (5) > 1..10|?{!($_-band 1)}
2
4
6
8
10

Again, this is brief, but it looks like the cat walked across the keyboard (trust me on
this one). So, as before, although this is fine for interactive use, it isn’t recommended
in scripts because it’s hard to understand and maintain. As another, more compelling
example of “Software by Cats,” here’s a pathological example that combines elements
from the last few chapters—type casts, operators, and the flow-control cmdlets—to
generate a list of strings of even-numbered letters in the alphabet, where the length of
the string matches the ordinal number in the alphabet (“A” is 1, “B” is 2, and so on):

PS (1) > 1..26|?{!($_-band 1)}|%{[string][char]([int][char]'A'+$_-1)*$_}
>>
BB
DDDD
FFFFFF
HHHHHHHH
JJJJJJJJJJ
LLLLLLLLLLLL
NNNNNNNNNNNNNN
PPPPPPPPPPPPPPPP
RRRRRRRRRRRRRRRRRR
TTTTTTTTTTTTTTTTTTTT
VVVVVVVVVVVVVVVVVVVVVV
XXXXXXXXXXXXXXXXXXXXXXXX
ZZZZZZZZZZZZZZZZZZZZZZZZZZ
PS (2) >

The output is fairly self-explanatory, but the code isn’t. Figuring out how this works is
left as an exercise to the reader and as a cautionary tale not to foist this sort of rubbish
on unsuspecting coworkers. They know where you live.

Where-Object and Get-Content’s -ReadCount Parameter

On occasion, a question comes up about the Get-Content cmdlet and how its
-ReadCount parameter works. This can be an issue particularly when using this cmd-
let and parameter with Where-Object to filter the output of Get-Content. The issue
comes up when the read count is greater than 1. This causes PowerShell to act as if
some of the objects returned from Get-Content are being skipped and affects both
FLOW CONTROL USING CMDLETS 229

ForEach-Object and Where-Object. After all, these cmdlets are supposed to process
or filter the input one object at a time and this isn’t what appears to be happening.

Here’s what’s going on. Unfortunately the -ReadCount parameter has a confusing
name. From the PowerShell user’s perspective, it has nothing to do with reading.
What it does is control the number for records written to the next pipeline element, in
this case Where-Object or ForEach-Object. The following examples illustrate how
this works. In these examples, you’ll use a simple text file named test.txt, which
contains 10 lines of text and the ForEach-Object cmdlet (through its alias %) to
count the length of each object being passed down the pipeline. You’ll use the @(…)
construct to guarantee that you’re always treating $_ as an array. Here are the exam-
ples with -readcount varying from 1 to 4:

PS (119) > gc test.txt -ReadCount 1 | % { @($_).count } | select -fir 1
1
PS (120) > gc test.txt -ReadCount 2 | % { @($_).count } | select -fir 1
2
PS (121) > gc test.txt -ReadCount 3 | % { @($_).count } | select -fir 1
3
PS (122) > gc test.txt -ReadCount 4 | % { @($_).count } | select -fir 1
4

In each case where -ReadCount is greater than 1, the variable $_ is set to a collection
of objects where the object count of that collection is equivalent to the value specified
by -ReadCount. In another example, you’ll use ForEach-Object to filter the pipeline:

PS (127) > gc test.txt -read 5 | ? {$_ -like '*'} | % { $_.count }
5
5

You can see that the filter result contains two collections of 5 objects each written to
the pipeline for a total of 10 objects. Now use ForEach-Object and the if state-
ment to filter the list:

PS (128) > (gc test.txt -read 10 | % {if ($_ -match '.') {$_}} |
>>> Measure-Object).count
>>>
10

This time you see a count of 10 because the value of $_ in the ForEach-Object
cmdlet is unraveled when written to the output pipe. And now let’s look at one final
example using Where-Object:

PS (130) > (gc test.txt -read 4 | %{$_} | where {$_ -like '*a*'} |
>>> Measure-Object).count
>>>
10

Here you’ve inserted one more ForEach-Object command between the gc and the
Where-Object, which simply unravels the collections in $_ and so you again see a
count of 10.
230 CHAPTER 6 FLOW CONTROL IN SCRIPTS

NOTE Here’s the annoying thing: from the Get-Content developer’s
perspective, it actually is doing a read of -ReadCount objects from the
provider. Get-Content reads -ReadCount objects and then writes them
as a single object to the pipeline instead of unraveling them. (I suspect
that this is a bug that’s turned into a feature.) Anyway, the name makes
perfect sense to the developer and absolutely no sense to the user. This
is why developers always have to be aware of the user’s perspective even
if it doesn’t precisely match the implementation details.

In summary, whenever -ReadCount is set to a value greater than 1, usually for perfor-
mance reasons, object collections are sent through the pipeline to Where-Object
instead of individual objects. As a result, you have to take extra steps to deal with
unraveling the batched collections of objects.

At this point we’ve covered the two main flow-control cmdlets in detail. We’ve
discussed how they work, how they can be used, and some of the benefits (and pit-
falls) you’ll encounter when using them. An important point to note is that there’s
nothing special about these cmdlets—they can be implemented by anyone and
require no special access to the inner workings of the PowerShell engine. This is a
characteristic we’ll explore in later chapters where you’ll see how you can take advan-
tage of it. In the meantime, let’s look at one final feature of the PowerShell language:
the ability to use all these statements we’ve been talking about as expressions that
return values. Although not unique to PowerShell, this feature may seem a bit
unusual to people who are used to working with languages like VBScript or C#. Let’s
take a look.

6.6 STATEMENTS AS VALUES

Let’s return to something we discussed a bit earlier when we introduced subexpres-
sions in chapter 5—namely, the difference between statements and expressions. In
general, statements don’t return values, but if they’re used as part of a subexpression
(or a function or script as you’ll see later on), they do return a result. This is best illus-
trated with an example. Assume that you didn’t have the range operator and wanted
to generate an array of numbers from 1 to 10. Here’s the traditional approach you
might use in a language such as C#:

PS (1) > $result = new-object System.Collections.ArrayList
PS (2) > for ($i=1; $i -le 10; $i++) { $result.Append($i) }
PS (3) > "$($result.ToArray())"
1 2 3 4 5 6 7 8 9 10

First you create an instance of System.Collections.ArrayList to hold the result.
Then you use a for loop to step through the numbers, adding each number to the
result ArrayList. Finally you convert the ArrayList to an array and display the
result. This is a straightforward approach to creating the array, but requires several
STATEMENTS AS VALUES 231

steps. Using loops in subexpressions, you can simplify it quite a bit. Here’s the
rewritten example:

PS (4) > $result = $(for ($i=1; $i -le 10; $i++) {$i})
PS (5) > "$result"
1 2 3 4 5 6 7 8 9 10

Here you don’t have to initialize the result or do explicit adds to the result collection.
The output of the loop is captured and automatically saved as a collection by the
interpreter. In fact, this is more efficient than the previous example, because the inter-
preter can optimize the management of the collection internally. This approach
applies to any kind of statement. Let’s look at an example where you want to condi-
tionally assign a value to a variable if it doesn’t currently have a value. First verify that
the variable has no value:

PS (1) > $var

Now do the conditional assignment. This uses an if statement in a subexpression:

PS (2) > $var = $(if (! $var) { 12 } else {$var})
PS (3) > $var
12

From the output, you can see that the variable has been set. Change the variable, and
rerun the conditional assignment:

PS (4) > $var="Hello there"
PS (5) > $var = $(if (! $var) { 12 } else {$var})
PS (6) > $var
Hello there

This time the variable isn’t changed.
For PowerShell version 2, the ability to assign the output of a flow-control state-

ment has been simplified so you can directly assign the output to a variable. Although
this doesn’t add any new capabilities, it does make things simpler and cleaner. For
instance, the previous example can be simplified to

PS (7) > $var = if (! $var) { 12 } else {$var}

using this feature. And the for example you saw earlier can be simplified to

PS (4) > $result = for ($i=1; $i -le 10; $i++) {$i}

making it (somewhat) easier to read.
Used judiciously, the fact that statements can be used as value expressions can

simplify your code in many circumstances. By eliminating temporary variables and
extra initializations, creating collections is greatly simplified, as you saw with the for
loop. On the other hand, it’s entirely possible to use this statement-as-expression
capability to produce scripts that are hard to read. (Remember the nested if state-
ment example we looked at earlier in this chapter?) You should always keep that in
mind when using these features in scripts. The other thing to keep in mind when
232 CHAPTER 6 FLOW CONTROL IN SCRIPTS

you use statements is the performance of your scripts. Let’s dig into this in a bit
more detail.

6.7 A WORD ABOUT PERFORMANCE

Now that we’ve covered loops in PowerShell, this is a good time to talk about perfor-
mance. PowerShell is an interpreted language, which has performance implications.
Tasks with a lot of small repetitive actions can take a long time to execute. Anything
with a loop statement can be a performance hotspot for this reason. Identifying these
hotspots and rewriting them can have a huge impact on script performance. Let’s take
a look at a real example. I was writing a script to process a collection of events,
extracting events having a specific name and ID and placing them into a new collec-
tion. The script looked something like this:

$results = @()
for ($i=0; $i -lt $EventList.length ; $i++)
{
 $name = [string] $Events[$i].ProviderName
 $id = [long] $Events[$i].Id

 if ($name -ne "My-Provider-Name")
 {
 continue
 }

 if ($id -ne 3005) {

 continue
 }

 $results += $Events[$i]
}

This script indexed through the collection of events using the for statement, and
then used the continue statement to skip to the next event if the current event
didn’t match the desired criteria. If the event did match the criteria, it was appended
to the result collection. Although this worked correctly, for large collections of events
it was taking several minutes to execute. Let’s look at some ways to speed it up and
make it smaller.

First, consider how you’re indexing through the collection. This requires a lot of
index operations, variable retrievals and increments that aren’t the most efficient
operations in an interpreted language like PowerShell. Instead, PowerShell has a
number of constructs that let you iterate through a collection automatically. Given
that the task is to select events where some condition is true, the Where-Object
cmdlet is an obvious choice. The second optimization is how the result list is built.
The original code manually adds each element to the result array. If you remember
our discussion on how array catenation works, this means that the array has to be
copied each time an element is added. The alternative approach, as we discussed, is to
A WORD ABOUT PERFORMANCE 233

simply let the pipeline do the collection for you. With these design changes, the new
script looks like

$BranchCache3005Events = $events | where {
 $_.Id -eq 3005 -and $_.ProviderName -eq "My-Provider-Name"}

The revised script is both hundreds of times faster and significantly shorter and
clearer.

So, the rule for writing efficient PowerShell scripts is to let the system do the work
for you. Use foreach instead of explicit indexing with for if you can. If you ever
find yourself doing catenation in a loop to build up a string or collection, look at
using the pipeline instead. You can also take advantage of the fact that all PowerShell
statements return values so an even faster (but less obvious or simple) way to do this
is to use the foreach statement:

$BranchCache3005Events = @(foreach ($e in $events) {
 if ($e.Id -eq 3005 -or
 $e.ProviderName -eq "Microsoft-Windows-BranchCacheSMB") {$e}})

The key here is still letting the system implicitly build the result array instead of con-
structing it manually with +=. Likewise for string catenation, this

$s = -join $(foreach ($i in 1..40kb) { "a" })

is faster than

$s = ""; foreach ($i in 1..40kb) { $s += "a" }

By following these guidelines, not only will your scripts be faster, they’ll also end up
being shorter and frequently simpler and clearer (though not always.)

6.8 SUMMARY

In chapter 6, we covered the branching and looping statements in the PowerShell lan-
guage as summarized in the following list:

• PowerShell allows you to use pipelines where other languages only allow expres-
sions. This means that, although the PowerShell flow-control statements appear
to be similar to the corresponding statements in other languages, enough differ-
ences exist to make it useful for you to spend time experimenting with them.

• There are two ways of handling flow control in PowerShell. The first is to use
the language flow-control statements such as while and foreach. But when
performing pipelined operations, the alternative mechanism—the flow-control
cmdlets ForEach-Object and Where-Object—can be more natural and
efficient.

• When iterating over collections, you should keep in mind the trade-offs
between the foreach statement and the ForEach-Object cmdlet.

• Any statement can be used as a value expression when nested in a subexpression.
For example, you could use a while loop in a subexpression to generate a
234 CHAPTER 6 FLOW CONTROL IN SCRIPTS

collection of values. In PowerShell v2, for simple assignments, the subexpression
notation is no longer needed and the output of a statement can be assigned
directly to a variable. This mechanism can be a concise way of generating a col-
lection, but keep in mind the potential complexity that this kind of nested
statement can introduce.

• The PowerShell switch statement is a powerful tool. On the surface it looks
like the switch statement in C# or the select statement in Visual Basic, but
with powerful pattern matching capabilities, it goes well beyond what the state-
ments in the other languages can do. And, along with the pattern matching, it
can be used as a looping construct for selecting and processing objects from a
collection or lines read from a file. In fact, much of its behavior was adapted
from the AWK programming language.

• The choice of statements and how you use them can have a significant effect on
the performance of your scripts. This is something to keep in mind, but
remember, only worry about performance if it becomes a problem. Otherwise,
try to focus on making things as clear as possible.
SUMMARY 235

C H A P T E R 7

PowerShell functions

7.1 Fundamentals of PowerShell

functions 237
7.2 Declaring formal parameters for a

function 241
7.3 Returning values from functions 257

7.4 Using simple functions in a pipeline 263
7.5 Managing function definitions in a

session 267
7.6 Variable scoping in functions 269
7.7 Summary 273
Porcupine quills. We’ve always done it with porcupine quills.
 —Dilbert

In this chapter, we’ll begin looking at how to combine the features from the previous
chapters into reusable commands. As you’ll recall from chapter 2, there are four types
of PowerShell commands: functions, cmdlets, scripts, and external commands. Func-
tions and scripts are the two command types that can be written in the PowerShell
language. We’ll start with functions as they’re the simpler of the two and are also easy
to enter interactively in a session. In the next chapter we’ll expand our discussion to
include scripts as well as introduce advanced programming features available to both
functions and scripts.

Before we dive in, there’s one thing you need to be aware of if you have prior pro-
gramming experience. This prior experience can be both a blessing and a curse when
learning to program in PowerShell. Most of the time, what you already know makes
it easier to program in PowerShell. The syntax and most of the concepts will probably
be familiar. Unfortunately, similar isn’t identical, and this is where prior experience
can trip you up. You’ll expect PowerShell to work like your favorite language, and it
236

won’t work quite the same way. We’ll call out these issues as we encounter them. So,
put away your porcupine quills and let’s get started.

7.1 FUNDAMENTALS OF POWERSHELL FUNCTIONS

In this section we’ll cover the basic concepts and features of PowerShell functions.
Functions are the most lightweight form of PowerShell command. They only exist in
memory for the duration of a session. When you exit the shell session, the functions
are gone. They’re also simple enough that you can create useful functions in a single
line of code. We’ll start by working through a number of examples showing you how
to create simple functions. Let’s take a look at our first example:

PS (1) > function hello { "Hello world" }

In this example, hello is pretty obviously a function because it’s preceded by the
function keyword. And, equally obvious, this function should emit the string
“Hello world.” Execute it to verify this:

PS (2) > hello; hello; hello
Hello world
Hello world
Hello world

Yes, it works exactly as expected. You’ve created your first command.
Okay, that was easy. Now you know how to write a simple PowerShell function.

The syntax is shown in figure 7.1.
But a function that writes only “Hello world” isn’t very useful. Let’s see how to

personalize this function by allowing an argument to be passed in.

7.1.1 Passing arguments using $args

The ability to pass values into a function is called parameterizing the function. In
most languages, this means modifying the function to declare the parameters to pro-
cess. For simple PowerShell functions, we don’t have to do this because there’s a
default argument array that contains all the values passed to the function. This
default array is available in the variable $args. Here’s the previous hello example
modified to use $args to receive arguments:

PS (3) > function hello { "Hello there $args, how are you?" }
PS (4) > hello Bob
Hello there Bob, how are you?

function <name> { <statementList> }

function keyword

List of statements that make up

function body

Braces marking beginning and

end of function body

Function name

Figure 7.1

The simplest form of

a function definition

in PowerShell
FUNDAMENTALS OF POWERSHELL FUNCTIONS 237

This example uses string expansion to insert the value stored in $args into the string
that is emitted from the hello function. Now let’s see what happens with multiple
arguments:

PS (5) > hello Bob Alice Ted Carol
Hello there Bob Alice Ted Carol, how are you?

Following the string expansion rules described in chapter 3, the values stored in
$args get interpolated into the output string with each value separated by a
space—or, more specifically, separated by whatever is stored in the $OFS variable. So
let’s take one last variation on this example. We’ll set $OFS in the function body with
the aim of producing a more palatable output. You can take advantage of the interac-
tive nature of the PowerShell environment to enter this function over several lines:

PS (6) > function hello
>> {
>> $ofs=","
>> "Hello there $args and how are you?"
>> }
>>
PS (7) > hello Bob Carol Ted Alice
Hello there Bob,Carol,Ted,Alice and how are you?

That’s better. Now at least you have commas between the names. Let’s try it again,
with commas between the arguments:

PS (8) > hello Bob,Carol,Ted,Alice
Hello there System.Object[] and how are you?

This isn’t the result you were looking for! So what happened? Let’s define a new func-
tion to clear up what happened:

PS (1) > function count-args {
>> "`$args.count=" + $args.count
>> "`$args[0].count=" + $args[0].count
>> }
>>

This function will display the number of arguments passed to it as well as the number
of elements in the first argument. First you use it with three scalar arguments:

PS (2) > count-args 1 2 3
$args.count=3
$args[0].count=

As expected, it shows that you passed three arguments. It doesn’t show anything for
the Count property on $args[0] because $args[0] is a scalar (the number 1) and
consequently doesn’t have a Count property. Now try it with a comma between each
of the arguments:

PS (3) > Count-Args 1,2,3
$args.count=1
$args[0].count=3
238 CHAPTER 7 POWERSHELL FUNCTIONS

Now you see that the function received one argument, which is an array of three ele-
ments. And finally, try it with two sets of comma-separated numbers:

PS (4) > count-args 1,2,3 4,5,6,7
$args.count=2
$args[0].count=3

The results show that the function received two arguments, both of which are arrays.
The first argument is an array of three elements and the second is an array with four
elements. Hmm, you should be saying to yourself—this sounds familiar. And it
is—the comma here works like the binary comma operator in expressions, as dis-
cussed in chapter 5.

Two values on the command line with a comma between them will be passed to
the command as a single argument. The value of that argument is an array of those
elements. This applies to any command, not just functions. If you want to copy three
files, f1.txt, f2.txt, and f3.txt, to a directory, the command is

copy-item f1.txt,f2.txt,f3.txt target

The Copy-Item cmdlet receives two arguments: the first is an array of three file-
names, and the second is a scalar element naming the target directory. Now let’s look
at a couple of examples where $args enables simple but powerful scenarios.

7.1.2 Example functions: ql and qs

The way $args works is straightforward, but it allows you to write some pretty slick
commands. Here are two functions that aren’t in the PowerShell base installation
(although they may be in the future, but not in either v1 or v2 … sigh):

function ql { $args }
function qs { "$args" }

They may not look like much, but they can significantly streamline a number of
tasks. The first function is ql, which stands for quote list. This is a Perl-ism. Here’s
what you can do with it. Say you want to build a list of the colors. To do this with the
normal comma operator, you’d do the following,

$col = "black","brown","red","orange","yellow","green",
 "blue","violet","gray","white"

which requires lots of quotes and commas. With the ql function, you could write it
this way:

$col = ql black brown red orange yellow green blue violet gray white

This is much shorter and requires less typing. Does it let you do anything you
couldn’t do before? No, but it lets you do something more efficiently when you have
to. Remember that elastic syntax concept? When you’re trying to fit a complex
expression onto one line, things like ql can help. What about the other function, qs?
FUNDAMENTALS OF POWERSHELL FUNCTIONS 239

It does approximately the same thing but uses string concatenation to return its argu-
ments as a single string instead of an array:

PS (1) > $string = qs This is a string
PS (2) > $string
This is a string
PS (3) >

Note that the arguments are concatenated with a single space between them. The
original spacing on the command line has been lost, but that usually doesn’t matter.

7.1.3 Simplifying $args processing with multiple assignment

As handy as $args is, it can become awkward when trying to deal with parameters in
a more complex way. Let’s look at an example that illustrates this. You’ll write a func-
tion that takes two arguments and adds them together. With what you’ve seen so far,
you could use array indexing to get each element and then add them together. The
result might look like this:

PS (1) > function Add-Two { $args[0] + $args[1] }
PS (2) > add-two 2 3
5

Notice that most of the work in this function is getting the arguments out of the
array. This is where multiple assignment comes in. It allows you to extract the ele-
ments of the array in $args into name variables in a convenient way. Using this fea-
ture, the updated function looks like

PS (3) > function Add-Two {
>> $x,$y=$args
>> $x+$y
>> }
>>
PS (4) > add-two 1 2
3

In this example, the first statement in the function assigns the values passed in $args
to the local variables $x and $y. Perl users will be familiar with this approach for deal-
ing with function arguments, and, although it’s a reasonable way to deal with param-
eters, it isn’t the way most languages do it.

NOTE The $args approach will be familiar to Perl 5 or earlier users.
Perl 6 has a solution to the problem that’s similar to what PowerShell
does. I’d claim great minds think alike, but it’s just the most obvious
way to solve the problem.

For this reason, PowerShell provides other ways to declare the formal parameters.
We’ll cover those approaches in the next couple of sections.
240 CHAPTER 7 POWERSHELL FUNCTIONS

7.2 DECLARING FORMAL PARAMETERS FOR A FUNCTION

With the fundamentals out of the way, we’ll start to look at some of the more sophis-
ticated features of PowerShell functions. We’ll begin with a better way for declaring
function parameters. Although the $args variable is a simple and automatic way of
getting at the arguments to functions, it takes a fair amount of work to do anything
with a level of sophistication, as you saw in the previous section. PowerShell provides
a much more convenient (and probably more familiar to many people) way to declare
parameters, which is shown in figure 7.2.

Here’s a simple example of what this looks like in a real function:

function subtract ($from, $count) { $from - $count }

In this function definition, there are two formal parameters: $from and $count.
When the function is called, each actual argument will be bound to the correspond-
ing formal parameter, either by position or by name. What does that mean? Well,
binding by position is obvious:

PS (1) > subtract 5 3
2

In this case, the first argument, 5, is bound to the first formal parameter, $x, and the
second argument is bound to the second parameter, $y. Now let’s look at using the
parameter names as keywords:

PS (2) > subtract -from 5 -count 2
3
PS (3) > subtract -from 4 -count 7
-3

What happens if you try and use the same parameter twice? You’ll receive an error
message that looks like this:

PS (4) > subtract -count 4 -count 7
subtract : Cannot bind parameter because parameter 'count' is
specified more than once. To provide multiple values to parameters that
can accept multiple values, use the array syntax. For example,

function <name> (<parameter list>) { <statementList> }

function keyword

List of parameters

for function

List of statements that make up

function body

Braces marking beginning and end of

function body

Function name

Figure 7.2 The syntax for defining a function with explicit parameters in

PowerShell. The parameter list is optional: you can either have empty

parentheses or omit them, as you saw in figure 7.1.
DECLARING FORMAL PARAMETERS FOR A FUNCTION 241

 "-parameter value1,value2,value3".
At line:1 char:25
+ subtract -count 4 -count <<<< 7

As the message says, you can’t specify a named parameter more than once. So you
now know that there are two ways to match formal parameters with actual argu-
ments. Can you mix and match? Let’s try it:

PS (5) > subtract -from 5 6
-1

You see that it did work as you’d expect. $from is set to 5, $count is set to 6, and you
know that 5 minus 6 is -1. Now change which parameter is named:

PS (6) > subtract -count 5 6
1

Now $count is set to 5 and $from is set to 6. This may seem a bit odd. Let’s dig into
the details of how it works next.

7.2.1 Mixing named and positional parameters

In this section, we’ll explain the rules for how parameters are bound to named and
positional parameters. Any named parameters are bound and then removed from the
list of parameters that still need to be bound. These remaining parameters are then
bound positionally. Now let’s go back to the example function:

function subtract ($from, $count) { $from - $count }

When calling this function, if no named parameters are specified, then $from is posi-
tion 0 and $count is position 1. If you specify –from, then $from is bound by name
and removed from the list of things that need to be bound positionally. This means
that $count, which is normally in position 2, is now in position 1. Got all that? Prob-
ably not, as I have a hard time following it myself. All you need to think about is
whether you’re using named parameters or positional ones. Try to avoid mixing and
matching if possible. If you do want to mix and match, always put the parameters
that you want to specify by name at the end of the parameter list. In other words, put
them at the end of the param statement or the function argument list. That way, they
don’t affect the order of the parameters you want to bind by position. (In chapter 8,
you’ll learn a better way to control how parameters are processed.)

Functions as commands

The way functions are called in PowerShell tends to cause people with prior pro-
gramming experience to make a common error. They see the word function and try
to call a PowerShell function the way they would in whatever other language they’re
used to. So, instead of calling it like a command (which is what functions are), they
try to call it by doing something like this:
subtract(1,2)
242 CHAPTER 7 POWERSHELL FUNCTIONS

So far, all your work has been with typeless parameters, and this has its advantages. It
means that your functions can typically work with a wider variety of data types. But
sometimes you want to make sure that the parameters are of a particular type (or at
least convertible to that type). Although you could do this the hard way and write a
bunch of type-checking code, PowerShell is all about making life easier for the user,
so let’s talk about a better way to do this by specifying typed parameters.

7.2.2 Adding type constraints to parameters

Scripting languages don’t usually allow types to be specified for the parameters to a
function and, as you’ve seen, you don’t have to specify types for PowerShell function
parameters either. But sometimes it can be quite useful because it allows you to catch
type mismatches in function calls earlier and provide better error messages. Adding
type constraints to parameters is what we’ll cover in this section.

To type-constrain a parameter, you provide a type literal before the variable name
in the parameter list. Figure 7.3 shows what this looks like.

(continued)

PowerShell will happily accept this because there’s nothing syntactically wrong with
it. The problem is that the statement is totally wrong semantically. Functions (as
opposed to methods on objects) in PowerShell are commands like any other com-
mand. Arguments to commands are separated by spaces. If you want to provide
multivalued arguments for a single command, then you separate those multiple val-
ues with commas (more on this later). Also, parentheses are only needed if you
want the argument to be evaluated as an expression (see chapter 2 on parsing
modes). So—what this “function call” is actually doing is passing a single argument,
which is an array of two values. And that’s just wrong. Consider yourself warned.
Really. This has tripped up some very smart people. If you remember this discus-
sion, then someday, somewhere, you’ll be able to lord this bit of trivia over your
coworkers, crushing their spirits like—oh—wait—sorry—it’s that darned inner voice
leaking out again…

function <name> ([int] $p1, [datetime] $p2, $p3) { <statementList> }

function keyword

Integer type constraint

for parameter $p1

Function name List of parameter

specifications

Constrains values that $p2 can hold

to be DateTime objects

Function body

Figure 7.3 How type constraints are added to some of the parameters of a function.

Type constraints aren’t required for all parameters; in this case, $p3 is left

unconstrained.
DECLARING FORMAL PARAMETERS FOR A FUNCTION 243

Let’s work through an example. Define a function nadd that takes two parameters
that you’ll constrain to be integers:

PS (1) > function nadd ([int] $x, [int] $y) {$x + $y}

Now use this function to add two numbers:

PS (2) > nadd 1 2
3

Adding 1 and 2 gives 3. No surprise there. Now add two strings:

PS (3) > nadd "1" "2"
3

The answer is still 3. Because of the type constraints on the parameters, numeric
addition is performed even though you passed in two strings. Now let’s see what hap-
pens when you pass in something that can’t be converted to a number:

PS (4) > nadd @{a=1;b=2} "2"
nadd : Cannot convert "System.Collections.Hashtable" to "System.
Int32".
At line:1 char:5
+ nadd <<<< @{a=1;b=2} "2"

You get an error message mentioning where the function was used and why it failed.
Now define another function that doesn’t have the type constraints:

PS (5) > function add ($x, $y) {$x + $y}

Call this function with a hashtable argument:

PS (6) > add @{a=1;b=2} "2"
You can add another hash table only to a hash table.
At line:1 char:28
+ function add ($x, $y) {$x + <<<< $y}

You still get an error, but notice where the error message is reported. Because it hap-
pened in the body of the function, the error message is reported in the function itself,
not where the function was called as it was in the previous function. It’s much more
useful for the user of the function to know where the call that failed was rather than
knowing where in the function it failed.

Now let’s look at the other two examples with the unconstrained function, first
with strings and then with numbers:

PS (7) > add "1" "2"
12
PS (8) > add 1 2
3

This function has the normal polymorphic behavior you expect from PowerShell.
The type-constrained version only worked on numbers. Of course, if the arguments
can be safely converted to numbers, then the operation will proceed. Let’s try the
type-constrained function with strings:
244 CHAPTER 7 POWERSHELL FUNCTIONS

PS (9) > nadd "4" "2"
6

Because the strings “2” and “4” can be safely converted into numbers, they are, and
the operation proceeds. If not, as in the following example,

PS (10) > nadd "4a" "222"
nadd : Cannot convert value "4a" to type "System.Int32". Error:
"Input string was not in a correct format."
At line:1 char:5
+ nadd <<<< "4a" "222"

you’ll get a type-conversion error. In effect, the type constraints on function parame-
ters are really casts, and follow the type-conversion rules described in chapter 3.

When we started our discussion of parameters, you used $args, which was a bit awk-
ward, but it let you specify a variable number of arguments to a function. In the next
section, we’ll see how you can do this even when you have a formal parameter list.

7.2.3 Handling variable numbers of arguments

Now that you know how to create explicit argument specifications, you’re probably
wondering if you can still handle variable numbers of arguments. The answer is, yes.
By default, any remaining arguments that don’t match formal arguments will be cap-
tured in $args. The following example function illustrates this:

PS (11) > function a ($x, $y) {
>> "x is $x"
>> "y is $y"
>> "args is $args"
>> }
>>

Now let’s use it with a single argument:

PS (12) > a 1
x is 1
y is
args is

PowerShell and overloading

If you’re used to traditional object-oriented languages, you might expect to be able to
create overloads for a particular function name by specifying different signatures, but
overloading isn’t supported in PowerShell. If you define a

function a ([int] $b) { }

and later define

function a ([string] $b) { }

the new definition will replace the old definition rather than adding a new overload.
DECLARING FORMAL PARAMETERS FOR A FUNCTION 245

The single argument is bound to $x. $y is initialized to $null and $args has zero
elements in it. Now try it with two arguments:

PS (13) > a 1 2
x is 1
y is 2
args is

This time $x and $y are bound but $args is still empty. Next try it with three argu-
ments, and then with five:

PS (14) > a 1 2 3
x is 1
y is 2
args is 3
PS (15) > a 1 2 3 4 5
x is 1
y is 2
args is 3 4 5

Now you can see that the extra arguments end up in $args.
This automatic handling of excess arguments is useful behavior, but in a lot of cases,

you prefer that extra arguments be treated as an error. One way to make sure that no
extra arguments are passed to your function is to check whether the length of $args
.length is 0 in the function body. If it’s not 0, some arguments were passed. This is,
however, a bit awkward. In chapter 8, we’ll look at a much better way to handle this.

Earlier we mentioned that formal arguments that don’t have corresponding actual
arguments are initialized to $null. Although this is a handy default, it would be
more useful to have a way of initializing the parameters to specific values instead of
having to write a lot of extra code in the body of the function to handle this. We’ll
look at that next.

7.2.4 Initializing function parameters with default values

In this section, we’ll show you how to initialize the values of function parameters.
The syntax for this is shown in figure 7.4.

function <name> ($p1 = <expr1> , $p2 = <expr2> ...) { <statementList> }

function keyword

Parameter name followed by = symbol

followed by expression

Function name
List of parameter

specifications

Additional parameter specifications,

separated by commas

Figure 7.4 The more complex function definition syntax where initializer expressions are

provided for each variable. Note that the initializers are constrained to be expressions, but,

using the subexpression notation, you can put anything here.
246 CHAPTER 7 POWERSHELL FUNCTIONS

Let’s move right into an example:

PS (14) > function add ($x=1, $y=2) { $x + $y }

This function initializes the formal parameters $x to 1 and $y to 2 if no actual
parameters are specified. So when you use it with no arguments

PS (15) > add
3

it returns 3. With one argument

PS (16) > add 5
7

it returns the argument plus 2, which in this case is 7. And finally with two actual
arguments

PS (17) > add 5 5
10

it returns the result of adding them. From this example, it’s obvious that you can ini-
tialize the variable to a constant value. What about something more complex? The
initialization sequence as shown in figure 7.2 says that an initializer can be an expres-
sion. If you remember from chapter 5, an expression can be a subexpression and a
subexpression can contain any PowerShell construct. In other words, an initializer can
do anything: calculate a value, execute a pipeline, reformat your hard drive (not rec-
ommended), or send out for snacks from Tahiti by carrier pigeon (personally, I’ve not
had much luck with this one).

Let’s try this feature out. Define a function that returns the day of the week for a
particular date:

PS (28) > function dow ([datetime] $d = $(get-date))
>> {
>> $d.dayofweek
>> }
>>

This function takes one argument, $d, that’s constrained to be something that
matches a date or time. If no argument is specified, it’s initialized to the result of exe-
cuting the Get-Date cmdlet (which returns today’s date). Now let’s try it out. First
run it with no arguments,

PS (29) > dow
Tuesday

and it prints out what day today is. Then run it with a specific date

PS (30) > dow "jun 2, 2001"
Saturday

and you see that June 2, 2001, was a Saturday. This is a simple example of using a
subexpression to initialize a variable.
DECLARING FORMAL PARAMETERS FOR A FUNCTION 247

7.2.5 Handling mandatory parameters, v1-style

There’s one interesting scenario that we should still talk about. What happens if you
don’t want a default value? In other words, how can you require the user to specify
this value? This is another thing you can use initializer expressions for, though it’s a
bit of a hack.

NOTE This hack was the best way to handle mandatory parameters in
PowerShell v1. It’s not recommended for v2. A much better approach
is to use parameter metadata and the Mandatory property, as described
in chapter 8.

Here’s how it works. Because the variable initializer expression can, by using a subex-
pression notation, be any piece of PowerShell code, you can use it to generate an error
rather than initialize the variable. You’ll do this using the throw statement (we’ll
cover the throw statement in detail in chapter 13). Here’s how you can use the
throw statement to generate the error. First define the function:

PS (31) > function zed ($x=$(throw "need x")) { "x is $x" }

Notice how the throw statement is used in the initializer subexpression for $x. Now
run the function—first with a value to see whether it works properly,

PS (32) > zed 123
x is 123

and then without an argument:

PS (33) > zed
need x
At line:1 char:25
+ function zed ($x=$(throw <<<< "need x")) { "x is $x" }

Without the argument, the initializer statement is executed and this results in an
exception being thrown. This is how you make arguments mandatory in Power-
Shell v1.

Finally, there’s one other thing we need to discuss with function parameters: how
to define what are traditionally called flags or switches in shell languages. In most shell
languages, you often provide just the name of a parameter with arguments to control
a command’s behavior. Let’s see how this is handled in PowerShell.

7.2.6 Using switch parameters to define command switches

In this section, we’re going to cover how to specify switch parameters, but before
we do that, let’s talk a bit more about parameter processing in general. In all shell
environments, commands typically have three kinds of parameters, as shown in
table 7.1.
248 CHAPTER 7 POWERSHELL FUNCTIONS

This pattern holds true for most shells, including cmd.exe, the Korn Shell, and so
on, although the specific details of the syntax may vary. In PowerShell we’ve canoni-
calized things a bit more. In other words, we’ve used formal terms for each of these, as
shown in table 7.2.

Arguments are positional parameters because they’re always associated with a parame-
ter name. But you can leave out the name and the interpreter will figure out what
parameter it is from its position on the command line. For example, in the dir com-
mand, the -path parameter is a positional parameter whose position is 0. Therefore
the command

dir c:\

is equivalent to

dir -path c:\

and the system infers that “c:\” should be associated with -path.
Switch parameters are just the opposite; you specify the parameter but the argu-

ment is left out. The interpreter assigns the parameter a value based on whether the
parameter is present or absent. The -recurse parameter for Get-ChildItem is a
good example. If it’s present, then you’ll get a recursive directory listing starting at
the current directory:

dir -recurse

So how do you indicate that something should be a switch parameter? Because Power-
Shell characteristically uses types to control behavior, it makes sense to indicate that a
parameter is a switch parameter by marking it with the type [switch]. This is illus-
trated in figure 7.5.

Table 7.1 Typical classifications of parameter types found in all command shells

Parameter type Description

Switches Switches are present or absent, such as Get-ChildItem –Recurse.

Options Options take an argument value, such as Get-ChildItem -Filter *.cs.

Arguments These are positional and don’t have a name associated with them.

Table 7.2 Formal names for parameter types in PowerShell

Parameter type Formal name in PowerShell

Switches Switch parameters

Options Parameters

Arguments Positional parameters
DECLARING FORMAL PARAMETERS FOR A FUNCTION 249

Because the value of a switch is highly constrained, initializing switches is neither nec-
essary nor recommended. Here’s an example function that uses a switch parameter:

PS (1) > function get-soup (
>> [switch] $please,
>> [string] $soup= "chicken noodle"
>>)
>> {
>> if ($please) {
>> "Here's your $soup soup"
>> }
>> else
>> {
>> "No soup for you!"
>> }
>> }
>>

Try out this function:

PS (2) > get-soup
No soup for you!
PS (3) > get-soup -please
Here's your chicken noodle soup
PS (4) > get-soup -please tomato
Here's your tomato soup
PS (5) >

So if you say, “please,” you get soup. If not, no soup for you!
Soup or no soup, we’re going to move on with our exploration of switch parame-

ters and take a look at a feature that seems almost contradictory.

Specifying arguments to switch parameters

By definition, switch parameters don’t take arguments. Nonetheless, PowerShell pro-
vides a way to do this. It sounds like a contradiction but it turns out that there’s one
very important scenario where you do need to do exactly this. The case in question
happens when you need to pass the value of a switch parameter on one function to a

function <name> ($p1, [switch] $s1) { <statementList> }

function keyword
Function name

List of parameter

specifications

[switch] type annotation marks

variable $s1 as switch parameter

Figure 7.5 Marking a parameter as a switch or flag by adding the [switch]
type constraint to it
250 CHAPTER 7 POWERSHELL FUNCTIONS

switch parameter on another function. For example, consider a function foo that has
a switch parameter -s. From function bar, you want to call

foo

sometimes and

foo -s

other times, and this will be controlled by a switch parameter on the bar function.
You could use if statements to handle this, but even if there’s only one parameter you
need to pass through this way, you significantly complicate your code. And if there’s
more than one—well, let’s just say it gets ugly very quickly. To avoid this, there’s a fea-
ture in PowerShell designed with exactly this scenario in mind. Here’s how it works.
Although switch parameters don’t require arguments, they can take one if you specify
the parameter with a trailing colon:

dir -recurse: $true

Here’s an example showing how the two functions mentioned previously would
work. You’ll define a bar function that passes its $x switch parameter to the -s switch
parameter on function foo. First define the foo function:

PS (77) > function foo ([switch] $s) { "s is $s" }
PS (78) > foo -s
s is True
PS (79) > foo
s is False

Now define function bar, which will call foo as discussed previously:

PS (80) > function bar ([switch] $x) { "x is $x"; foo -s: $x }

Call bar without passing -x,

PS (81) > bar
x is False
s is False

and you see that $s emitted from foo is false. Now call bar again, but specify -x this
time,

PS (82) > bar -x
x is True
s is True

and you see that specifying -x has caused -s to be set to true as well.
This functions-calling-functions pattern is pretty much the only time you should

ever have to pass an argument to a switch function. As a corollary to this, a script author
should never have to write a function, script, or cmdlet where a switch parameter is ini-
tialized to $true because it makes the commands very hard to use. Switch parameters
are designed so that they need only be present or absent to get the desired effect. If you
do have a situation where you’re considering initializing a switch to $true, you
DECLARING FORMAL PARAMETERS FOR A FUNCTION 251

probably should be using a Boolean parameter instead of a switch parameter. In the
next section, we’ll investigate how these two types of parameters are related.

7.2.7 Switch parameters vs. Boolean parameters

Having both Boolean and switch parameters in PowerShell may seem redun-
dant—both types can only be true or false. But they’re used to solve two quite differ-
ent problems. To reiterate, the important difference between the two is that switch
parameters don’t require an argument and Booleans do. Simply specifying a switch
parameter on the command line is sufficient for PowerShell to know that the param-
eter should be set to true:

PS (1) > function ts ([switch] $x) { [bool] $x }
PS (2) > ts
False
PS (3) > ts -x
True

With the ts function, if -x isn’t present, the return value is $false. If it’s present,
then the return value is $true. For Boolean parameters (identified with the [bool]
type accelerator), an argument must be specified each time the parameter is present.
This is illustrated in the following example:

PS (4) > function tb ([bool] $x) { [bool] $x }
PS (5) > tb
False
PS (6) > tb -x
tb : Missing an argument for parameter 'x'. Specify a parameter of type

'System.Boolean' and try again.
At line:1 char:6
+ tb -x <<<<
 + CategoryInfo : InvalidArgument: (:) [tb],
ParameterBindingException
 + FullyQualifiedErrorId : MissingArgument,tb
PS (7) > tb -x $true
True
PS (8) > tb -x $false
False

With the tb function, if -x isn’t present, the return value is $false. If it’s present but
no argument is specified, an error occurs. If it’s present and a Boolean value is pro-
vided as the argument, then the return value is the same as the argument.

NOTE There’s a characteristic in how Boolean type conversions work
for [bool] parameters that you need to be aware of. The argument to
a [bool] parameter must either be an actual Boolean value ($true,
$false, or the result of an expression that returns a Boolean) or a
number where 0 is treated as $false and non-zero is treated as $true.
This is a departure from how objects are converted to Boolean else-
where in PowerShell. This inconsistency was introduced deliberately
252 CHAPTER 7 POWERSHELL FUNCTIONS

because new PowerShell users would try commands like Get-
Something -boolParameter false and be surprised when -bool-
Parameter ended up being true, not false. (Remember, non-zero-
length strings are considered true everywhere else in the system.) The
cognitive dissonance resulting from having "false" evaluate to $true
was a stumbling block for some new users. To mitigate this, Power-
Shell makes passing anything other than a number or a Boolean value
an error condition. This seems to be the least inconsistent solution
because the new behavior is a proper subset of normal type conversion.

The behavior of switch parameters is specifically designed for creating command
switches. The scenario where you need Boolean parameters is quite different. You use
Boolean parameters when you’re writing a command to change the value of some of
the properties on the object passing through the pipeline. This is part of the common
Get/Update/Set pattern where you get an object from a store, change some properties
on that object, and then pass it to an update command. In this pattern, you only
want to change the value of the property if there’s a corresponding parameter on the
command line. This is where the [bool] parameter is useful—it’s how you handle
this pattern for Boolean properties. If the parameter is present, you want to set the
property on the pipeline object to be the value passed to the parameter. If the para-
meter is absent, then you don’t want to change it. We’ll dig into this a bit more in the
next section, but first we’ll digress for a while to investigate a common configuration
management pattern and how you deal with it in PowerShell.

A digression: the Get/Update/Set pattern

A lot of management data is contained in database-like remote stores. Microsoft
Exchange and Active Directory are two examples of this kind of thing. The character-
istic usage pattern for working with these stores is as follows:

1 Get a record from the remote store.

2 Modify some property or properties on this object.

3 Send the modified object back to the store where the changes are recorded.

For example, when managing Exchange mailboxes, the mailbox objects are retrieved
from the server, modified, and then sent back to the server to update the database.
This is the Get/Update/Set pattern in action. It’s an important enough pattern that
we’re going to work through a somewhat extended example illustrating this approach
in PowerShell. The following listing implements a simple database that contains
information about familiar characters from the comic strips.

$characterData = @{
 "Linus" = @{ age = 8; human = $true}
 "Lucy" = @{ age = 8; human = $true}

Listing 7.1 The Get-Character function

Stores character data in
hashtable of hashtables
DECLARING FORMAL PARAMETERS FOR A FUNCTION 253

 "Snoopy" = @{ age = 2; human = $true}
}

function Get-Character ($name = "*")
{
 foreach ($entry in $characterData.GetEnumerator() | Write-Output)
 {
 if ($entry.Key -like $name)
 {
 $properties = @{ "Name" = $entry.Key } +
 $entry.Value
 New-Object PSCustomObject -Property $properties
 }
 }
}

function Set-Character {
 process {
 $characterData[$_.name] =
 @{
 age = $_.age
 human = $_.human
 }
 }
}

function Update-Character (
 [string] $name = '*',
 [int] $age,
 [bool] $human
)
{
 begin
 {
 if ($PSBoundParameters."name")
 {
 $name = $PSBoundParameters.name
 [void] $PSBoundParameters.Remove("name")
 }
 }
 process
 {
 if ($_.name -like $name)
 {
 foreach ($p in $PSBoundParameters.GetEnumerator())
 {
 $_.($p.Key) = $p.value
 }
 }
 $_
 }
}

NOTE To make this example work, you need to use a few features
that haven’t been covered yet: the process keyword used in Update-
Character, custom objects, and the $PSBoundParameters automatic

Gets data
from table

Builds merged
hashtable

Emits character
record

Processes record;
updates character entry

Updates properties
on object
254 CHAPTER 7 POWERSHELL FUNCTIONS

variable. We’ll cover the process keyword later in this chapter and the
$PSBoundParameters is discussed in chapter 8. This variable is key to
making this example work as it lets you see which parameters were
specified on the command line. Creating custom objects using the
New-Object command is explored in chapter 11. Of these features,
only the process keyword is available in v1. The others are only avail-
able in v2.

In this example, the character data is stored in nested hashtables, making it easy to
access by name. The Get-Character function retrieves characters from the table and
emits custom objects for each character. The Set-Character data reverses this pro-
cess and uses the inbound records to update the character table. The Update-
Character function is where you see the use case for Boolean parameters mentioned
in the previous section. Let’s apply this code to manage your character database. First
you’ll get a listing of all the characters in the table:

PS (1) > Get-Character | Format-Table -auto

human Name age
----- ---- ---
 True Snoopy 2
 True Lucy 8
 True Linus 8

You’re passing the output of Get-Character through Format-Table -auto to get a
nice, concise table showing the character data. Immediately you see that there’s a
problem with this data. It lists Snoopy as being human even though you know he’s a
dog (well, at least if you’re a Peanuts fan). You’ll need to use the Update-Character
function to fix this:

PS (2) > Get-Character |
>> Update-Character -name snoopy -human $false |
>> Format-Table -auto
>>

human Name age
----- ---- ---
False Snoopy 2
 True Lucy 8
 True Linus 8

Note that you haven’t updated the table yet—you’re just looking at how the updated
table will look. You can verify the data hasn’t changed by calling Get-Character again:

PS (3) > Get-Character | Format-Table -auto

human Name age
----- ---- ---
 True Snoopy 2
 True Lucy 8
 True Linus 8
DECLARING FORMAL PARAMETERS FOR A FUNCTION 255

Now do the Set part of Get/Update/Set:

PS (4) > Get-Character |
>> Update-Character -name snoopy -human $false |
>> Set-Character
>>

Then, dump the table to verify that change:

PS (5) > Get-Character | Format-Table -auto

human Name age
----- ---- ---
False Snoopy 2
 True Lucy 8
 True Linus 8

Now Snoopy is no longer marked as human. But there’s also something else you want
to check on. You’ll dump the records that show the data for characters whose names
begin with L:

PS (6) > Get-Character L* | Format-Table -auto

human Name age
----- ---- ---
 True Lucy 8
 True Linus 8

And there’s the problem: the table lists Lucy and Linus as being the same age. Because
Linus is Lucy’s younger brother, you know the current age property must be wrong.
Again you’ll use Update-Character piped to Set-Character to update the data,
correcting the character’s age:

PS (7) > Get-Character Linus |
>> Update-Character -age 7 |
>> Set-Character
>>
PS (8) > Get-Character | Format-Table -auto

human Name age
----- ---- ---
False Snoopy 2
 True Lucy 8
 True Linus 7

Now the table is correct.
In this extended example, you looked at a common pattern for working with

management data—Get/Update/Set—which you’re likely to run into many times
doing systems management. In the process, we demonstrated the reason for Boolean
parameters being distinct from switch parameters: they address two quite different
usage patterns.
256 CHAPTER 7 POWERSHELL FUNCTIONS

By now, you’ve probably had enough discussion on how stuff gets passed into
functions. Let’s talk about how stuff comes out of functions instead. In the next sec-
tion, we’ll look at the various ways objects can be returned from functions.

7.3 RETURNING VALUES FROM FUNCTIONS

Now it’s time to talk about returning values from functions. We’ve been doing this all
along, but there’s something we need to highlight. Because PowerShell is a shell, it
doesn’t return results—it writes output or emits objects. As you’ve seen, the result of
any expression or pipeline is to emit the result object to the caller. At the command
line, if you type three expressions separated by semicolons, the results of all three
statements are output:

PS (1) > 2+2; 9/3; [math]::sqrt(27)
4
3
5.19615242270663

In this example, there are three statements in the list, so three numbers are displayed.
Now let’s put this into a function:

PS (2) > function numbers { 2+2; 9/3; [math]::sqrt(27) }

Now run that function:

PS (3) > numbers
4
3
5.19615242270663

Just as when you typed it on the command line, three numbers are output. Now run
it and assign the results to a variable:

PS (4) > $result = numbers

Then, check the content of that variable:

PS (5) > $result.length
3
PS (6) > $result[0]
4
PS (7) > $result[1]
3
PS (8) > $result[2]
5.19615242270663

From the output, you can see that $result contains an array with three values in it.
Here’s what happened. As each statement in the function was executed, the result of
that statement was captured in an array, and then that array was stored in $result.
The easiest way to understand this is to imagine variable assignments working like
redirection, except the result is stored in a variable instead of in a file.
RETURNING VALUES FROM FUNCTIONS 257

Let’s try something more complex. The goal here is twofold. First, you want to
increase your understanding of how function output works. Second, you want to
see how to take advantage of this feature to simplify your scripts and improve
performance.

Let’s redefine the function numbers to use a while loop that generates the num-
bers 1 to 10:

PS (11) > function numbers
>> {
>> $i=1
>> while ($i -le 10)
>> {
>> $i
>> $i++
>> }
>> }
>>

Now run it:

PS (12) > numbers
1
2
3
4
5
6
7
8
9
10

Capture the results in a variable:

PS (13) > $result = numbers

What ended up in the variable? First check the type

PS (14) > $result.gettype().fullname
System.Object[]

and the length:

PS (15) > $result.length
10

The output of the function ended up in an array of elements, even though you never
mentioned an array anywhere. This should look familiar by now, because we talked
about it extensively in chapter 5 in our discussion of arrays. The PowerShell runtime
will spontaneously create a collection when needed. Compare this to the way you’d
write this function in a traditional language. Let’s rewrite this as a new function,
tradnum. In the traditional approach, you have to initialize a result variable,
258 CHAPTER 7 POWERSHELL FUNCTIONS

$result, to hold the array being produced, add each element to the array, and then
emit the array:

PS (16) > function tradnum
>> {
>> $result = @()
>> $i=1
>> while ($i -le 10)
>> {
>> $result += $i
>> $i++
>> }
>> $result
>> }
>>

This code is significantly more complex: you have to manage two variables in the func-
tion now instead of one. If you were writing in a language that didn’t automatically
extend the size of the array, it would be even more complicated, as you’d have to add
code to resize the array manually. And even though PowerShell will automatically resize
the array, it’s not efficient compared to capturing the streamed output. The point is to
make you think about how you can use the facilities that PowerShell offers to improve
your code. If you find yourself writing code that explicitly constructs arrays, consider
looking at it to see if it can be rewritten to take advantage of streaming instead.

Of course, every silver lining has a cloud. As wonderful as all this automatic col-
lecting of output is, there are some potential pitfalls. Sometimes you’ll find things in
the output collection that you didn’t expect and have no idea how they got there.
This can be hard (and frustrating) to figure out. In the next section we’ll explore the
reasons why this might happen and you’ll learn how to go about debugging the prob-
lem if you encounter it.

7.3.1 Debugging problems in function output

When writing a function, there’s something you need to keep in mind that’s specific
to shell environments. The result of all statements executed will appear in the output
of the function. This means that if you add debug message statements that write to
the output stream to your function, this debug output will be mixed into the actual
output of the function.

NOTE In text-based shells, the usual way to work around mixing
debug information with output is to write the debug messages to the
error stream (stderr). This works fine when the error stream is simple
text; however, in PowerShell, the error stream is composed of error
objects. All the extra information in these objects, while great for
errors, makes them unpalatable for writing simple debug messages.
There are better ways of handling this, as you’ll see in chapter 9 when
we talk about debugging.
RETURNING VALUES FROM FUNCTIONS 259

Here’s an example function where we’ve added a couple of debug statements:

PS (1) > function my-func ($x) {
>> "Getting the date"
>> $x = get-date
>> "Date was $x, now getting the day"
>> $day = $x.day
>> "Returning the day"
>> $day
>> }
>>

Let’s run the function:

PS (2) > my-func
Getting the date
Date was 5/17/2006 10:39:39 PM, now getting the day
Returning the day
17

You see the debug output as well as the result. That’s fine—that’s the point of debug-
ging messages. But now let’s capture the output of the function into a variable:

PS (3) > $x = my-func

This time you see no output, which is expected, but neither do you see the debugging
messages and that wasn’t expected or desired. Take a look at what ended up in $x:

PS (4) > $x
Getting the date
Date was 5/17/2006 10:39:39 PM, now getting the day
Returning the day
17

You see that everything is there: output and debug, all mixed together. This is a trivial
example and I’m sure it feels like we’re beating the issue to death, but this is the kind
of thing that leads to those head-slapping how-could-I-be-so-dumb moments in
which you’ll be writing a complex script and wonder why the output looks funny.
Then you’ll remember that debugging statement you forgot to take out. “Duh!” you
cry, “How could I be so dumb!”

NOTE This, of course, isn’t exclusive to PowerShell. Back before the
advent of good debuggers, people would do printf-debugging
(named after the printf output function in C). It wasn’t uncommon
to see stray output in programs because of this. Now, with good
debuggers, stray output is pretty infrequent. PowerShell provides
debugging features (which we’ll cover in chapters 14 and 15) that you
can use instead of printf -debugging. In particular, the Integrated
Scripting Environment (ISE) included with PowerShell v2 has a built-
in graphical debugger for scripts.
260 CHAPTER 7 POWERSHELL FUNCTIONS

Another thing to be careful about is operations that emit objects when you don’t
expect them to. This is particularly important to keep in mind if you use a lot of
.NET methods in your scripts. The problem is that many of these methods return val-
ues that you don’t need or care about. This isn’t an issue with languages like C#
because the default behavior in these languages is to discard the result of an expres-
sion. In PowerShell, though, the default is to always emit the result of an expression;
consequently, these method results unexpectedly appear in your output. One of the
most common times when people encounter this problem is when using the Sys-
tem.Collections.ArrayList class. The Add() method on this class helpfully
returns the index of the object that was added by the call to Add() (I’m aware of no
actual use for this feature—it probably seemed like a good idea at the time). This
behavior looks like this:

PS (1) > $al = new-object system.collections.arraylist
PS (2) > $al.count
0
PS (3) > $al.add(1)
0
PS (4) > $al.add(2)
1
PS (5) > $al.add(3)
2

Every time you call Add(), a number displaying the index of the added element is
emitted. Now say you write a function that copies its arguments into an ArrayList.
This might look like

PS (6) > function addArgsToArrayList {
>> $al = new-object System.Collections.ArrayList
>> $args | foreach { $al.add($_) }
>> }
>>

It’s a pretty simple function, but what happens when you run it? Take a look:

PS (7) > addArgsToArrayList a b c d
0
1
2
3

As you can see, every time you call Add(), a number gets returned. This isn’t very
helpful. To make it work properly, you need to discard this undesired output. Let’s fix
this. Here’s the revised function definition:

PS (8) > function addArgsToArrayList {
>> $al = new-object System.Collections.ArrayList
>> $args | foreach { [void] $al.add($_) }
>> }
>>
RETURNING VALUES FROM FUNCTIONS 261

It looks exactly like the previous one except for the cast to void in the third line. Now
let’s try it out:

PS (9) > addArgsToArrayList a b c d
PS (10) >

This time you don’t see any output, as desired. This is a tip to keep in mind when
working with .NET classes in functions.

7.3.2 The return statement

Now that you’ve got your output all debugged and cleaned up, let’s talk about Power-
Shell’s return statement. Yes, PowerShell does have a return statement, and yes, it’s
similar to the return statement in other languages. But remember—similar isn’t the
same.

Remember we talked about how functions in PowerShell are best described as writ-
ing output rather than returning results? So why, then, does PowerShell need a return
statement? The answer is, flow control. Sometimes you want to exit a function early.
Without a return statement, you’d have to write complex conditional statements to
get the flow of control to reach the end. In effect, the return statement is like the break
statement we covered in chapter 6—it “breaks” to the end of the function.

The next question is, is it possible to “return” a value from a function using the
return statement? The answer is, yes. This looks like

return 2+2

which is really just shorthand for

Write-Output (2+2) ; return

The return statement is included in PowerShell because it’s a common pattern that
programmers expect to have. Unfortunately, it can sometimes lead to confusion for
new users and nonprogrammers. They forget that, because PowerShell is a shell, every
statement emits values into the output stream. Using the return statement can make
this somewhat less obvious. Because of this potential for confusion, you should gener-
ally avoid using the return statement unless you need it to make your logic simpler.
Even then, you should probably avoid using it to return a value. The one circum-
stance where it makes sense is in a “pure” function where you’re only returning a sin-
gle value. For example, look at this recursive definition of the factorial function:

PS (5) > function fact ($x) {
>> if ($x -lt 2) {return 1}
>> $x * (fact ($x-1))
>> }
>>
PS (6) > fact 3
6

This is a simple function that returns a single value with no side effects. In this case, it
makes sense to use the return statement with a value.
262 CHAPTER 7 POWERSHELL FUNCTIONS

7.4 USING SIMPLE FUNCTIONS IN A PIPELINE

So far, we’ve only talked about using functions as stand-alone statements. But what
about using functions in pipelines? After all, PowerShell is all about pipelines, so
shouldn’t you be able to use functions in pipelines? Of course, the answer is, yes, with
some considerations that need to be taken into account. The nature of a function is
to take a set of inputs, process it, and produce a result. So how do you make the
stream of objects from the pipeline available in a function? This is accomplished
through the $input variable. When a function is used in a pipeline, a special variable,
$input, is available that contains an enumerator that allows you to process through
the input collection. Let’s see how this works:

PS (1) > function sum {
>> $total=0;
>> foreach ($n in $input) { $total += $n }
>> $total
>> }
>>

A function sum is defined that takes no arguments but has one implied argument,
which is $input. It will add each of the elements in $input to $total and then
return $total. In other words, it will return the sum of all the input objects. Let’s try
this on a collection of numbers:

PS (2) > 1..5 | sum
15

Clearly it works as intended.
We said that $input is an enumerator. You may remember our discussion of enu-

merators from chapter 6 when we talked about the $foreach and $switch variables.
The same principles apply here. You move the enumerator to the next element using

Factorial facts

The factorial of a number x is the product of all positive numbers less than or equal
to x. Therefore, the factorial of 6 is

6 * 5 * 4 * 3 * 2 * 1

which is really

6 * (fact 5)

which, in turn, is

6 * 5 * (fact 4)

and so on down to 1.
Factorials are useful in calculating permutations. Understanding permutations is use-
ful if you’re playing poker. This should not be construed as an endorsement for
poker—it’s just kind of cool. Bill Gates plays bridge.
USING SIMPLE FUNCTIONS IN A PIPELINE 263

the MoveNext() method and get the current element using the Current property.
Here’s the sum function rewritten using the enumerator members directly:

PS (3) > function sum2 {
>> $total=0
>> while ($input.movenext())
>> {
>> $total += $input.Current
>> }
>> $total
>> }
>>

Of course, it produces the same result:

PS (4) > 1..5 | sum2
15

Now write a variation of this that works with something other than numbers. This
time you’ll write a function that has a formal parameter and also processes input. The
parameter will be the name of the property on the input object to sum up. Here’s the
function definition:

PS (7) > function sum3 ($p)
>> {
>> $total=0
>> while ($input.MoveNext())
>> {
>> $total += $input.current.$p
>> }
>> $total
>> }
>>

In line 6 of the function, you can see the expression $input.current.$p. This expres-
sion returns the value of the property named by $p on the current object in the enu-
meration. Use this function to sum the lengths of the files in the current directory:

PS (8) > dir | sum3 length
9111

You invoke the function passing in the string “length” as the name of the property to
sum. The result is the total of the lengths of all of the files in the current directory.

This shows that it’s pretty easy to write functions that you can use in a pipeline,
but there’s one thing we haven’t touched on. Because functions run all at once, they
can’t do streaming processing. In the previous example, where you piped the output
of dir into the function, what happened was that the dir cmdlet ran to completion
and the accumulated results from that were passed as a collection to the function. So
how can you use functions more effectively in a pipeline? That’s what we’ll cover next
when we talk about the concept of filters.
264 CHAPTER 7 POWERSHELL FUNCTIONS

7.4.1 Filters and functions

In this section, we’ll talk about filters and the filter keyword. Filters are a variation
on the general concept of functions. Where a function in a pipeline runs once, a filter
is run for each input object coming from the pipeline. The general form of a filter is
shown in figure 7.6. PowerShell includes a filter keyword to make it easy to define
this type of function.

As you can see, the only syntactic difference between a function and a filter is the
keyword. The significant differences are all semantic. A function runs once and runs
to completion. When used in a pipeline, it halts streaming—the previous element in
the pipeline runs to completion; only then does the function begin to run. It also has
a special variable $input defined when used as anything other than the first element
of the pipeline. By contrast, a filter is run once and to completion for each element in
the pipeline. Instead of the variable $input, it has a special variable, $_, that contains
the current pipeline object.

At this point, we should look at an example to see what all this means. First, write
a filter to double the value of all the input objects:

PS (1) > filter double {$_*2}
PS (2) > 1..5 | double
2
4
6
8
10

You should now be feeling a nagging sense of déjà vu. A little voice should be telling
you, “I’ve seen this before.” Remember the ForEach-Object cmdlet from chapter 6?

PS (3) > 1..5 | foreach {$_*2}
2
4
6
8
10

filter <name> (<parameter list>) { <statementList> }

filter keyword

List of parameters

for filter

List of statements that

make up filter body

Braces marking beginning and

end of filter body

Filter name

Figure 7.6 Defining a filter in PowerShell. The syntax is identical to the basic function

definition except that it uses the filter keyword instead of the function keyword.
USING SIMPLE FUNCTIONS IN A PIPELINE 265

The ForEach-Object cmdlet is, in effect, a way of running an anonymous filter. By
anonymous, we mean that you don’t have to give it a name or predefine it. You just
use it when you need it.

NOTE When we first created PowerShell, we thought this shortcut
way to create named filters would be useful. In fact, we were wrong
and this keyword is rarely used. The foreach cmdlet and the process
block in functions that you’ll see in the next section pretty much elim-
inated the need for the keyword. Of course, we can’t take it out
because someone somewhere will have a script that uses it and we don’t
want to break existing scripts.

Functions in a pipeline run when all the input has been gathered. Filters run once for
each element in the pipeline. In the next section, we’ll talk about generalizing the role
of a function so that it can be a first-class participant in a pipeline.

7.4.2 Functions with begin, process, and end blocks

You’ve seen how to write a function that sums up values in a pipeline but can’t
stream results. And you’ve seen how to write a filter to calculate the sum of values in
a pipeline, but filters have problems with setting up initial values for variables or
conducting processing after all the objects have been received. It would be nice if you
could write user-defined cmdlets that can initialize some state at the beginning of the
pipeline, process each object as it’s received, then do cleanup work at the end of the
pipeline. And of course you can. The full structure of a function cmdlet is shown in
figure 7.7.

In figure 7.7 you see that you can define a clause for each phase of the cmdlet pro-
cessing. This is exactly like the phases used in a compiled cmdlet, as mentioned in
chapter 2. The begin keyword specifies the clause to run before the first pipeline

function <name> (<parameter list>)
{

begin {
<statementList>

}
process {

<statementList>
}
end {

<statementList>
}

}

function keyword
Function name

List of formal

parameters to function

Statements to process

in begin phase

Statements to process

for each pipeline object

Statements to process

during end phase

Figure 7.7 The complete function definition syntax for a function in PowerShell

that will have cmdlet-like behavior
266 CHAPTER 7 POWERSHELL FUNCTIONS

object is available. The process clause is executed once for each object in the pipeline,
and the end clause is run once all the objects have been processed.

As with filters, the current pipeline object is available in the process clause in the
special variable $_. As always, an example is the best way to illustrate this:

PS (1) > function my-cmdlet ($x) {
>> begin {$c=0; "In Begin, c is $c, x is $x"}
>> process {$c++; "In Process, c is $c, x is $x, `$_ is $_"}
>> end {"In End, c is $c, x is $x"}
>> }
>>

You define all three clauses in this function. Each clause reports what it is and then
prints out the values of some variables. The variable $x comes from the command
line; the variable $c is defined in the begin clause, incremented in the process clause,
and displayed again in the end clause. The process clause also displays the value of the
current pipeline object. Now let’s run it. You’ll pass the numbers 1 through 3 in
through the pipeline and give it the argument 22 to use for $x. Here’s what the out-
put looks like:

PS (2) > 1,2,3 | my-cmdlet 22
In Begin, c is 0, x is 22
In Process, c is 1, x is 22, $_ is 1
In Process, c is 2, x is 22, $_ is 2
In Process, c is 3, x is 22, $_ is 3
In End, c is 3, x is 22

As you can see, the argument 22 is available in all three clauses and the value of $c is
also maintained across all three clauses. What happens if there’s no pipeline input?
Let’s try it:

PS (3) > my-cmdlet 33
In Begin, c is 0, x is 33
In Process, c is 1, x is 33, $_ is
In End, c is 1, x is 33

Even if there’s no pipeline input, the process clause is still run exactly once. Of course,
you don’t have to specify all three of the clauses. If you specify only the process clause,
you might as well just use the filter keyword, because the two are identical.

If you’ve been following along with the examples in this chapter, by now you’ll
have created quite a number of functions. Care to guess how to find out what you’ve
defined?

7.5 MANAGING FUNCTION DEFINITIONS IN A SESSION

Because it’s easy to create functions in PowerShell, it also needs to be easy to manage
those functions. Rather than provide a custom set of commands (or worse yet, a set of
keywords) to manage functions, you can take advantage of the namespace capabilities
in PowerShell and provide a function drive. Because it’s mapped as a drive, you can
MANAGING FUNCTION DEFINITIONS IN A SESSION 267

get a list of functions the same way you get a listing of the contents of any other drive.
Let’s use dir to find out about the mkdir function:

PS (7) > dir function:\mkdir

CommandType Name Definition
----------- ---- ----------
Function mkdir param([string[]]$pat...

By doing a dir of the path function:\mkdir, you can see mkdir exists and is a
function. Wildcards can be used, so you could’ve just written mk* as shown:

PS (8) > dir function:\mk*

CommandType Name Definition
----------- ---- ----------
Function mkdir param([string[]]$pat...

And, if you just do dir on the function drive, you’ll get a complete listing of all func-
tions. Let’s do this but just get a count of the number of functions:

PS (9) > (dir function:\).count
78

In my environment, I have 78 functions defined. Now let’s create a new one,

PS (10) > function clippy { "I see you're writing a function." }

and check the count again:

PS (11) > (dir function:\).count
79

Yes—there’s one more function than was there previously. Now check for the func-
tion itself:

PS (12) > dir function:\clippy

CommandType Name Definition
----------- ---- ----------
Function clippy "I see you're writin...

Running dir on function:clippy gives you the function definition entry for this
function.

Now that you know how to add functions to your session, let’s see how to remove
them. You’ll remove the clippy function you just created. Because you’re removing
an item from the function: drive, you’ll remove the function the same way you’d
remove a file from a file system drive with the Remove-Item command:

PS (13) > Remove-Item function:/clippy

And make sure that it’s gone:

PS (14) > (dir function:/).count
78
268 CHAPTER 7 POWERSHELL FUNCTIONS

PS (15) > dir function:clippy
Get-ChildItem : Cannot find path 'clippy' because it does not ex
ist.
At line:1 char:4
+ dir <<<< function:clippie

Yes! You’ve removed clippy from the system.

NOTE Longtime Microsoft Office users will no doubt be feeling an
intense burst of satisfaction with this last example. We’ve all longed to
eradicate that annoying paperclip “assistant,” and at last we have the
pleasure, if in name only. And, even more amusing: Microsoft Word
doesn’t even recognize “clippy”—it keeps trying to autocorrect to
“clippie.” Some unresolved issues, perhaps?

The techniques we’ve covered in this section allow you to manipulate the functions
defined in your current session. As with any drive, you can list the functions, create
new ones, delete them, and rename them. But regardless, all these functions will dis-
appear when the session ends when you exit PowerShell. What about “permanent”
functions? How can you define functions that are always available? This is where
scripts come in, as you’ll see in chapter 8. In the meantime, there’s one more topic
that impacts how functions work: variable scoping and lifetime. We’ve ignored it so
far but we do need to cover it in some depth. So let’s begin now.

7.6 VARIABLE SCOPING IN FUNCTIONS

In the final section of this chapter, we’re going to cover the lifetime of variables. So far
we’ve just ignored when variables are created, but there are specific rules that cover
this. These rules govern when variables come into existence and where they’re visible.
The set or rules that cover variable lifetime and visibility are called the scoping rules of
the language.

First, let’s introduce some terminology for our discussion. In programming lan-
guage design, there are two general approaches to scoping—lexical and dynamic.
Most programming languages and many scripting languages are lexically scoped. In a
lexically scoped language, it’s where the name of something is defined that matters.
Names are visible in the block they’re defined in and in any nested blocks, but aren’t
visible outside the enclosing block unless they’re explicitly exported in some way.
Because where they’re defined controls the visibility for the variable, this is deter-
mined at “compile” time and is therefore called lexical (or sometimes static) scoping.

On the other hand, dynamic scoping involves when the variable is defined. In other
words, the visibility of the variable is controlled by the runtime or dynamic behavior
of the program, not the compile-time or static behavior (hence the term dynamic).

NOTE For the language folks in the audience, PowerShell actually uses
a variation on traditional dynamic scoping: hygienic dynamic scoping.
This has also been called dynamic scoping with implicit let binding (if you
VARIABLE SCOPING IN FUNCTIONS 269

care.) This significant difference is in how assignment is done. In tradi-
tional dynamic scoping, if a variable exists in an outer scope, then it will
be assigned to the current scope. In PowerShell, even if there’s an exist-
ing variable in an outer scope, a new local variable will be created on first
assignment. This guarantees that a function, in the absence of scope
modifiers, won’t mess up the calling scopes (hence the term hygienic).

7.6.1 Declaring variables

Ignoring function parameters (which are a form of declaration), PowerShell has no
variable declaration statement. In contrast to a language like Visual Basic, which uses
Dim to declare a variable, in PowerShell a variable simply comes into existence on first
assignment. We discussed this in chapter 5, but it’s more important now. Figure 7.8
shows a diagram of how variable names are resolved in PowerShell.

Let’s look at an example. First define two simple functions, one and two:

PS (1) > function one { "x is $x" }
PS (2) > function two { $x = 22; one }

Function one prints out a string displaying the value of $x. Function two sets the
variable $x to a particular value, and then calls function one. Now let’s try them out.
Before you work with the functions, set $x to 7 interactively, to help illustrate how
scoping works:

PS (3) > $x=7

Now call function one:

PS (4) > one
x is 7

Function scope:

function one { "x is $x y is $y" }
returns “x is 22 y is 2”

Global scope:

$x = 7; $y = 2

Function scope:

function two { $x = 22; one }

css

itc

y

c

ppoo

2

User calls function two

two calls one

Figure 7.8 How variables are resolved across different scopes. They’re resolved first in

the local scope, then in the immediate caller’s scope, and so on until the global scope is

reached. In this case, lookup of $x resolves to 22 in the scope for function one. Lookup

of $y resolves to 2 in the global scope, resulting in the output string “x is 22 y is 2”.
270 CHAPTER 7 POWERSHELL FUNCTIONS

As expected, it prints x is 7. Now call function two:

PS (5) > two
x is 22

Not surprisingly, because two sets $x to 22 before calling one, you see x is 22

returned. So what happened to $x? Let’s check:

PS (6) > $x
7

It’s still 7! Now call one again:

PS (7) > one
x is 7

It prints x is 7. So what exactly happened here? When you first assigned 7 to $x,
you created a new global variable, $x. When you called function one the first time, it
looked for a variable $x, found the global definition, and used that to print the mes-
sage. When you called function two, it defined a new local variable called $x before
calling one. This variable is local—that is, it didn’t change the value of the global $x,
but it did put a new $x on the scope stack. When it called one, this function searched
up the scope stack looking for $x, found the new variable created by function two,
and used that to print x is 22. On return from function two, the scope containing
its definition of $x was discarded. The next time you called function one, it found
the top-level definition of $x. Now let’s compare this to a language that’s lexically
scoped. I happen to have Python installed on my computer, so from PowerShell, I’ll
start the Python interpreter:

PS (1) > python
Python 2.2.3 (#42, May 30 2003, 18:12:08) [MSC 32 bit (Intel)] on
 win32
Type "help", "copyright", "credits" or "license" for more informa
tion.

Now let’s set the global variable x to 7. (Note—even if you aren’t familiar with
Python, these examples are very simple, so you shouldn’t have a problem following
them.)

>>> x=7

Now print x to make sure it was properly set:

>>> print x
7

You see that it is, in fact, 7. Now let’s define a Python function one:

>>> def one():
... print "x is " + str(x)
...
VARIABLE SCOPING IN FUNCTIONS 271

And now define another function two that sets x to 22 and then calls one:

>>> def two():
... x=22
... one()
...

As with the PowerShell example, one prints x is 7.

>>> one()
x is 7

Now call two:

>>> two()
x is 7

Even though two defines x to be 22, when it calls one, one still prints 7. This is
because the local variable x isn’t lexically visible to one—it will always use the value of
the global x, which you can see hasn’t changed:

>>> print x
7
>>>

At this point, I hope you have a basic understanding of how variables are looked up
in PowerShell. Sometimes, though, you want to be able to override the default lookup
behavior. We’ll discuss this in the next section.

NOTE Unix shells used dynamic scoping because they didn’t have a
choice. Each script is executed in its own process and receives a copy of
the parent’s environment. Any environment variables that a script
defines will then be inherited by any child scripts that it, in turn, calls.
The process-based nature of the Unix shells predetermines how scop-
ing can work. The interesting thing is that these semantics are pretty
much what PowerShell uses, even though the PowerShell team wasn’t
limited by the process boundary. The team tried a number of different
schemes and the only one that was satisfactory was the one that most
closely mimicked traditional shell semantics. I suppose this shouldn’t
be a surprise—it’s worked well for several decades now.

7.6.2 Using variable scope modifiers

We’ve now arrived at the subject of variable scope modifiers. In the previous section
we discussed scope and the default PowerShell lookup algorithm. Now you’ll see that
you can override the default lookup by using a scope modifier. These modifiers look
like the namespace qualifiers mentioned in chapter 6. To access a global variable
$var, you’d write

$global:var
272 CHAPTER 7 POWERSHELL FUNCTIONS

Let’s revisit the functions from the previous section:

PS (1) > function one { "x is $global:x" }

This time, in the function one, you’ll use the scope modifier to explicitly reference
the global $x:

PS (2) > function two { $x = 22; one }

The definition of function two is unchanged. Now set the global $x to 7 (com-
mands at the top level always set global variables, so you don’t need to use the
global modifier):

PS (3) > $x=7

Now run the functions:

PS (4) > one
x is 7
PS (5) > two
x is 7

This time, because you told one to bypass searching the scope change for $x and go
directly to the global variable, calls to both one and two return the same result,
x is 7.

When we look at scripts in chapter 8, you’ll see that there are additional scoping
rules and qualifiers, but for now, you have all you need to work with functions.

In the next chapter, you’ll extend your PowerShell programming knowledge to
include writing scripts. We’ll also look at some of the advanced features in Power-
Shell, especially new features introduced with PowerShell v2 that you can use for
your work.

7.7 SUMMARY

This chapter introduced the idea of programming in PowerShell. We covered a lot of
material; here are the key points:

• PowerShell programming can be done either with functions or scripts, though
in this chapter we focused only on functions.

• Functions are created using the function keyword.

• The simplest form of function uses $args to receive parameters automatically.

• More sophisticated parameter handling for functions requires the use of param-
eter declarations. This can be done by placing the parameter names in parenthe-
ses after the name of the function or in the body of the function using the
param keyword.

• PowerShell uses dynamic scoping for variables. You can modify how a variable
name is resolved by using the scope modifiers in the variable names.
SUMMARY 273

• Functions stream their output. In other words, they return the results of every
statement executed as though it were written to the output stream. This feature
means that you almost never have to write your own code to accumulate results.

• Because of the differences between how functions work in PowerShell and how
they work in more conventional languages, you may receive some unexpected
results when creating your functions, so you picked up some tips on debugging
these problems.

• Functions can be used as filters using the filter keyword or by specifying
begin, process, and end blocks in the function body.

• The function: drive is used to manage the functions defined in your session.
This means that you use the same commands you use for managing files to
manage functions.
274 CHAPTER 7 POWERSHELL FUNCTIONS

C H A P T E R 8

Advanced functions
and scripts

8.1 PowerShell scripts 276
8.2 Writing advanced functions and

scripts 287
8.3 Dynamic parameters and dynamic-

Param 311

8.4 Documenting functions and
scripts 314

8.5 Summary 321
And now for something completely different…
 —Monty Python

In chapter 7, we introduced the basic elements needed for programming in Power-
Shell when we looked at PowerShell functions. In this chapter we’re going to expand
our repertoire by introducing PowerShell scripts.

NOTE If you skipped chapter 7, you should probably go back and
read it before proceeding. Why? Because all the material we covered on
functions also applies to scripts.

Once we’re finished with the basics of scripts (which won’t take long), we’ll move on
to the advanced production scripting features introduced in PowerShell v2. With
these new features, it’s possible to use the PowerShell language to write full-featured
applications complete with proper documentation. By the end of this chapter, you
should be well on your way to becoming an expert PowerShell programmer.
275

8.1 POWERSHELL SCRIPTS

In this section we’re going to dig into scripts to see what behaviors they have in com-
mon with functions and what additional features you need to be aware of. We’ll begin
by looking at the execution policy that controls what scripts can be run. Then you’ll
see how parameters and the exit statement work in scripts. We’ll also spend some
time on the additional scoping rules that scripts introduce. Finally, you’ll learn ways
you can apply and manage the scripts you write.

Let’s begin with defining what a script is. A PowerShell script is simply a file with
a .ps1 extension that contains some PowerShell commands. Back in chapter 1, we
talked about how PowerShell has the world’s shortest “Hello world” program. The
full text of that script was

"Hello world"

That’s it—one line. Let’s create this script now. You can do it from the command line
using redirection to write the script text to a file called hello.ps1:

PS (2) > '"Hello world"' > hello.ps1

Note the double quotes in the example. You want the script to contain

"Hello world"

with the quotes intact, not

Hello world

Now execute the script:

PS (3) > ./hello.ps1
Hello world

You see that the file executed and returned the expected phrase.

NOTE In this example, even though hello.ps1 is in the current direc-
tory, you had to put ./ in front of it to run it. This is because Power-
Shell doesn’t execute commands out of the current directory by
default. This prevents accidental execution of the wrong command.
See chapter 13 on security for more information.

8.1.1 Script execution policy

Now there’s a possibility that instead of getting the expected output, you received a
nasty-looking error message that looked something like this:

PS (5) > ./hello.ps1
The file C:\Documents and Settings\brucepay\hello.ps1 cannot be
loaded. The file C:\Documents and Settings\brucepay\hello.ps1 is
 not digitally signed. The script will not execute on the system
. Please see "get-help about_signing" for more details.
At line:1 char:11
+ ./hello.ps1 <<<<
276 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

This is another security feature in PowerShell. When PowerShell is first installed, by
default you can’t run any scripts. This is controlled by a feature called the execution
policy. The execution policy setting controls what kind of scripts can be run and is
intended to prevent virus attacks like the “I-love-you” virus from a few years back.
Users were being tricked into accidentally executing code mailed to them. The
default execution policy for PowerShell prevents this type of attack.

A scripting tool is no good if you can’t script, so there’s a cmdlet called Set-
ExecutionPolicy that can be used to change the execution policy. If you got the
error when you tried to execute the script, you should run the following command as
Administrator.

If you don’t have administrator access, there’s an alternative we’ll get to in a second.
Here’s the command:

PS (6) > Set-ExecutionPolicy remotesigned

After the command has run successfully, you should be able to run hello.ps1:

PS (7) > ./hello.ps1
Hello world

NOTE Running the cmdlet as shown will change the execution policy
so that you can execute local scripts that you create yourself. Power-
Shell still won’t execute scripts that come from remote sources such as
email or a website unless they’re signed. Of course, for this check to
work, the mail tool or the web browser used to do the download must
set the Zone Identifier Stream to indicate where the file came from.
Internet Explorer and Microsoft Outlook set this properly. At a

Running elevated

Running elevated is a term used on Windows Vista or later that has to do with the
User Access Control (UAC) feature added in Vista. It essentially means that you’re
running with administrative privileges. This can only be done when starting a pro-
cess. Interactively, you can start an elevated PowerShell session by right-clicking the
PowerShell icon and selecting Run as Administrator. You then get the UAC prompt
asking if you want to allow this action.
If you want to run a single command elevated in a script, you can do so with the
Start-Process cmdlet and the –Verb parameter. For example, you can run Set-
ExecutionPolicy in an elevated PowerShell session as follows:

Start-Process –Verb runas –FilePath powershell.exe
–ArgumentList 'Set-ExecutionPolicy –ExecutionPolicy RemoteSigned'

When this command is run, you’re prompted to allow the action. If you say yes, a
new console window appears, the command executes, and the newly created con-
sole window closes after the command is complete.
POWERSHELL SCRIPTS 277

minimum, I recommend you use the RemoteSigned policy. Chapter 17
covers all these security topics in detail.

Setting the execution policy for a single session

If you can’t run Set-ExecutionPolicy with the necessary administrator privileges
but you have PowerShell v2 installed, you can use the -Scope parameter on the cmd-
let to just set the execution policy for the current session (the current process). This
looks like

PS (1) > Set-ExecutionPolicy -Scope process remotesigned

Execution Policy Change
The execution policy helps protect you from scripts that
you do not trust. Changing the execution policy might
expose you to the security risks described in the
about_Execution_Policies help topic. Do you want to change
the execution policy?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y
PS (2) >

Note the prompt to confirm this operation. You reply y to tell the system to proceed
to make the change. (You’ll see more on confirmation of actions in section 8.2.2,
where I show how to implement this feature in scripts.) Now when you try to run
scripts, they’ll work, but remember, you changed the execution policy only for this
session. The next time you start PowerShell, you’ll have to rerun the command.

Okay, now that you’ve got your basic script running, let’s start adding functional-
ity to this script.

8.1.2 Passing arguments to scripts

The first thing we’ll look at is how you can pass arguments to a script. The answer is
pretty much the same way you did it for basic functions. We’ll start with the $args
variable and look at a modified version of the basic script. Again, you can use redirec-
tion to create the script from the command line. In fact, this version overwrites the
old version of the script:

PS (8) > '"Hello $args"' > hello.ps1
and run it with an argument:
PS (9) > ./hello Bruce
Hello Bruce

Great—hello PowerShell! But if you don’t supply an argument

PS (10) > ./hello
Hello

you get a very impersonal greeting. (Notice, by the way, that I didn’t have to specify
the .ps1 extension when running the script. PowerShell adds this automatically when
looking for a script file.)
278 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

Let’s see what we can do to make the script a bit chattier. You can take advantage
of a here-string to generate a slightly longer script:

PS (11) > @'
>> if ($args) { $name = "$args" } else { $name = "world" }
>> "Hello $name!"
>> '@ > hello.ps1
>>

This script has two lines. The first sets a local variable $name to the value of $args if
it’s defined. If it’s not defined, it sets $name to world. If you run the script with no
arguments, you get the generic greeting:

PS (12) > ./hello
Hello world!

If you run it with an argument, you get a specific greeting:

PS (13) > ./hello Bruce
Hello Bruce!
PS (14) >

These are the same basic things you did with functions, and, as was the case with
functions, they have limitations. It would be much more useful to have named, typed
parameters as was the case with functions. But there’s a slight wrinkle: as you’ll
remember from chapter 7, the formal arguments to a function are defined outside the
body of the function, or inside the body with the param statement. Obviously, the
external definition isn’t going to work with scripts because there’s no “external.” Con-
sequently, there’s only one way to define formal parameters for a script: through the
param statement.

Using the param statement in scripts

As mentioned in the previous section, if you want to specify formal parameters for a
script, you need to use the param statement. The param statement must be the first
executable line in the script just as it must be the first executable line in a function.
Only comments and empty lines may precede it. Let’s visit the hello example one
more time. Again you’ll use a here-string and redirection to create the script. The
here-string makes it easy to define a multiline script:

PS (14) > @'
>> param($name="world")
>> "Hello $name!"
>> '@ > hello.ps1
>>

Here you’re adding a second line to the script to declare the script parameter. When
you run the script, you find the expected results, first with no arguments

PS (15) > ./hello
Hello world!
POWERSHELL SCRIPTS 279

and then with a name argument:

PS (16) > ./hello Bruce
Hello Bruce!
PS (17) >

The script could be written as a single line but splitting it across two lines makes it
easier to read:

PS (17) > 'param($name="world") "Hello $name"' > hello.ps1
PS (18) > ./hello
Hello world
PS (19) > ./hello Bruce
Hello Bruce

The interesting thing that this example illustrates is that there’s no need for any kind
of separator after the param statement for the script to be valid. Because PowerShell
lends itself to one-liner type solutions, this can be handy.

Obviously, scripts must have some additional characteristics that you don’t find
with functions. Let’s explore those now.

8.1.3 Exiting scripts and the exit statement

You’ve seen that you can exit scripts (or functions) simply by getting to the end of the
script. We’ve also looked at the return statement in our discussion of functions (sec-
tion 7.3.2). The return statement lets you exit early from a function. It will also let
you return early from a script but only if called from the “top” level of a script (not
from a function called in the script). The interesting question is what happens when
you return from a function defined inside a script. As discussed in chapter 7, what the
return statement does is let you exit from the current scope. This remains true
whether that scope was created by a function or a script. But what happens when you
want to cause a script to exit from within a function defined in that script? Power-
Shell has the exit statement to do exactly this. So far, you’ve been using this state-
ment to exit a PowerShell session. But when exit is used inside a script, it exits that
script. This is true even when called from a function in that script. Here’s what that
looks like:

PS (1) > @'
>> function callExit { "calling exit from callExit"; exit}
>> CallExit
>> "Done my-script"
>> '@ > my-script.ps1
>>

The function CallExit defined in this script calls exit. Because the function is
called before the line that emits

"Done my-script"

you shouldn’t see this line emitted. Let’s run it:
280 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

PS (2) > ./my-script.ps1
calling exit from CallExit

You see that the script was correctly terminated by the call to exit in the function
CallExit.

The exit statement is also how you set the exit code for the PowerShell process
when calling PowerShell.exe from another program. Here’s an example that shows
how this works. From within cmd.exe, run PowerShell.exe, passing it a string to
execute. This “script” will emit the message “Hi there” and then call exit with an
exit code of 17:

C:\>powershell "'Hi there'; exit 17"
Hi there

And now you’re back at the cmd.exe prompt. Cmd.exe makes the exit code of a pro-
gram it’s run available in the variable ERRORLEVEL, so check that variable:

C:\>echo %ERRORLEVEL%
17

You see that it’s 17 as expected. This shows how a script executed by PowerShell can
return an exit code to the calling process.

Let’s recap: so far in our discussion of scripts behaviors, we’ve covered execution
policy, parameterization, and how to exit scripts. In the next section we’ll look at
another feature of scripts that you need to understand: variable scoping.

8.1.4 Scopes and scripts

In chapter 7, we covered the scoping rules for functions. These same general rules also
apply to scripts:

• Variables are created when they’re first assigned.

• They’re always created in the current scope, so a variable with the same name in
an outer (or global) scope isn’t affected.

• In both scripts and functions, you can use the $global:name scope modifier to
explicitly modify a global variable.

Now let’s see what’s added for scripts.
Scripts introduce a new named scope called the script scope, indicated by using the

$script: scope modifier. This scope modifier is intended to allow functions defined
in a script to affect the “global” state of the script without affecting the overall global
state of the interpreter. This is shown in figure 8.1.

Let’s look at an example. First, set a global variable $x to be 1:

PS (1) > $x = 1

Then, create a script called my-script. In this script, you’ll create a function called
lfunc. The lfunc function will define a function-scoped variable $x to be 100 and a
script-scoped variable $x to be 10. The script itself will run this function and then
POWERSHELL SCRIPTS 281

print the script-scoped variable $x. Use a here-string and redirection to create the
script interactively:

PS (2) > @'
>> function lfunc { $x = 100; $script:x = 10 ; "lfunc: x = $x"}
>> lfunc
>> "my-script:x = $x"
>> '@ > my-script.ps1
>>

Now run the script:

PS (3) > ./my-script.ps1
lfunc: x = 100
my-script:x = 10

You see that the function-scoped variable $x was 100; the script-scoped $x was 10

PS (4) > "global: x = $x"
global: x = 1

and the global $x is still 1.

Function two scope:

function two {$d = 4000; "$a $script:b $c $dv" }
returns “1 20 300 4000”

Global scope:

$a = 1, $b = 2, $c = 3; $d=4

Function one scope:

function one { $b=200; c = 300; two }

a
t

=

b

0

Script s1 scope:

$b = 20

Script calls function one

Function one calls

function two

op

{
Fu

=

F

Figure 8.1 How variables are resolved across different scopes when scripts are in-

volved. Variables prefixed with the $script: modifier resolve in the script scope. Vari-

able references with no scope modifier resolve using the normal lookup rules. In this

figure, the user calls script s1, which creates a new script scope. s1 calls function one,

which causes a new function scope to be created. one calls function two, creating a sec-

ond function scope, and resulting in a total of four scopes in the scope chain. In function

two, $a resolves in the global scope, $script:b resolves in the script scope (skipping

the function one scope because of the $script: modifier), $c resolves in the function

one scope, and $d resolves in the function two scope ($d is local to two).
282 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

Simple libraries: including one script from another

As you build libraries of useful functions, you need to have a mechanism to “include”
one script inside another (or to run in the global environment) to make these library
functions available. PowerShell allows you to do this through a feature called “dot-
sourcing” a script or function.

NOTE The dot-sourcing mechanism (sometimes called “dotting”) is
the only way to build libraries in PowerShell v1. In PowerShell v2, dot-
sourcing is still used for configuration, but the modules feature (chap-
ters 9 and 10) is the recommended way to create script libraries.

So far in our discussions, you’ve usually focused on the results of a function and wanted
all the local variables when the script or function exits. This is why scripts and func-
tions get their own scope. But sometimes you do care about all the intermediate by-
products. This is typically the case when you want to create a library of functions or
variable definitions. In this situation, you want the script to run in the current scope.

Dot-sourcing scripts and functions

So how do you “dot-source” a script? By putting a dot or period in front of the name
when you execute it. Note that there has to be a space between the dot and the name;
otherwise it will be considered part of the name. Let’s look at an example. First create
a script that sets $x to 22

PS (5) > @'
>> "Setting x to 22"
>> $x = 22

How cmd.exe works

This is how cmd.exe works by default, as this example shows. Say you have a CMD
file, foo.cmd:
C:\files>type foo.cmd
set a=4

Set a variable to 1 and display it:
C:\files>set a=1
C:\files>echo %a%
1

Next run the CMD file
C:\files>foo
C:\files>set a=4

and you see that the variable has been changed:
C:\files>echo %a%
4

As a consequence of this behavior, it’s common to have CMD files that do nothing
but set a bunch of variables. To do this in PowerShell, you’d dot the script.
POWERSHELL SCRIPTS 283

>> '@ > my-script.ps1
>>

and test it. Set $x to a known value

PS (6) > $x=3
PS (7) > $x
3

and then run the script as you would normally:

PS (8) > ./my-script
Setting x to 22

Checking $x, you see that it is (correctly) unchanged:

PS (9) > $x
3

Now dot the script:

PS (10) > . ./my-script
Setting x to 22
PS (11) > $x
22

This time, $x is changed. What follows the . isn’t limited to a simple filename; it
could be a variable or expression, as was the case with &:

PS (12) > $name = "./my-script"
PS (13) > . $name
Setting x to 22

The last thing to note is that dot-sourcing works for both scripts and functions.
Define a function to show this:

PS (17) > function set-x ($x) {$x = $x}
PS (18) > . set-x 3
PS (19) > $x
3

In this example, you’ve defined the function set-x and dotted it, passing in the value 3.
The result is that the global variable $x is set to 3. This covers how scoping works
with scripts and functions. When we look at modules in chapter 9, you’ll see another
variation on scoping.

Now that you know how to build simple script libraries, we’ll show you how to
manage all these scripts you’re writing.

8.1.5 Managing your scripts

Earlier we looked at managing functions using the function: drive. Because scripts
live in the file system, there’s no need to have a special drive for them—the file system
drives are sufficient. But this does require that you understand how scripts are found
in the file system. Like most shells, PowerShell uses the PATH environment variable to
find scripts. You can look at the contents of this variable using the environment vari-
able provider $ENV:PATH.
284 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

The other thing to know (and we’ve mentioned it previously but people still for-
get it) is that PowerShell doesn’t run scripts out of the current directory (at least not
by default). If you want to run a script out of the current directory, you can either
add that directory to the path or prefix your command with ./ as in ./mycmd.ps1
or simply ./mycmd. The script search algorithm will look for a command with the
.ps1 extension if there isn’t one on the command. A common approach is to have a
common scripts directory where all your personal scripts are placed and a share for
sharing scripts between multiple users. Scripts are just text, so using a version control
system like RCS or Subversion will work well for managing your scripts.

Now let’s look at one more variation on scripting. So far, you’ve been running
PowerShell scripts only from within PowerShell console. There are times when you
need to run a PowerShell script from a non-PowerShell application like cmd.exe. For
example, you may have an existing batch file that needs to call PowerShell for one
specific task. To do this, you need to launch a PowerShell process to run the script or
command. You also have to do this when creating shortcuts that launch PowerShell
scripts because PowerShell.exe isn’t the default file association for a .ps1 file (secu-
rity strikes again—this prevents accidental execution of scripts).

8.1.6 Running PowerShell scripts from other applications

Let’s look at what’s involved in using PowerShell.exe to run a script and go over a
few issues that exist.

Here’s something that can trip people up when using PowerShell.exe to execute
a script. The PowerShell v2 interpreter has two parameters that let you run Power-
Shell code when PowerShell is started. These parameters are -Command and –File, as
shown in figure 8.2.

Command: c:\my

powershell.exe -Command "c:\my scripts\script1.ps1" data.csv

powershell.exe -File "c:\my scripts\script1.ps1" data.csv

Argument 1: scripts\script1.ps1
Argument 2: data.csv

Command: c:\my scripts\script1.ps1 Argument 2: data.csv

Figure 8.2 How the command line is processed when using the -Command parameter (top)

versus the -File parameter (bottom). With -Command, the first argument is parsed into

two tokens. With -File, the entire first argument is treated as the name of a script to run.
POWERSHELL SCRIPTS 285

If you use the -Command parameter, the arguments to PowerShell.exe are accumu-
lated and then treated as a script to execute. This is important to remember when you
try to run a script using PowerShell from cmd.exe using this parameter. Here’s the
problem people run into: because the arguments to PowerShell.exe are a script to
execute, not the name of a file to run, if the path to that script has a space in it, then
because PowerShell treats the spaces as delimiters, you’ll get an error. Consider a
script called “my script.ps1”. When you try to run this

powershell "./my script.ps1"

PowerShell will complain about my being an unrecognized command. It treats my as a
command name and script.ps1 as an argument to that command. To execute a
script with a space in the name, you need to do the same thing you’d do at the Power-
Shell command prompt: put the name in quotes and use the call (&) operator:

powershell.exe "& './my script.ps1'"

Now the script will be run properly. This is one of the areas where having two types
of quotes comes in handy. Also note that you still have to use the relative path to find
the script even if it’s in the current directory.

To address this problem, in v2, PowerShell.exe now has a second parameter
that makes this easier: the -File parameter. This parameter takes the first argument
after the parameter as the name of the file to run and the remaining arguments are
passed to the script. The example now simplifies to

powershell -File "my script.ps1"

This is clearly much simpler than the v1 example.
There’s one more advantage to using -File. When you run a script using

-Command, the exit keyword will exit the script but not the PowerShell session
(though usually it looks like it did). This is because the arguments to -Command are
treated the same way commands typed interactively into PowerShell work. You
wouldn’t want a script you’re running to cause your session to exit accidentally. If you
use -File instead of –Command, calling exit in the script will cause the Power-
Shell.exe process to exit. This is because -File treats the entire contents of the script
as the command to execute instead of executing a command that names the script file.

Now let’s see why this is important. It matters if you’re depending on the exit
code of the PowerShell process to decide some condition in the calling script. If you
use -Command, the exit code of the script is set but the process will still exit with 0. If
you use -File, PowerShell.exe will exit with the correct exit code. Let’s try this.
Create a script called exit33.ps1 that looks like this:

PS (1) > gc exit33.ps1
exit 33
286 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

This is a simple script—all it does is exit with the exit code 33. Now run it using
-Command and check the exit code:

PS (2) > powershell.exe -Command ./exit33.ps1
PS (3) > $LASTEXITCODE
0

You see that the exit code of the PowerShell.exe process is 0, not 33, which is what
you wanted. Let’s take a closer look. Run the command again, but follow it with
$LASTEXITCODE to emit the code returned from the script:

PS (6) > powershell.exe -Command `
>> './exit33.ps1 ; $LASTEXITCODE'
>>
33

You see that 33 was output because that was the last exit code of the script. But when
you check the exit code of the process

PS (7) > $LASTEXITCODE
0

you see that it’s still 0. (In fact, the piece of script that emits the exit code shouldn’t
even have run if the call to exit in the script had caused the process to exit.) In con-
trast, when you use -File or -Command

PS (4) > powershell.exe -File ./exit33.ps1
PS (5) > $LASTEXITCODE
33

you get the correct exit code because the -File option runs the specified command
directly. This means that if the caller of PowerShell.exe depends on the exit code of
the process, it will get the correct value.

This concludes our coverage of the basic information needed to run PowerShell
scripts. If you’ve used other scripting languages, little of what you’ve seen so far
should seem unfamiliar. In the next few sections we’re going to look at things that are
rather more advanced.

8.2 WRITING ADVANCED FUNCTIONS AND SCRIPTS

For the most part, all the features we’ve discussed so far were available in PowerShell v1.
Although v1 scripts and functions were powerful, they didn’t have all the features that
compiled cmdlets did. In particular, there wasn’t a good way to write production-
quality scripts complete with integrated help, and so on. Version 2 introduced features
that addressed these problems: commands written in the PowerShell language have all
the capabilities available to cmdlets. In this section, we’ll introduce these new features,
and you’ll learn how to use the create functions and scripts that have all the capabilities
of cmdlets. We’ll be using functions for all the examples just for simplicity’s sake.
Everything that applies to functions applies equally to scripts.
WRITING ADVANCED FUNCTIONS AND SCRIPTS 287

All these new features are enabled by adding metadata to the function or script
parameters. Metadata is information about information, and you use it in PowerShell
to declaratively control the behavior of functions and scripts. What this means is that
you’re telling PowerShell what you want to do but not how to do it. It’s like telling a
taxi driver where you want to go without having to tell them how to get there
(although, it’s always a good idea to make sure you’re ending up where you want to be).

We’re all ready to dive in now, but first, a warning. There’s a lot of material here
and some of it is a bit complex, so taking your time and experimenting with the fea-
tures is recommended.

NOTE This stuff is much more complex than the PowerShell team
wanted. Could it have been simpler? Maybe, but the team hasn’t fig-
ured out a way to do it yet. The upside of the way these features are
implemented is that they match how things are done in compiled cmd-
lets. This way, the time invested in learning this material will be of
benefit if you want to learn to write cmdlets at some point. And at the
same time, if you know how to write cmdlets, then all this stuff will be
pretty familiar.

8.2.1 Specifying script and function attributes

In this section, we’ll look at the features you can control through metadata attributes
on the function or script definition (as opposed to on parameters, which we’ll get to
in a minute). Figure 8.3 shows how the metadata attributes are used when defining a
function, including attributes that affect the function as well as individual parameters
on that function.

Notice that there are two places where the attributes can be added to functions: to
the function itself and to the individual parameters. With scripts, the metadata attribute

function <name>
{

[CmdletBinding(<options>)]
[OutputType(<type and parameterSet>)]
param (

[Parameter(ParameterSet="set1",Position=0,Mandatory=$true)]
[int] $p1 = <InitializationExpression1> ,
[Parameter(ParameterSet="set2",Position=0,Mandatory=$true)]
[string] $p2 = <InitializationExpression2>

)
<statement1>
<statement2>
:
:

}

function keyword

Attribute specifying

parameter metadata

Function name

List of parameter

specifications

Attribute specifying

function metadata

Function body

Attribute declaring

output type of function

Figure 8.3 Attributes that apply to the entire function appear before the param statement,

and attributes for an individual parameter appear before the parameter declaration.
288 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

has to appear before the param statement. (Earlier, I said param has to be the first
noncomment line. This is still true because the metadata attributes are considered part
of the param statement.)

The CmdletBinding attribute is used to add metadata to the function, specifying
things like behaviors that apply to all parameters as well as things like the return type
of the function. You should notice that the attribute syntax where the attribute
names are enclosed in square brackets is similar to the way you specify types. This is
because attributes are implemented using .NET types. The important distinction is
that an attribute must have parentheses after the name. As you can see in figure 8.3,
you can place properties on the attribute in the parentheses. But even if you’re speci-
fying no attributes, the parentheses must still be there so the interpreter can distin-
guish between a type literal and an attribute. Now let’s look at the most important
attribute: CmdletBinding.

8.2.2 The CmdletBinding attribute

The CmdletBinding attribute is used to specify properties that apply to the whole
function or script. In fact, simply having the attribute in the definition changes how
excess parameters are handled. If the function is defined without this attribute, the argu-
ments for which there are no formal parameters are simply added to the $args variable,
as shown in the next example. First, define a function that takes two formal parameters:

PS (1) > function x {param($a, $b) "a=$a b=$b args=$args"}

Now call that function with four arguments:

PS (2) > x 1 2 3 4
a=1 b=2 args=3 4

You see that the excess arguments end up in $args. As discussed earlier, although this
can be useful, it’s usually better to generate an error for this situation. You can check
for this case and see if $args.Count is greater than 0, but it’s easier to handle this
declaratively by adding the metadata attribute, as shown here:

PS (3) > function x {[CmdletBinding()] param($a, $b)
>> "a=$a b=$b args=$args"}
>>

When you run the command with extra arguments

PS (4) > x 1 2 3 4
x : A positional parameter cannot be found that accepts argument '3'.
At line:1 char:2
+ x <<<< 1 2 3 4
 + CategoryInfo : InvalidArgument: (:) [x],

ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,x

the system catches this and generates the error message for you. The fact that the sys-
tem generates the error message instead of having to create the message yourself is a
WRITING ADVANCED FUNCTIONS AND SCRIPTS 289

significant feature: it means that you get standard, complete, and consistent error
messages that are already set up to display in many languages.

Now let’s look at the properties that can be specified for the CmdletBinding
attribute. These properties are shown in figure 8.4.

We’ll describe what each of these properties does and how to use them in the next
few subsections.

The SupportsShouldProcess property

When the SupportsShouldProcess property is set to true, it tells the runtime to
enable the -Confirm and -WhatIf standard parameters because the function prom-
ises to make the necessary calls to the ShouldProcess() method on the object in the
$PSCmdlet variable. The ShouldProcess() method is used to either ask the user
for feedback before proceeding with the operation or to show what the operation
might have done to the system. The $PSCmdlet variable is an automatic variable that
provides the callback mechanisms that the function needs to make the expected calls.
(We’ll cover the $PSCmdlet variable in more detail at the end of this section.) Let’s
write an example function that shows how it all works. The purpose of this function
is to allow the user to stop processes on the system. Because stopping the wrong pro-
cess could have undesirable consequences, you want to be able to use -Confirm and
–WhatIf parameters. The example code is shown in figure 8.5 with the necessary
annotations highlighted.

This function uses the Win32_Process WMI class to get objects representing
processes on the system (see chapter 19 for more information about WMI). You filter
the set of processes using the Where-Object cmdlet and then call the Terminate()
method on the process object. Obviously this is a potentially destructive operation, so
you want to call the ShouldProcess() method before proceeding with the action
(you saw this behavior with the Set-ExecutionPolicy cmdlet). You call this

[CmdletBinding(
DefaultParameterSet="parametersetname",
ConfirmImpact=$true,
SupportsShouldProcess=$true,
)]

CmdletBinding attribute

Tells interpreter that script or function

implements ShouldProcess pattern

Sets default

parameter set name
List of arguments to

attribute

Controls whether confirm-impact

processing should be performed

Figure 8.4 All the properties that can be specified for the CmdletBinding attribute.

These properties are used by the PowerShell runtime to control the execution of the

associated function or script.
290 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

method passing two [string] arguments. The first argument is used to tell the user
what object you’re going to operate on. The second argument describes the operation
to be performed—essentially an operation caption. If this method returns true, you
call Terminate() to end the process. Let’s try it. First, define the function:

PS (1) > function Stop-ProcessUsingWMI
>> {
>> [CmdletBinding(SupportsShouldProcess=$True)] param(
>> [parameter(mandatory=$true)] [regex] $pattern
>>)
>> foreach ($process in Get-WmiObject Win32_Process |
>> where { $_.Name -match $pattern })
>> {
>> if ($PSCmdlet.ShouldProcess(
>> "process $($process.Name) " +
>> " (id: $($process.ProcessId))" ,
>> "Stop Process"))
>> {
>> $process.Terminate()
>> }
>> }
>> }
>>

Next, start a Notepad process:

PS (2) > notepad

function Stop-ProcessUsingWMI
{
[CmdletBinding(SupportsShouldProcess=$True)] param(
[regex] $pattern = "notepad"

)
foreach ($process in Get-WmiObject Win32_Process |

where {$_.Name -match $pattern})
{
if ($PSCmdlet.ShouldProcess(

"process $($process.Name)(id: $($process.ProcessId))",
"Stop Process"))

{
$process.Terminate()

}
}

}

CmdletBinding must precede param statement

Function must call

ShouldProcess()
method

If call to ShouldProcess() returns

true, execute action

Action message

Caption for prompting

Figure 8.5 The function annotations needed to enable ShouldProcess support. The

SupportsShouldProcess property of the CmdletBinding attribute should be set to

true, and there must be a call to the ShouldProcess() method in the body of the code.
WRITING ADVANCED FUNCTIONS AND SCRIPTS 291

Now call Stop-ProcessUsingWMI, specifying the -WhatIf parameter:

PS (3) > Stop-ProcessUsingWMI notepad -Whatif
What if: Performing operation "Stop Process" on Target "proc
ess notepad.exe (id: 6748)".

You see a description of the operation that would be performed. The -WhatIf option
was only supposed to show what it would have done but not actually do it, so you’ll
use Get-Process to verify that the command is still running:

PS (4) > Get-Process notepad | ft name,id -auto

Name Id
---- --
notepad 6748

Let’s perform the operation again but this time use the -Confirm flag. This requests
that you be prompted for confirmation before executing the operation. When you get
the prompt, you’ll respond y to continue with the operation:

PS (5) > Stop-ProcessUsingWMI notepad -Confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Stop Process" on Target "process
notepad.exe (id: 6748)".
[Y] Yes [A] Yes to All [N] No [L] No to All
[S] Suspend[?] Help (default is "Y"): y

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

And the operation was performed. Use Get-Process to confirm that the Notepad
process no longer exists:

PS (6) > Get-Process notepad | ft name,id -auto
Get-Process : Cannot find a process with the name "notepad"
. Verify the process name and call the cmdlet again.
At line:1 char:12
+ get-process <<<< notepad | ft name,id -auto
 + CategoryInfo : ObjectNotFound: (notepad:Str
 ing) [Get-Process], ProcessCommandException
 + FullyQualifiedErrorId : NoProcessFoundForGivenName,M
 icrosoft.PowerShell.Commands.GetProcessCommand

PS (7) >
292 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

Using the ShouldProcess mechanism in your scripts and functions when they’ll
perform destructive operations is a scripting best practice. Although it requires a bit
of effort on the script author’s part, it adds tremendous value for the script user.

The $PSCmdlet variable

As mentioned earlier, the $PSCmdlet variable gives the script or function author the
necessary callbacks and properties needed to be able to take advantage of all the
advanced function features. As well as being able to call ShouldProcess(), this vari-
able gives you access to the parameter set name through the $PSCmdlet.Parameter-
SetName property. It allows you to halt a pipeline containing this command by calling
the $PSCmdlet.ThrowTerminatingError() method. It basically makes all the fea-
tures available to compiled cmdlet writers available to script and function authors.
Refer to the PowerShell SDK documentation to get complete details on the features
available through $PSCmdlet. For now, we’ll continue with our discussion of the prop-
erties on the CmdletBinding attribute.

The ConfirmImpact property

This is an extension on the idea of ”should process.” Not all commands have the
same consequences, so you have a way to indicate this with this property. The
ConfirmImpact property specifies when the action of the function should be con-
firmed by calling the ShouldProcess() method. The call to the ShouldProcess()
method displays a confirmation prompt only when the ConfirmImpact argument is
equal to or greater than the value of the $ConfirmPreference preference variable.
(The default value of the argument is Medium.) Obviously this property should be
used only when SupportsShouldProcess is also specified.

The DefaultParameterSetName property

The DefaultParameterSetName property specifies the name of the parameter set
that the runtime will use if it can’t figure out the parameter set from the specified
parameters. We’ll look at this a bit more when we cover the parameter metadata.

This completes our discussion of the CmdletBinding attribute and the properties
that apply to the function or script as a whole. Next, we’ll explore the other attribute
that can be applied to function or script: OutputType.

8.2.3 The OutputType attribute

The OutputType attribute allows you to declare the expected return type of a func-
tion or script. Like the CmdletBinding attribute, this attribute applies to the whole
function. In PowerShell v2, this attribute doesn’t affect the output type and isn’t
checked by the runtime at any point. What it does do is allow you to document the
expected return type in such a way that tools like editors can use it to do things like
provide IntelliSense for the next cmdlet to add to a pipeline. In this scenario, the edi-
tor would show the list of cmdlets that take the previous output type as an input.
WRITING ADVANCED FUNCTIONS AND SCRIPTS 293

NOTE They could, but this feature was added late in the v2 ship cycle
and Microsoft didn’t have time to make use of it in either the ISE or
the console host. Some of the third-party editors may be able to use it.

Specifying the return type sounds like it should be easy, but functions may return
more than one type. In fact, some cmdlets like Where-Object can return any type
because they just return what they were passed. A more common and manageable
case occurs when you have different types of objects being returned when different
parameters sets are used:

PS (1) > function Test-OutputType
>> {
>> [CmdletBinding(DefaultParameterSetName = "1nt")]
>> [OutputType("asInt", [int])]
>> [OutputType("asString", [string])]
>> [OutputType("asDouble", ([double], [single]))]
>> [OutputType("lie", [int])]
>> param (
>> [parameter(ParameterSetName="asInt")] [switch] $asInt,
>> [parameter(ParameterSetName="asString")] [switch] $asString,
>> [parameter(ParameterSetName="asDouble")] [switch] $asDouble,
>> [parameter(ParameterSetName="lie")] [switch] $lie
>>)
>> Write-Host "Parameter set: $($PSCmdlet.ParameterSetName)"
>> switch ($PSCmdlet.ParameterSetName) {
>> "asInt" { 1 ; break }
>> "asString" { "1" ; break }
>> "asDouble" { 1.0 ; break }
>> "lie" { "Hello there"; break } }
>> }
>>

Now let’s try out each of the different switches:

PS (2) > (Test-OutputType -asString).GetType().FullName
Parameter set: asString
System.String
PS (3) > (Test-OutputType -asInt).GetType().FullName
Parameter set: asInt
System.Int32
PS (4) > (Test-OutputType -asDouble).GetType().FullName
Parameter set: asDouble
System.Double

Okay—everything is as expected; in each case the correct type was returned. Now use
the -lie parameter:

PS (5) > (Test-OutputType -lie).GetType().FullName
Parameter set: lie
System.String

Even though you specified the OutputType to be [int], the function returned a
string. As we said, the attribute is only documentation—it doesn’t enforce the type.
294 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

So, if it’s just documentation, then at least there must be an easy way to get at it,
right? Well, unfortunately that’s not the case either. This is another feature that was
added right at the end of the ship cycle. As a consequence, there’s no real interface to
get this information. Instead, you have to look at the compiled attributes directly to
see the values. For functions and scripts, you can retrieve this information from the
scriptblock that defines the function body. This looks like

PS (6) > (Get-Command Test-OutputType).ScriptBlock.Attributes |
>> Select-Object typeid, type |
>> Format-List
>>

TypeId : System.Management.Automation.CmdletBindingAttribute
type :

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {asInt, int}

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {asString, string}

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {asDouble, System.Double System.Single}

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {lie, int}

For cmdlets, it’s even less friendly because you have to go through the .NET type that
was used to define the cmdlet. Here’s what that looks like:

PS (9) > $ct = (Get-Command Get-Command).ImplementingType
PS (10) > $ct.GetCustomAttributes($true) |
>> Select-Object typeid, type |
>> Format-List
>>

TypeId : System.Management.Automation.CmdletAttribute
type :

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {System.Management.Automation.AliasInfo, System.Management.A
 utomation.ApplicationInfo, System.Management.Automation.Func
 tionInfo, System.Management.Automation.CmdletInfo...}

At this point, you might be saying, “Why bother to specify this?” The answer is that
good scripts will last beyond any individual release of PowerShell. This information is
somewhat useful now and will probably be much more useful in the future. As a best
practice, it’s strongly recommended that this information be included in scripts that
you want to share with others.

Something we skipped over in the OutputType example was the Parameter attri-
bute. We used it but didn’t actually talk about what it does. We’ll remedy this in the
next section.
WRITING ADVANCED FUNCTIONS AND SCRIPTS 295

8.2.4 Specifying parameter attributes

We specify additional information on parameters using the Parameter attribute.
This information is used to control how the parameter is processed. The attribute is
placed before the parameter definition, as shown in figure 8.6.

As was the case with the CmdletBinding attribute, specific behaviors are con-
trolled through a set of properties provided as “arguments” to the attribute. Although
figure 8.6 shows all the properties that can be specified, you only have to provide the
ones you want to set to something other than the default value. Let’s look at an exam-
ple first and then go through each of the properties.

The following example shows a parameter declaration that defines the -Path
parameter. Say you want the parameter to have the following characteristics:

• It’s mandatory—that is, the user must specify it or there’s an error.

• It takes input from the pipeline.

• It requires its argument to be convertible to an array of strings.

The parameter declaration needed to do all of this looks like

param (
 [parameter(Mandatory=$true, ValueFromPipeline=$true)]
 [string[]] $Parameter
)

The result is fairly simple because you only need to specify the things you want to
change. All other properties keep their default values. In the next few sections, we’ll
look at each of the possible properties, what it does, and how it can be used.

[Parameter(Mandatory=$true,
Position=0,
ParameterSetName="set1",
ValueFromPipeline=$false,
ValueFromPipelineByPropertyName=$true,
ValueFromRemainingArguments=$false,
HelpMessage="some help this is")]
[int]
$p1 = 0

Parameter is positional,

ocupying position 1 in

parameter set set1

Property indicating this

parameter is required

Attribute specifying

parameter metadata

Parameter set this

parameter belongs to

Can’t take argument

from pipeline as is

Can take argument from

a property on object

coming from pipeline

Won’t consume remaining

unbound arguments

Constrains parameter

to be an integer

Parameter’s name is

p1; initialized to 0

Figure 8.6 This figure shows how the Parameter attribute is used when declaring a variable.

The attribute must appear before that variable name and its optional initializer expression. The

figure includes all the properties that can be set on the parameter.
296 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

The Mandatory property

By default, all function and script parameters are optional, which means that the
caller of the command doesn’t have to specify them. If you want to require that the
parameter be specified, set the Mandatory property in the Parameter attribute to
$true; otherwise, if the property is absent or set to $false, the parameter is
optional. The following example shows the declaration of a parameter that’s required
when the function is run:

PS (1) > function Test-Mandatory
>> {
>> param ([Parameter(Mandatory=$true)] $myParam)
>> $myParam
>> }
>>

Now run this function without a parameter:

PS (2) > Test-Mandatory

cmdlet Test-Mandatory at command pipeline position 1
Supply values for the following parameters:
myParam: HELLO THERE
HELLO THERE
PS (3) >

The PowerShell runtime notices that a mandatory parameter wasn’t specified on the
command line, so it prompts the user to specify it, which we do. Now the function
can run to completion.

The Position property

You saw earlier in this chapter that all parameters are both positional and named by
default. When using advanced parameter specification metadata, either adding the
CmdletBinding attribute to the whole function or specifying an individual Parameter
attribute, parameters remain positional by default, until you specify a position for at
least one of them. Once you start formally specifying positions, all parameters default
to nonpositional unless the Position property for that parameter is set. The following
example shows a function with two parameters, neither one having Position set:

PS (1) > function Test-Position
>> {
>> param (
>> [parameter()] $p1 = 'p1 unset',
>> $p2 = 'p2 unset'
>>)
>> "p1 = '$p1' p2='$p2'"
>> }
>>

Now when you run it with positional parameters

PS (2) > Test-Position one two
p1 = 'one' p2='two'
WRITING ADVANCED FUNCTIONS AND SCRIPTS 297

the arguments are bound by position and there’s no error. Add a position specifica-
tion to one of the parameters, and now the function looks like

PS (3) > function Test-Position
>> {
>> param (
>> [parameter(Position=0)] $p1 = 'p1 unset',
>> $p2 = 'p2 unset'
>>)
>> "p1 = '$p1' p2='$p2'"
>> }
>>

Run it again with two positional parameters:

PS (4) > Test-Position one two
Test-Position : A positional parameter cannot be found that
 accepts argument 'two'.
At line:1 char:14
+ Test-Position <<<< one two
 + CategoryInfo : InvalidArgument: (:) [Test-P
 osition], ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,
 Test-Position

This time you get an error. Although there’s a second parameter, it’s no longer posi-
tional. If you run the function again specifying the second parameter by name,

PS (5) > Test-Position one -p2 two
p1 = 'one' p2='two'
PS (6) >

it all works.

The ParameterSetName property

The ParameterSetName property allows you to specify the parameter set or sets that
a parameter belongs to. If no parameter set is specified, the parameter belongs to all
the parameter sets defined by the function. The following example shows the param-
eter declaration of two parameters that belong to two different parameter sets:

PS (1) > function Test-ParameterSets
>> {
>> param (
>> [parameter(ParameterSetName="s1")] $p1='p1 unset',
>> [parameter(ParameterSetName="s2")] $p2='p2 unset',
>> [parameter(ParameterSetName="s1")]
>> [parameter(ParameterSetName="s2",Mandatory=$true)]
>> $p3='p3 unset',
>> $p4='p4 unset'
>>)
>> "Parameter set = " + $PSCmdlet.ParameterSetName
>> "p1=$p1 p2=$p2 p3=$p3 p4=$p4"
>> }
>>
298 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

Let’s try it. First call the function, specifying -p1 and -p4:

PS (2) > Test-ParameterSets -p1 one -p4 four
Parameter set = s1
p1=one p2= p3=p3 unset p4=four

The parameter binder resolves to parameter set s1, where the -p3 parameter isn’t
mandatory. Next specify -p1, -p3, and -p4:

PS (3) > Test-ParameterSets -p1 one -p3 three -p4 four
Parameter set = s1
p1=one p2= p3=three p4=four

You still resolve to parameter set s1 but this time -p3 is bound. Now let’s look at the
other parameter set. Because you’re specifying -p2 instead of -p1, the second param-
eter set, s2, is used, as you can see in the output:

PS (4) > Test-ParameterSets -p2 two -p3 three
Parameter set = s2
p1= p2=two p3=three p4=p4 unset

Now in parameter set s2, the parameter -p3 is mandatory. Try running the function
without specifying it:

PS (5) > Test-ParameterSets -p2 two

cmdlet Test-ParameterSets at command pipeline position 1
Supply values for the following parameters:
p3: THREE
Parameter set = s2
p1= p2=two p3=THREE p4=p4 unset

The runtime will prompt for the missing parameter. You provide the missing value at
the prompt, and the function completes successfully.

Let’s verify that the parameter -p4 is allowed in both parameter sets. You run the
following command specifying -p4:

PS (6) > Test-ParameterSets -p2 two -p3 three -p4 four
Parameter set = s2
p1= p2=two p3=three p4=four

This works properly. Now try specifying all four of the parameters in the same com-
mand; this shouldn’t work because -p1 and -p2 are in different parameter sets, so the
parameter binder can’t resolve to a single parameter set:

PS (7) > Test-ParameterSets -p1 one -p2 two -p3 three -p4 four
Test-ParameterSets : Parameter set cannot be resolved using
 the specified named parameters.
At line:1 char:19
+ Test-ParameterSets <<<< -p1 one -p2 two -p3 three -p4 fo
ur
 + CategoryInfo : InvalidArgument: (:) [Test-P
 arameterSets], ParameterBindingException
 + FullyQualifiedErrorId : AmbiguousParameterSet,Test-P
 arameterSets

PS (8) >
WRITING ADVANCED FUNCTIONS AND SCRIPTS 299

As expected, the system responds with an error. For more information about the
parameter-binding process, see section 2.5.2.

The ValueFromPipeline property

You saw earlier how to use $_ in the process block to handle pipeline objects. This
approach works but makes it difficult to handle both pipeline and command-line
bindings. The ValueFromPipeline property greatly simplifies this. In the following
example you’ll define a single parameter, $x, that can take values from the command
line and the pipeline:

PS (1) > function Test-ValueFromPipeline
>> {
>>
>> param([Parameter(ValueFromPipeline = $true)] $x)
>> process { $x }
>> }
>>

Now try it with the command line

PS (2) > Test-ValueFromPipeline 123
123

and it works properly. Now try a pipelined value:

PS (3) > 123 | Test-ValueFromPipeline
123

This also works properly. And, because you’re using the process block, you can handle
a collection of values:

PS (4) > 1,2,3 | Test-ValueFromPipeline
1
2
3
PS (5) >

The ValueFromPipeline property allows you to tell the runtime to bind the entire
object to the parameter. But sometimes you only want a property on the object. This
is what the ValueFromPipelineByPropertyName attribute is for, as you’ll see next.

The ValueFromPipelineByPropertyName property

Whereas ValueFromPipeline caused the entire pipeline object to be bound to the
parameter, the ValueFromPipelineByPropertyName property tells the runtime to
just use a property on the object instead of the whole object when binding the param-
eter. The name of the property to use comes from the parameter name. Let’s modify
the previous example to illustrate this:

PS (19) > function Test-ValueFromPipelineByPropertyName
>> {
>> param(
300 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

>> [Parameter(ValueFromPipelineByPropertyName=$true)]
>> $DayOfWeek
>>)
>> process { $DayOfWeek }
>> }
>>

This function has one parameter, named DayOfWeek, that’s bound from the pipeline
by property name. Notice that you haven’t added a type constraint to this property, so
any type of value will work. Let’s use the Get-Date cmdlet to emit an object with a
DayOfWeek property:

PS (20) > Get-Date | Test-ValueFromPipelineByPropertyName
Tuesday

This returns Tuesday, so binding from the pipeline works fine. What happens when
you bind from the command line?

PS (21) > Test-ValueFromPipelineByPropertyName (Get-Date)
Tuesday, June 30, 2009 12:27:56 AM

This time you get the entire DateTime object. Normal command-line binding isn’t
affected by the attribute. To get the same result, you have to extract the property
yourself:

PS (22) > Test-ValueFromPipelineByPropertyName `
>> ((Get-Date).DayOfWeek)
Tuesday

That takes care of the single-value case. Now let’s look at the case where you have
multiple values coming in:

PS (23) > $d = Get-Date
PS (24) > $d, $d.AddDays(1), $d.AddDays(2) |
>> Test-ValueFromPipelineByPropertyName
>>
Tuesday
Wednesday
Thursday
PS (25) >

Each inbound pipeline object is bound to the parameter by property name one at a
time. Next, we’ll show how to handle variable numbers of arguments when using
command metadata.

The ValueFromRemainingArguments property

You saw earlier that when you didn’t use any of the metadata annotations, excess argu-
ments ended up in the $args variable. But once you add the metadata, the presence of
excess arguments results in an error. Because it’s sometimes useful to allow a variable
number of parameters, PowerShell provides the ValueFromRemainingArguments
property, which tells the runtime to bind all excess arguments to this parameter. The
WRITING ADVANCED FUNCTIONS AND SCRIPTS 301

following example shows a function with two parameters. The first argument goes
into the -First parameter and the remaining arguments are bound to -Rest:

PS (1) > function vfraExample
>> {
>> param (
>> $First,
>> [parameter(ValueFromRemainingArguments=$true)] $Rest
>>)
>> "First is $first rest is $rest"
>> }
>>

Let’s run the function with four arguments:

PS (2) > vfraExample 1 2 3 4
First is 1 rest is 2 3 4

The first ends up in $first with the remaining placed in $rest. Now try using -Rest
as a named parameter

PS (3) > vfraExample 1 -Rest 2 3 4
vfraExample : A positional parameter cannot be found that a
ccepts argument '3'.
At line:1 char:12
+ vfraExample <<<< 1 -Rest 2 3 4
 + CategoryInfo : InvalidArgument: (:) [vfraEx
 ample], ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,
 vfraExample

and this fails. When the parameter is specified by name, it won’t receive the excess
arguments and you’ll get an error. If you use the parameter by name, you have to pass
the remaining arguments explicitly as a list, as shown here:

PS (4) > vfraExample 1 -Rest 2,3,4
First is 1 rest is 2 3 4
PS (5) >

Now it works.

The HelpMessage property

The HelpMessage property allows you to attach a short help message to the parame-
ter. This sounds like it should be useful but it isn’t really. This message is displayed
only when prompting for a missing mandatory parameter. We’ll show you better ways
to add help for your functions in section 8.4. Still, for completeness sake, let’s work
through an example.

First, you need a function that has a mandatory parameter so the runtime will
prompt if you don’t supply it. Also, make it an array so you can specify more than
one object when prompted. Here’s the function:

PS (1) > function helpMessageExample
>> {
302 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

>> param (
>> [parameter(Mandatory=$true,
>> HelpMessage="An array of path names.")]
>> [string[]]
>> $Path
>>)
>> "Path: $path"
>> }
>>

Now run it with no arguments so the system will prompt for the missing value:

PS (2) > helpMessageExample

cmdlet helpMessageExample at command pipeline position 1
Supply values for the following parameters:
(Type !? for Help.)
Path[0]: !?
An array of path names.
Path[0]: fo
Path[1]: bar
Path[2]:
Path: fo bar
PS (3) >)

When prompted, you can enter !? to see the help message giving you more informa-
tion about the type of thing you’re supposed to enter.

And with that, we’re finished with our discussion of the Parameter attribute and
its properties. But we’re not finished with parameter attributes quite yet. The next
thing to look at is the Alias attribute. This is a pretty simple feature, but it has a
couple of important uses.

8.2.5 Creating parameter aliases with the Alias attribute

The Alias attribute allows you to specify alternate names for a parameter. It’s typi-
cally used to add a well-defined shortcut for that parameter. Here’s why this is impor-
tant. If you’ll recall our parameter discussion in chapter 2, we said that you only have
to specify enough of a parameter name to uniquely identify it. Unfortunately, there’s
a problem with that approach and that’s versioning the command over time. By ver-
sioning we mean being able to add new capabilities to future versions of a command
in such a way that older scripts using this command aren’t broken. If you add a new
parameter to a command that has the same prefix as an existing parameter, you now
need a longer prefix to distinguish the name. Any scripts that used the old short pre-
fix would fail because they’d be unable to distinguish which parameter to use. This is
where the Alias attribute comes in. It can be used to add distinctive and mnemonic
short forms for parameters.

Let’s look at an example. The following function defines a single parameter:
-ComputerName. You’ll give this parameter an alias: -CN. Here’s the function definition:

PS (1) > function Test-ParameterAlias
>> {
WRITING ADVANCED FUNCTIONS AND SCRIPTS 303

>> param (
>> [alias("CN")]
>> $ComputerName
>>)
>> "The computer name is $ComputerName"
>> }
>>

When you run it using the full parameter name, it works as expected:

PS (2) > Test-ParameterAlias -ComputerName foo
The computer name is foo

And, of course, it also works with the alias:

PS (3) > Test-ParameterAlias -CN foo
The computer name is foo

Now try a prefix of the -ComputerName parameter:

PS (4) > Test-ParameterAlias -com foo
The computer name is foo

And it too works fine. Next, create a new version of the command. Add a new para-
meter: -Compare. Here’s the new function definition:

PS (5) > function Test-ParameterAlias
>> {
>> param (
>> [alias("CN")]
>> $ComputerName,
>> [switch] $Compare
>>)
>> "The computer name is $ComputerName, compare=$compare
"
>> }
>>

Try running the command with the parameter prefix -Com again:

PS (6) > Test-ParameterAlias -Com foo
Test-ParameterAlias : Parameter cannot be processed because
 the parameter name 'Com' is ambiguous. Possible matches in
clude: -ComputerName -Compare.
At line:1 char:20
+ Test-ParameterAlias <<<< -Com foo
 + CategoryInfo : InvalidArgument: (:) [Test-P
 arameterAlias], ParameterBindingException
 + FullyQualifiedErrorId : AmbiguousParameter,Test-Para
 meterAlias

This time you get an error because -com could refer to either parameter. But if you
use the -CN alias

PS (7) > Test-ParameterAlias -CN foo
The computer name is foo, compare=False
PS (8) >

it works.
304 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

Another scenario where you might add an alias is when you’re also using the
ValueFromPipelineByPropertyName property on the Parameter attribute. There
are a number of places where the objects you’re working with have similar parameters
with different names. For example, the file system objects returned by dir have a
Name property, whereas the objects returned by Get-Process have a ProcessName
property. If you wanted to create a function that worked with both of these types,
you could have a parameter named Name with an alias ProcessName. How about also
working with services? The objects returned from Get-Service have a ServiceName
property. No problem—just add another alias for ServiceName. In practice, there’s
no limit to the number of aliases that can be assigned to a parameter.

Now let’s look at the last type of parameter metadata: the validation attributes
that let you constrain the parameter values in much more interesting ways than just
by type.

8.2.6 Parameter validation attributes

The last class of parameter attributes we’ll cover are the parameter validation attri-
butes. You already know how to add a type constraint to a parameter where you
require that the argument be of a particular type. The parameter validation attributes
allow you to specify additional constraints on the argument to a parameter. The avail-
able parameter validation attributes are shown in figure 8.7.

In many cases these constraints seem like trivial functions (and mostly they are),
but they’re valuable for a couple of reasons:

• They declare the parameter contract. This means that by inspecting the
parameter declaration, you can see what constraints are present. This also
means that other tools can work with this information as well to drive Intelli-
Sense-like features.

[AllowNull()]
[AllowEmptyString()]
[AllowEmptyCollection()]
[ValidateNotNull()]
[ValidateNotNullOrEmpty()]

[ValidateCount(min, max)]
[ValidateLength(min, max)]

[ValidatePattern(pattern)]
[ValidateRange(min, max)]
[ValidateSet(set of values…)]

[ValidateScript({scriptblock}
)]

Attributes that control how null or

empty parameters are handled

Attributes that validate string

lengths or array element counts

Attributes that validate argument values

against numeric ranges, regular expression

patterns, or explicit sets of values

Performs custom validation

actions by specifying a scriptblock

Figure 8.7 The validation attributes can be applied to script and function parameters to

specify additional parameter checks to perform when binding arguments.
WRITING ADVANCED FUNCTIONS AND SCRIPTS 305

• You don’t have to write any error-handling code. By specifying the attribute,
you’re declaring the constraint, and the runtime takes care of doing the work of
checking the value for you. Because the PowerShell runtime does the check, it
can generate standardized error messages, translated into whatever language the
user’s environment is configured for. It’s a pretty nifty feature.

The other interesting thing is that the set of attributes isn’t fixed; a .NET programmer
can create new attributes by deriving from the existing base classes. Although this isn’t
possible in the PowerShell language yet, you do have ValidateScript, which lets
you do similar things. We’ll get to that once we cover the other attributes that are
available.

Validation attribute: AllowNull

The AllowNull attribute should only makes sense if the associated parameter is
marked as mandatory. This is because, by default, mandatory parameters don’t allow
you to pass $null to them. If this attribute is specified, the check is suppressed and
$null can be passed to the parameter. The AllowNullExample function in the
example shows how this might be used:

function allowNullExample
{
 param
 (
 [parameter(Mandatory=$true)]
 [AllowNull()]
 $objectToTest
)
 $objectToTest -eq $null
)

Validation attribute: AllowEmptyString

The AllowEmptyString attribute is a variation on the AllowNull attribute. Manda-
tory parameters won’t permit empty strings to be passed either. You should specify
this attribute if, for some unknown reason, you want to allow your function or script
to have to deal with empty strings in mandatory parameters.

NOTE It’s pretty hard to think of a good case where you want to allow
$null or an empty argument to be passed to a function. If you do this
but don’t have correct code in your function or script implementation,
your users may find themselves having to debug NullReference
exceptions. Not a nice thing to do to your users.

Validation attribute: AllowEmptyCollection

This is the last variation on the attributes that are used with mandatory parameters to
disable some of the default checks. The AllowEmptyCollection attribute allows an
empty collection as the argument of a mandatory parameter.
306 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

Validation attribute: ValidateNotNull

The ValidateNotNull attribute is the opposite of AllowNull. This attribute turns
on the check for $null if the parameter isn’t mandatory. The following example
shows the use of this attribute with a nonmandatory parameter:

function validateNotNullExample
{
 param
 (
 [ValidateNotNull()]
 $objectToTest
)
 $objectToTest -eq $null
}

Validation attribute: ValidateNotNullOrEmpty

The ValidateNotNullOrEmpty attribute specifies that the argument of the parame-
ter isn’t permitted to be set to $null, an empty string, or an empty array.

Validation attribute: ValidateCount

The ValidateCount attribute specifies the minimum and maximum number of val-
ues that can be passed to an array parameter. The runtime generates an error if the
number of elements in the argument is outside the range. In the following example,
one parameter, $pair, requires exactly two values:

PS (1) > function validateCountExample
>> {
>> param (
>> [int[]] [ValidateCount(2,2)] $pair
>>)
>> "pair: $pair"
>> }
>>

Try the function with one argument:

PS (2) > validateCountExample 1
validateCountExample : Cannot validate argument on paramete
r 'pair'. The number of supplied arguments (1) is less than
 the minimum number of allowed arguments (2). Specify more
than 2 arguments and then try the command again.
At line:1 char:21
+ validateCountExample <<<< 1
 + CategoryInfo : InvalidData: (:) [validateCo
 untExample], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationE
 rror,validateCountExample

You get the expected error. Next, pass in a pair of numbers:

PS (3) > validateCountExample 1,2
pair: 1 2
WRITING ADVANCED FUNCTIONS AND SCRIPTS 307

That works. Finally, pass in three numbers:

PS (4) > validateCountExample 1,2,3
validateCountExample : Cannot validate argument on paramete
r 'pair'. The number of supplied arguments (3) exceeds the
maximum number of allowed arguments (2). Specify less than
2 arguments and then try the command again.
At line:1 char:21
+ validateCountExample <<<< 1,2,3
 + CategoryInfo : InvalidData: (:) [validateCo
 untExample], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationE
 rror,validateCountExample

Again, you get an error.

Validation attribute: ValidateLength

The ValidateLength attribute can only be used with strings or arrays of strings. It
allows you to specify the minimum and maximum length of the argument strings. If
the argument is an array of strings, each element of the array will be checked. In the
following example, the specified computer names must have 1 to 10 characters:

function validateLengthExample
{
 param (
 [string][ValidateLength(8,10)] $username
)
 $userName
}

Validation attribute: ValidatePattern

The ValidatePattern attribute allows you to specify a regular expression to use to
validate the argument string. For example, the $hostName parameter in the following
function must start with a letter from a to z followed by one to seven digits:

PS (1) > function validatePatternExample
>> {
>> param (
>> [ValidatePattern('^[a-z][0-9]{1,7}$')]
>> [string] $hostName
>>)
>> $hostName
>> }
>>

Try it with a valid string:

PS (2) > validatePatternExample b123
b123

It returns the argument with no error. Now try an invalid argument that has too
many numbers:

PS (3) > validatePatternExample c123456789
validatePatternExample : Cannot validate argument on parame
308 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

ter 'hostName'. The argument "c123456789" does not match th
e "^[a-z][0-9]{1,7}$" pattern. Supply an argument that matc
hes "^[a-z][0-9]{1,7}$" and try the command again.
At line:1 char:23
+ validatePatternExample <<<< c123456789
 + CategoryInfo : InvalidData: (:) [validatePa
 tternExample], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationE
 rror,validatePatternExample

You get an error as expected. Unfortunately, the error message isn’t helpful—all it
reports is the pattern that failed but not why it failed or what the intent of the pattern
was. This limits the usefulness of this attribute.

Validation attribute: ValidateRange

The ValidateRange attribute allows you to constrain the range of a numeric argu-
ment. This means that instead of just saying the argument must be an integer, you
can say that it must be an integer in the range 1 through 10, as shown here:

PS (1) > function validateRangeExample
>> {
>> param (
>> [int[]][ValidateRange(1,10)] $count
>>)
>> $count
>> }
>>

As you saw with the ValidateLength attribute for strings, this attribute can be
applied to a collection, in which case it will validate each member of the collection:

PS (2) > validateRangeExample 1
1
PS (3) > validateRangeExample 1,2,3
1
2
3

These two examples return no error because all the members are within range. Now
try one with a member outside the range:

PS (4) > validateRangeExample 1,2,3,22,4
validateRangeExample : Cannot validate argument on paramete
r 'count'. The 22 argument is greater than the maximum allo
wed range of 10. Supply an argument that is less than 10 an
d then try the command again.
At line:1 char:21
+ validateRangeExample <<<< 1,2,3,22,4
 + CategoryInfo : InvalidData: (:) [validateRa
 ngeExample], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationE
 rror,validateRangeExample

PS (5) >

It fails, indicating the value that couldn’t be processed.
WRITING ADVANCED FUNCTIONS AND SCRIPTS 309

Validation attribute: ValidateSet

The ValidateSet attribute ensures that the argument is a member of the specific set
of values passed to the attribute. In the following example, the argument to the
$color parameter can contain only the values red, blue, or green:

PS (5) > function validateSetExample
>> {
>> param (
>> [ValidateSet("red", "blue", "green")]
>> [ConsoleColor] $color
>>)
>> $color
>> }
>>

Try it with a valid argument

PS (6) > validateSetExample red
Red

and an invalid argument:

PS (7) > validateSetExample cyan
validateSetExample : Cannot validate argument on parameter
'color'. The argument "Cyan" does not belong to the set "re
d,blue,green" specified by the ValidateSet attribute. Suppl
y an argument that is in the set and then try the command a
gain.
At line:1 char:19
+ validateSetExample <<<< cyan
 + CategoryInfo : InvalidData: (:) [validateSe
 tExample], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationE
 rror,validateSetExample)

Note that the error message contains the list of valid values. Notice that you passed an
array of arguments to the parameter, but the type of the parameter is [Console-
Color], not [ConsoleColor[]]—that is, it’s not an array parameter. This works
because [ConsoleColor] is a .NET enum type where multiple values can be com-
bined to produce a new value in the set. The PowerShell runtime understands that
this and combines the arguments to produce a single result.

Validation attribute: ValidateScript

And now for the final validation attribute. As promised, we’ve saved the best (or at
least the most powerful) for last. The ValidateScript attribute allows you to spec-
ify a chunk of PowerShell script to use to validate the argument. This means that it
can do anything. The argument to test is passed in as $_to the code fragment, which
should return $true or $false. In the following example, the attribute is used to
verify that the argument is an even number:

PS (8) > function validateScriptExample
>> {
310 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

>> param (
>> [int] [ValidateScript({$_ % 2 -eq 0})] $number
>>)
>> $number
>> }
>>

This succeeds for 2

PS (9) > validateScriptExample 2
2

and fails for 3:

PS (10) > validateScriptExample 3
validateScriptExample : Cannot validate argument on paramet
er 'number'. The "$_ % 2 -eq 0" validation script for the a
rgument with value "3" did not return true. Determine why t
he validation script failed and then try the command again.
At line:1 char:22
+ validateScriptExample <<<< 3
 + CategoryInfo : InvalidData: (:) [validateSc
 riptExample], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationE
 rror,validateScriptExample

As with the ValidatePattern attribute, the error message doesn’t provide the best
user experience, limiting the value of this attribute for validation. On the other hand,
it can also be used for things like logging and tracing, counting the number of times
the parameter was used, and so on simply by taking the appropriate action and then
returning $true.

Now that we’ve covered all the things you can do with explicit parameters, we’re
going to investigate an alternate mechanism for parameter specification. This alter-
nate mechanism allows you to do something that isn’t possible with explicit parame-
ter specification: write scripts and functions that can dynamically adapt their
parameter signatures to the environment. We’ll cover this topic in the next section.

8.3 DYNAMIC PARAMETERS AND DYNAMICPARAM

Explicit or static parameters are defined as part of the source code for a script or func-
tion and are fixed when that script or function is compiled. But a script or function
can also define parameters at runtime. These new parameters are added dynamically
based on runtime conditions instead of statically at parse time. This allows you to
write functions to specialize their interface (i.e., their parameters) based on ambient
conditions. The best example of this is a cmdlet like Set-Content. When Set-
Content is used in a file system drive, it lets you specify file-specific parameters like
-Encoding. In other providers where this parameter doesn’t make sense, it isn’t pres-
ent in the cmdlet signature. Because these parameters are defined dynamically, they’re
called (no surprise, I’m sure) dynamic parameters. Cmdlets have always had this capa-
bility, but PowerShell v2 makes the facility available for scripts and functions as well.
DYNAMIC PARAMETERS AND DYNAMICPARAM 311

If you want your scripts and functions to have dynamic parameters, you have to
use the dynamicParam keyword. The syntax for this keyword is

dynamicParam { <statement-list> }

Let’s work through the steps needed to implement dynamic parameters. Warning:
this isn’t for the faint of heart, but it’s a powerful technique that, when needed, allows
you to deliver the best experience for the users of your scripts.

8.3.1 Steps for adding a dynamic parameter

In this section, we’ll walk you through the steps necessary to define dynamic parame-
ters in a function. First, you’ll specify a dynamicParam block in your function. Then,
in the body of the dynamicParam block, you’ll use an if statement to specify the
conditions under which the parameter is to be available. To define the actual parame-
ters you want to expose, you need to use the New-Object cmdlet to create a instance
of the type

System.Management.Automation.RuntimeDefinedParameter

You’ll use this object to define your dynamic parameter and, at a minimum, you’ll
have to specify its name. If you need to apply some additional attributes, you’ll have
to use the New-Object command to create an instance of the type

System.Management.Automation.ParameterAttribute

which is used to include the Mandatory, Position, or ValueFromPipeline attri-
butes you saw earlier in this chapter.
 In the following example, you define a function with two static parameters—Name
and Path—and an optional dynamic parameter named dp1. dp1 is in the set1
parameter set and has a type: [int]. The dynamic parameter is available only when
the value of the Path parameter begins with HKLM:, indicating that it’s being used in
the Registry drive. The complete function is shown in figure 8.8.

This function will return the bound parameters in the end block of the function.

NOTE The variable $PSBoundParameters is a new automatic vari-
able introduced in PowerShell v2. This variable contains a hashtable
with all the parameters that were bound when the command was
invoked. You’ll learn more about this variable when we cover proxy
commands in chapter 11.

The presence of the dynamicParam block forces you to explicitly use the end key-
word just like using the begin and process keywords would. Now run the function.
Try the function in the C: drive:

PS (2) > dynamicParameterExample -dp1 13 -Path c:\
dynamicParameterExample : A parameter cannot be found that
matches parameter name 'dp1'.
At line:1 char:29
312 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

+ dynamicParameterExample -dp1 <<<< 13 -Path c:\
 + CategoryInfo : InvalidArgument: (:) [dynami
 cParameterExample], ParameterBindingException
 + FullyQualifiedErrorId : NamedParameterNotFound,dynam
 icParameterExample

You get an error saying that no -dp1 parameter was found. Now try it with HKLM:

PS (3) > dynamicParameterExample -dp1 13 -Path HKLM:\

Key Value
--- -----
Path HKLM:\
dp1 13

This time, the function executes without error and shows you that the dynamic
parameter was bound as desired.

function dynamicParameterExample
{

[cmdletbinding()]
param (

[String]$name,
[String]$path

)

dynamicparam
{

if ($path -match "^HKLM:")
{

$attributes = New-Object `
System.Management.Automation.ParameterAttribute `
-Property @{

ParameterSetName = "set1"
Mandatory = $false

}

$attributeCollection = New-Object `
System.Collections.ObjectModel.Collection[System.Attribute]

$attributeCollection.Add($attributes)

$dynParam1 = New-Object `
System.Management.Automation.RuntimeDefinedParameter `
dp1,int, $attributeCollection

$paramDictionary = New-Object `
Management.Automation.RuntimeDefinedParameterDictionary

$paramDictionary.Add("dp1", $dynParam1)

$paramDictionary
}

}

end { $psboundparameters }
}

Static parameter definitions

Creates object that will provide

parameter attributes

Creates parameter

object and parameter

dictionary to hold it

Returns parameter dictionary

so runtime can use it for

binding parameters

Returns bound parameters

Figure 8.8 A function that defines dynamic parameters. If the -Path parameter is set to some-

thing that starts with HKML: an additional parameter, dp1, will be defined for the function.
DYNAMIC PARAMETERS AND DYNAMICPARAM 313

As you can see, using dynamic parameters is a fairly complex task. The task is basi-
cally the same in script or in a compiled language like C#. If you can follow this
example, you’re well on your way to understanding dynamic parameters in C#.

8.3.2 When should dynamic parameters be used?

So when would you use this technique? The most common case is something like the
namespace providers mentioned earlier where most of the parameters are the same
but certain parameters may only be present based on the path. This allows you to
have one command to deal with many similar but slightly different scenarios. This
reduces the number of commands a user has to learn. The other place where dynamic
parameters might be used is when you want to base the parameters on some type of
dynamic configuration, like the set of columns in a database table. You could write a
single cmdlet, called something like Update-DatabaseTable, that uses the names
and types of the columns to add dynamic parameters for the cmdlet.

This concludes our discussion of dynamic parameters and also completes the over-
all discussion of parameterization of scripts and functions. You now have all the nec-
essary tools to define optimal interfaces or signatures for your scripts and functions.
But knowing how to define the signature for a script is only half the battle—at least if
you want someone other than yourself to use these scripts. No matter how good the
interface is, production scripting still requires documentation for the scripts you’re
producing. In the next section, I’ll explain how this is accomplished.

8.4 DOCUMENTING FUNCTIONS AND SCRIPTS

In this section, we’ll look at the various mechanisms you can use to provide docu-
mentation for your scripts. Unfortunately, in PowerShell v1, there was no good way
to document functions and scripts. This was fixed in v2 by adding three new features:

• Automatic help information generated from the function or script definition
• A special way of processing comments to extract help information from them
• A mechanism for associating external help files with a function or script

The first of these mechanisms is the automatic generation of help text from a func-
tion or script definition. When you define a function, the PowerShell help system can
generate some amount of help information for that function. To illustrate, define a
simple function:

PS (1) > function abc ([int] $x, $y) { }

Now you can call Get-Help on this function

PS (2) > Get-Help abc
abc [[-x] <Int32>] [[-y] <Object>]

and you get the synopsis for the function. As you can see, the help subsystem tries to
do as much work for you as it can automatically. In the next section we’ll look at the
fields that can be automatically generated.
314 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

8.4.1 Automatically generated help fields

A certain number of the help fields are generated automatically: name, syntax, param-
eter list, parameter attribute table, common parameters, and remarks. These elements
are described in table 8.1.

The automatically generated help is minimal. You’ll deliver a much better result by
adding your own help content.

8.4.2 Creating manual help content

Although it’s handy to know the command’s syntax, knowing what the command
does is more useful. This is where the manual documentation mechanisms come in.
PowerShell provides two ways for documenting scripts and functions: in line with
special documentation comments or externally in a help file.

Documentation comments (or doc comments) are a convention for using com-
ments when writing scripts such that these comments can be automatically used to
fill in help information. These comments must be placed in particular locations in
scripts for them to be processed as doc comments and can contain a number of
markup tags for structuring the help information. We’ll cover these details in the next
section. The final mechanism for providing function/script help uses external files.

Table 8.1 Automatically generated help fields

Help element Description

Name The Name section of the help topic for a function is taken from the
name of the function. For a script, it’s taken from the name of the
script file.

Syntax The Syntax section of the help topic is generated from the function or
script syntax (in other words, the parameter definitions). If a parameter
has a type attribute associated with it, that type will be displayed as part
of the syntax. If you don’t specify a parameter type, Object is inserted
as the default value.

Parameter list The Parameter list in the help topic is generated from the function or
script syntax and from the descriptions that you add to the parameters.
The function parameters appear in the “Parameters” section in the
same order in which they appear in the function or script definition. The
spelling and capitalization of parameter names is also taken from the
definition.

Common parameters The common parameters are added to the syntax and parameter list of
the help topic, even if they have no effect.

Parameter attribute table Get-Help generates the table of parameter attributes that appears
when you use the -Full or -Parameter parameter of Get-Help.
The value of the Required, Position, and Default properties is
taken from the function or script definition.

Remarks The Remarks section of the help topic is automatically generated from
the function or script name.
DOCUMENTING FUNCTIONS AND SCRIPTS 315

External help files are XML files written in the Microsoft Assistance Markup Lan-
guage (MAML) format. In PowerShell v1, this mechanism was available only for cmd-
lets. In v2, the help file facility can be used with functions and scripts as well. So why
have these external files? Because they allow for the help content to be translated
(localized) into many different languages whereas doc comments only allow help to
be written in a single language. Doc comments also require the script file itself to be
changed just to change a typo in the help documentation.

As you can see, the help mechanism scales from simple but incomplete up to a
full production-level, localizable help system—one of the themes of PowerShell v2.
We didn’t need to say much about the automatic help facility (obviously), but the
other two mechanisms require more explanation. We’ll start with the doc comment
mechanism.

8.4.3 Comment-based help

Comment-based help is the easiest way to add help for functions and scripts. It works
by using special help comment tags in comments associated with a function defini-
tion or script. These comments are parsed by the PowerShell interpreter and used to
create the help topics. Once this information is available, the Get-Help cmdlet
returns help objects just like you get from the help files associated with cmdlets.
When you specify the correct tags, doc comments can specify all the help views pro-
vided by Get-Help, such as Detailed, Full, Example, and Online, to display func-
tion and script help.

Comment-based help is written as a series of comments. These comments can
either be single-line comments where there is a # before each line, or you can use the
new block comment feature in PowerShell v2, where the comments are enclosed in
<# and #> sequences. All of the lines in a doc comment topic must be contiguous. If
a doc comment follows a comment that’s not part of the help topic, there must be at
least one blank line between the last non-help comment line and the beginning of the
comment-based help.

For functions, the doc comments can be placed in one of three places:

• At the beginning of the function body, after the open brace.

• At the end of the function body.

• Before the function keyword. In this case, if the comment is to be processed as a
doc comment, there can’t be more than one blank line between the last line of
the comment and the function keyword.

For scripts, the doc comments must be either at the beginning or the end of the script
file. If they’re at the beginning, there can only be non-doc comments or blank lines
before the first doc comment. There’s also one other little issue to consider: if the doc
comments for a script are at the beginning of a script and the first thing a script con-
tains is a function definition, then should the doc comment apply to the script or the
316 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

function? This ambiguity is resolved by requiring that there be at least two blank lines
between the end of the doc comment for the script and the beginning of the function.

Let’s look at a basic example; you’ll use single-line comments and the .SYNOPSIS
tag to add a definition for the abc function you defined earlier. The definition now
looks like

PS (1) > function abc ([int] $x, $y)
>> {
>> #.SYNOPSIS
>> #This is my abc function
>> }
>>

Run the Get-Help command again. The last time, you got a very basic synopsis. Let’s
see what you get this time:

PS (2) > Get-Help abc

NAME
 abc

SYNOPSIS
 This is my abc function

SYNTAX
 abc [[-x] <Int32>] [[-y] <Object>] [<CommonParameters>]

DESCRIPTION

RELATED LINKS

REMARKS
 To see the examples, type: "get-help abc -examples".
 For more information, type: "get-help abc -detailed".
 For technical information, type: "get-help abc -full".

Now you get much more output. Of course, much of it’s empty—you haven’t speci-
fied all the sections yet. You can guess pretty easily what some of the sections should
be. Let’s add a description for the function. This time you’ll use the block comments
notation—it’s much easier to work with.

NOTE PowerShell added block comments to make it easier to write
doc comments. The sequences <# and #> were chosen in part because
they look somewhat like XML, which is used for external help files.

Here’s what the new function definition looks like:

PS (3) > function abc ([int] $x, $y)
>> {
>> <#
>> .SYNOPSIS
>> This is my abc function
DOCUMENTING FUNCTIONS AND SCRIPTS 317

>> .DESCRIPTION
>> This function is used to demonstrate writing doc
>> comments for a function.
>> #>
>> }
>>

When you run Get-Help, you see

PS (4) > Get-Help abc

NAME
 abc

SYNOPSIS
 This is my abc function

SYNTAX
 abc [[-x] <Int32>] [[-y] <Object>] [<CommonParameters>]

DESCRIPTION
 This function is used to demonstrate writing doc
 comments for a function.

RELATED LINKS

REMARKS
 To see the examples, type: "get-help abc -examples".
 For more information, type: "get-help abc -detailed".
 For technical information, type: "get-help abc -full".

with the description text in its proper place.
The basic pattern should be obvious by now. Each help section begins with a spe-

cial tag of the form .TAGNAME, followed by the content for that section. The tag must
appear on a line by itself to be recognized as a tag but can be preceded or followed by
whitespace. The order in which tags appear doesn’t matter. Tags are not case sensitive
but by convention they’re always written in uppercase. (This makes the structure of
the comment easier to follow.)

For a comment block to be processed as a doc comment, it must contain at least
one section tag. Most tags can be specified only once per function definition, but
there are some exceptions. For instance, .EXAMPLE can appear many times in the
same comment block. The help content for each tag begins on the line after the tag
and can span multiple lines.

8.4.4 Tags used in documentation comments

A fairly large number of tags can be used when creating doc comments. These tags are
shown in table 8.2. They’re listed in the order in which they typically appear in out-
put of Get-Help.
318 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

Some of these tags require a bit more explanation. This is addressed in the following
sections.

.PARAMETER <Parameter-Name> help tag

This is where you add the description for a parameter. The parameter must be named
in the argument to the tag. You can include a .PARAMETER tag for each parameter in
the function or script, and the .PARAMETER tags can appear in any order in the com-
ment block. The order in which things are presented is controlled by the parameter
definition order, not the help tag order. If you want to change the display order, you
have to change the order in which the parameters are defined.

Alternatively, you can specify a parameter description simply by placing a com-
ment before the parameter definition on the body of the function or script. If you use
both a syntax comment and a .PARAMETER tag, the description associated with the
.PARAMETER tag is used, and the syntax comment is ignored.

Table 8.2 Tags that can be used in doc comments

Tag name Tag content

.SYNOPSIS A brief description of the function or script. This tag can be
used only once in each help topic.

.DESCRIPTION A detailed description of the function or script.

.PARAMETER The description of a parameter.

.EXAMPLE An example showing how to use a command.

.INPUTS The type of object that can be piped into a command.

.OUTPUTS The types of objects that the command returns.

.NOTES Additional information about the function or script.

.LINK The name of a related topic.

.COMPONENT The technology or feature that the command is
associated with.

.ROLE The user role for this command.

.FUNCTIONALITY The intended use of the function.

.FORWARDHELPTARGETNAME Redirects to the help topic for the specified command.

.FORWARDHELPCATEGORY Specifies the help category of the item in the
.FORWARDHELPTARGETNAME tag.

.REMOTEHELPRUNSPACE Specifies the name of a variable containing the PSSession to
use when looking up help for this function. This keyword is
used by the Export-PSSession cmdlet to find the Help top-
ics for the exported commands. (See section 12.4.2.)

.EXTERNALHELP Specifies the path to an external help file for the command.
DOCUMENTING FUNCTIONS AND SCRIPTS 319

.LINK help tag

The .LINK tag lets you specify the names of one or more related topics. Repeat this tag
for each related topic. The resulting content appears in the Related Links section of the
help topic. The .LINK tag argument can also include a Uniform Resource Identifier
(URI) to an online version of the same help topic. The online version opens when you
use the -Online parameter of Get-Help. The URI must begin with http or https.

.COMPONENT help tag

The .COMPONENT tag describes the technology or feature area that the function or
script is associated with. For example, the component for Get-Mailbox would be
Exchange.

.FORWARDHELPTARGETNAME <Command-Name> help tag

.FORWARDHELPTARGETNAME redirects to the help topic for the specified command.
You can redirect users to any help topic, including help topics for a function, script,
cmdlet, or provider.

.FORWARDHELPCATEGORY <Category> help tag

The .FORWARDHELPCATEGORY tag specifies the help category of the item in Forward-
HelpTargetName. Valid values are Alias, Cmdlet, HelpFile, Function, Provider,
General, FAQ, Glossary, ScriptCommand, ExternalScript, Filter, and All. You
should use this tag to avoid conflicts when there are commands with the same name.

.REMOTEHELPRUNSPACE <PSSession-variable> help tag

The .REMOTEHELPRUNSPACE tag won’t make sense to you until we cover remoting
in chapter 11. It’s used to specify a session that contains the help topic. The argu-
ment to the tag is the name of a variable that contains the PSSession to use. This
tag is used by the Export-PSSession cmdlet to find the help topics for the
exported commands.

.EXTERNALHELP <XML Help File Path>

The .EXTERNALHELP tag specifies the path to an XML-based help file for the script or
function. In versions of Windows from Vista on, if the specified path to the XML file
contains UI-culture-specific subdirectories, Get-Help searches the subdirectories
recursively for an XML file with the name of the script or function in accordance with
the language fallback standards for Windows Vista, just as it does for all other XML-
based help topics. See appendix D for additional information about UI culture, mes-
sage catalogs, and world-ready scripting.

And, at long last, we’re finished with our journey through the advanced function
and script features. You now know how to create, declare, constrain, and document
your functions. At this point, you’re well on your way to becoming a scripting expert.
320 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

8.5 SUMMARY

This chapter introduced scripting and programming in general in PowerShell. It also
covered the advanced scripting features introduced in PowerShell v2. Here are the key
points:

• PowerShell programming can be done either with functions or scripts. Scripts
are pieces of PowerShell script text stored in a file with a .ps1 extension. In Pow-
erShell, scripts and functions are closely related, and most of the same principles
and techniques apply to both. There are a few exceptions. In scripts, for exam-
ple, only the param keyword can be used to declare formal parameters.

• Scripts introduced a new kind of variable scope: the script command and the
$script: scope modifier are used to reference variables at the script scope.

• PowerShell v2 introduced a sophisticated attribution system for annotating
parameters. Using attributes, you can control a wide variety of argument bind-
ing behaviors. You can also specify alternate names for parameters using param-
eter aliases and additional constraints on the values that can be bound using
validation attributes.

• PowerShell v2 also introduced comprehensive mechanisms for documenting
your scripts and functions. You get simple documentation for free just by
declaring a function. You can add inline documentation with your code using
doc comments and provide external help files containing the documentation.

Even though we discussed a lot of material in this chapter, we’ve covered only part of
the story of programming with PowerShell. In chapter 9, you’ll learn about modules,
which are new in PowerShell v2, and then in chapter 10, we’ll dive into the plumbing
underlying all of this when we cover scriptblocks, which are the objects underlying
the infrastructure for scripts and functions.
SUMMARY 321

C H A P T E R 9

Using and authoring
modules

9.1 The role of a module system 323
9.2 Module basics 325
9.3 Working with modules 327

9,4 Writing script modules 337
9.5 Binary modules 353
9.6 Summary 360
The value of a telecommunications network is proportional to the square of the
number of connected users of the system.

 —Robert Metcalfe (Metcalfe’s Law)

A popular meme in the software industry is that the best programmers are lazy. The
idea is that, rather than writing new code to solve a problem, a good programmer will
try to reuse existing code, thereby leveraging the work that others have already done
to debug and document that code. Unfortunately, this kind of reuse happens less
often than it should. The typical excuses for not doing this are overconfidence (“I can
do a better job,” also known as the “Not-Invented-Here” syndrome), underestimating
(“It will only take me 10 minutes to do that”), and ignorance (“I didn’t know some-
body had already implemented that”). There’s no excuse for this last point anymore.
With modern search engines, it’s easy to find things. But finding the code is only part
322

of the solution because the code has to be in a form that can be reused. The most
common way to facilitate code reuse is to package the code in a module. In this chap-
ter, we’re going to examine how PowerShell v2 facilitates code reuse with its module
system. You’ll learn how to find existing modules on your system and how to install
new modules on the system. Then we’ll look at how you can create modules and
package your code so that others can use it.

NOTE From user studies, we’ve verified that the most common reuse
pattern in the IT professional community is copy and paste. This isn’t
surprising given that, for languages like VBScript and cmd.exe, it’s
pretty much the only reuse pattern. A user gets a script from “some-
where,” copies it, and then modifies it, repeating these processes for
each new application. Although this works to a degree and has a low
barrier to entry, it doesn’t scale very well.

9.1 THE ROLE OF A MODULE SYSTEM

In this section, we’ll look at the intent behind PowerShell modules and the roles they
play in our ecosystem. Before we get into the details of the way modules work in
PowerShell, let’s look at an example of just how successful a module system can be.

The preeminent example of a network of community-created modules is Perl’s
CPAN. CPAN stands for the Comprehensive Perl Archive Network and is an enor-
mous collection of reusable scripts and modules created by the community that can be
easily and effectively searched for existing solutions. This repository, which you can
explore at http:/www.cpan.org, currently claims the following statistics:

• Online since October 1995

• 92,277 Perl modules

• Written by 8,890 authors

• Mirrored on 254 servers

This is an incredible (and enviable) resource for Perl developers. Clearly such a thing
would be of tremendous value to the PowerShell community. With the introduction
of modules in v2, we’re taking the first important steps to get this going.

In the previous chapter, you organized your code into functions and scripts and
used dot-sourcing to load libraries of reusable script code. This is the traditional
shell-language approach to code reuse. PowerShell modules provide a more manage-
able, production-oriented way to package code. And, as is the usual case with Power-
Shell, modules build on features you’ve already learned. For example, a PowerShell
script module is simply a PowerShell script with a special extension (.psm1) loaded
in a special way. We’ll cover all of these details in later sections, but first, you need
to understand the problem domains that the PowerShell module system was
designed to address.
THE ROLE OF A MODULE SYSTEM 323

9.1.1 Module roles in PowerShell

Modules serve three roles in PowerShell. These roles are listed in table 9.1.

The concepts involved in the first role—configuration—were covered when we
talked about dot-sourcing files. The second role—facilitating reuse—is, as we said,
the traditional role for modules. The third role is unique to PowerShell. Let’s look at
this third role in a bit more detail.

9.1.2 Module mashups: composing an application

One of the features that PowerShell modules offer that’s unique is the idea of a com-
posite management application. This is conceptually similar to the idea of a web
mashup, which takes an existing service and tweaks, or layers on top of it, to achieve
some other more specific purpose. The notion of management mashups is important
as we move into the era of “software+services” (or “clients+clouds” if you prefer). Low
operating costs make hosted services attractive. The problem is how you manage all
these services, especially when you need to delegate administration responsibility to a
slice of the organization.

For example, you might have each department manage its own user resources: mail-
boxes, customer lists, web portals, and so forth. To do this, you need to slice the man-
agement interfaces and republish them as a single coherent management experience.
Sounds like magic, doesn’t it? Well, much of it still is, but PowerShell modules can help
because they allow you to merge the interfaces of several modules and republish only
those parts of the interfaces that need to be exposed. The individual modules that are
being composed are hidden from the user so components can be swapped out as needed
without necessarily impacting the end user. This magic is accomplished through mod-
ule manifests and nested modules. We’ll cover nested modules in this chapter but man-
ifests are a large enough topic that they get their own chapter (chapter 10).

Table 9.1 The roles modules play in PowerShell

Role Description

Configuring the environment The first role is configuration—packaging a set of functions to con-
figure the environment. This is what you usually use dot-sourcing
for, but modules allow you to do this in a more controlled way.

Code reuse The second major role for modules is to facilitate the creation of
reusable libraries. This is the traditional role of modules in a pro-
gramming language.

Composing solutions The final role is the most unusual one. Modules can be used to cre-
ate solutions—essentially a domain-specific application. PowerShell
modules have the unique characteristic of being nested. In most
programming languages, when one module loads another, all of the
loaded modules are globally visible. In PowerShell, modules nest. If
the user loads module A and module A loads module B, then all the
user sees is module A (at least by default). In fact, sometimes all
you’ll do in a module is import some other modules and republish a
subset of those modules’ members.
324 CHAPTER 9 USING AND AUTHORING MODULES

Now that you understand why you want modules, let’s look at how you can use
them in PowerShell.

9.2 MODULE BASICS

In this section, we’ll cover the basic information needed to use PowerShell modules.
The first thing to know is that the module features in PowerShell are exposed through
cmdlets, not language keywords. For example, you can get a list of the module com-
mands using the Get-Command command as follows:

PS {1) > Get-Command -type cmdlet *-*module* | select name

Name

Export-ModuleMember
Get-Module
Import-Module
New-Module
New-ModuleManifest
Remove-Module
Test-ModuleManifest

Note that in the command name pattern, you used wildcards because there are a cou-
ple of different types of module cmdlets. These cmdlets and their descriptions are
shown in table 9.2.

You can also use the Get-Help command to search for a list of all the help topics for
modules available in the built-in help:

PS (2) > Get-Help *module* | select name

Name

New-Module
Import-Module
Export-ModuleMember
Get-Module
Remove-Module

Table 9.2 The cmdlets used for working with modules

Module cmdlet Description

Get-Module Gets a list of the modules currently loaded in memory

Import-Module Loads a module into memory and imports the public commands from
that module

Remove-Module Removes a module from memory and removes the imported members

Export-ModuleMember Used to specify the members of a module to export to the user of the
module

New-ModuleManifest Used to create a new metadata file for a module directory

Test-ModuleManifest Runs a series of tests on a module manifest, validating its contents

New-Module Creates a new dynamic module
MODULE BASICS 325

New-ModuleManifest
Test-ModuleManifest
about_modules

As expected, you see all the cmdlets listed but there’s also an about_modules help
topic that describes modules and how they work in PowerShell. You can use this
built-in help as a quick reference when working in a PowerShell session.

9.2.1 Module terminology

Before we get too far into modules, there are a number of concepts and definitions we
should cover. Along with the names of the cmdlets, table 9.2 introduced some new
terms—module member and module manifest—and reintroduced a couple of familiar
terms—import and export—used in the context of modules. These terms and their
definitions are shown in table 9.3.

We’ll talk more about these concepts in the rest of this chapter. Now let’s introduce
another core module concept.

9.2.2 Modules are single-instance objects

An important characteristic of modules is that there’s only ever one instance of the
module in memory. If a second request is make to load the module, the fact that the
module is already loaded will be caught and the module won’t be reprocessed (at least,
as long as the module versions match; module versions are covered in chapter 10).

Table 9.3 A glossary of module terminology

Term Description

Module member A module member is any function, variable, or alias defined inside a script.
Modules can control which members are visible outside the module by using
the Export-ModuleMember cmdlet.

Module manifest A module manifest is a PowerShell data file that contains information about
the module and controls how the module gets loaded.

Module type The type of module. Just as PowerShell commands can be implemented by
different mechanisms like functions and cmdlets, so modules also have a vari-
ety of implementation types. PowerShell has three module types: script,
binary, and manifest modules.

Nested module One module can load another, either procedurally by calling Import-Module
or by adding the desired module to the NestedModules element in the mod-
ule manifest for that module.

Root module The root module is the main module file loaded when a module is imported.
It's called the root module because it may have associated nested modules.

Imported member An imported module member is a function, variable, or alias imported from
another module.

Exported member An exported member is a module member that has been marked for export.
In other words, it’s marked to be visible to the caller when the module is
imported. Of course, if module foo imports module bar as a nested mem-
ber, the exported members of bar become the imported members in foo.
326 CHAPTER 9 USING AND AUTHORING MODULES

There are a couple of reasons for this behavior. Modules can depend on other mod-
ules, so an application may end up referencing a module multiple times and you don’t
want to be reloading all the time because it slows things down. The other reason is
that you want to allow for private static resources—bits of data that are reused by the
functions exported from a module and aren’t discarded when those functions are, as is
normally the case.

For example, say we have a module that establishes a connection to a remote com-
puter when the module is loaded. This connection will be used by all the functions
exported from that module. If the functions had to reestablish the connection every
time they were called, the process would be extremely inefficient. When you store the
connection in the module, it will persist across the function calls.

Let’s recap: in this section, we looked at some module-specific terms; then we dis-
cussed how modules are single instance. In the next section you’ll start using modules
and the module cmdlets. You’ll learn how to go about finding, loading, and using
modules.

9.3 WORKING WITH MODULES

Let’s start working with PowerShell modules. You’ll begin by seeing which modules
are loaded in your session and which modules are available for loading, learning how
to load additional modules, and understanding how to unload them. (We’ll leave cre-
ating a module until section 9.4.) Let’s get started.

9.3.1 Finding modules on the system

The Get-Module cmdlet is used to find modules—either the modules that are cur-
rently loaded or the modules that are available to load. The signature for this cmdlet
is shown in figure 9.1.

Run with no options, Get-Module lists all the top-level modules loaded in the cur-
rent session. If -All is specified, both explicitly loaded and nested modules are shown.
(We’ll explain the difference between top-level and nested in a minute.) If -List-
Available is specified, Get-Module lists all the modules available to be loaded based
on the current $ENV:ModulePath setting. If both –ListAvailable and -All are
specified, the contents of the module directories are shown, including subdirectories.

Get-Module
[[-Name] <WildcardPattern[]>]
[-All]
[-ListAvailable]

Lists all modules instead

of just default set

Name of module to

retrieve; wildcards allowed

Cmdlet name

When specified, causes cmdlet to list available

modules instead of loaded modules

Figure 9.1 The syntax for the Get-Module cmdlet. This cmdlet is used to find modules,

either in your session or available to be loaded.
WORKING WITH MODULES 327

Let’s try this and see how it works. Begin by running Get-Module with no parameters:

PS {1) > Get-Module
PS {2) >

Okay, that wasn’t very exciting. By default, PowerShell doesn’t load any modules into
a session. (Even in PowerShell v2, the system cmdlets are still loaded using the v1
snap-in commands for compatibility reasons—more on this later.)

Because you have nothing in memory to look at, let’s see what’s available for load-
ing on the system. You can use the -ListAvailable parameter on Get-Module to
find the system modules that are available. (In this example, the output is filtered
using the Where-Object cmdlet so you don’t pick up any nonsystem modules.)

PS {3) > Get-Module -list | where { $_.path -match "System32" }

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest FileTransfer {}
Manifest PSDiagnostics {}

PS {4) >

And you see two modules listed.

NOTE What you see listed will vary depending on which operating
system you’re running and which features are installed on the com-
puter. On Server 2008R2, depending on what server roles are installed
(such as Active Directory), you’ll see additional modules in this output.

By default, the output only shows the module name, the module type, and the exported
commands. Because PowerShell function definitions are created at runtime (more on
this in section 11.1.3), the set of exported commands can’t be known until the module
has been loaded. This is why the list is empty—you haven’t loaded them yet.

NOTE Okay, sure, we could’ve implemented PowerShell modules so
that you could statically determine the set of exported members. We
thought about it, but we didn’t have time. Next release, I hope.

In fact the set of properties for a module is much larger than what you saw in the
default. Let’s look at the full set of properties for the PSDiagnostics module:

PS {1) > Get-Module -list psdiag* | fl

Name : PSDiagnostics
Path : C:\Windows\system32\WindowsPowerShell\v1.0\
 Modules\PSDiagnostics\PSDiagnostics.psd1
Description : Windows PowerShell Diagnostic Utilities Mod
 ule
ModuleType : Manifest
Version : 1.0.0.0
328 CHAPTER 9 USING AND AUTHORING MODULES

NestedModules : {}
ExportedFunctions : {}
ExportedCmdlets : {}
ExportedVariables : {}
ExportedAliases : {}

In this output, you see the various types of module members that can be exported:
functions, cmdlets, variables, and aliases. You also see the module type (Manifest),
the module version, and a description. An important property to note is the Path
property. This is the path to where the module file lives on disk.

In the next section, you’ll see how PowerShell goes about finding modules on the
system.

The $ENV:PSModulePath variable

As you saw in the output from Get-Module, loadable modules are identified by their
path just like executables. They’re loaded in much the same way as executables—a list
of directories is searched until a matching module is found. There are a couple of dif-
ferences, though. Instead of using $ENV:PATH, modules are loaded using a new envi-
ronment: $ENV:PSModulePath. And, where the execution path is searched for files,
the module path is searched for subdirectories containing module files. This arrange-
ment allows a module to include more than one file. In the next section, you’ll
explore the search algorithm in detail.

The module search algorithm

The following algorithm, expressed in pseudocode (part code, part English descrip-
tion), is used for locating a module:

if (the module is an absolute path)
{
 if (the specified module name has a known extension)
 {
 join the path element and module name
 if (the composite path exists)
 {
 load the module and stop looking
 }
 else
 {
 continue with the next path element
 }
 }
 else
 {
 foreach ($extension in ".psd1",".psm1", ".dll"
 {
 join the path element, module name and extension
 if (the composite path exists)
 {
WORKING WITH MODULES 329

 load the module and stop looking
 }
 else
 {
 continue with the next path element
 }
 }
 }
}
foreach ($pathElement in $ENV:PSModulePath)
{
 if (the specified module name has a known extension)
 {
 Join the path element and module base name and name
 to create a new path
 if (the composite path exists)
 {
 load the module and stop looking
 }
 else
 {
 continue with the next path element
 }
 }
 else
 {
 foreach ($extension in ".psd1",".psm1", ".dll"
 {
 Join the path element and module base name, module name
 and extension.

 if (the composite path exists)
 {
 load the module and stop looking
 }
 else
 {
 continue with the next path element
 }
 }
 }
}
if (no module was found)
{
 generate an error
}

As you can see from the number of steps in the algorithm, the search mechanism used
in loading a module is sophisticated but also a bit complicated. Later on we’ll look at
ways to get more information about what’s being loaded.

Now that you know what modules are available, you need to be able to load them.
You’ll learn how next.
330 CHAPTER 9 USING AND AUTHORING MODULES

9.3.2 Loading a module

Modules are loaded using the Import-Module cmdlet. The syntax for this cmdlet is
shown in figure 9.2. As you can see, this cmdlet has a lot of parameters, allowing it to
address a wide variety of scenarios. We’ll look at the basic features of this cmdlet in
this section and cover some obscure features in later sections of this chapter.

This cmdlet has a lot of parameters. We’ll cover many of them in the next sec-
tions. Some of the more advanced parameters will be covered in chapters 10 and 11.

Loading a module by name

The most common way to load a module is to specify its name. You saw how to find
modules using the Get-Module cmdlet in the previous section. One of the modules you
discovered was PSDiagnostics. Let’s use Import-Module to load this module now:

PS (1) > Import-Module psdiagnostics

By default, nothing is output when you load a module. This is as expected and desir-
able because when you’re loading library modules in scripts or in your profile, you
don’t want chattiness. Unless there’s an error, loading a module should be silent.

When you do want to see what was loaded, use Get-Module:

PS (2) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script psdiagnostics {Enable-PSTrace, Enable-...

Import-Module
[-Name] <String[]>
-Assembly <Assembly[]>
-ModuleInfo <PSModuleInfo[]>

[-Global]
[-Prefix <String>]
[-Function <String[]>]
[-Cmdlet <String[]>]
[-Variable <String[]>]
[-Alias <String[]>]
[-Force]
[-PassThru]
[-AsCustomObject]
[-Version <Version>]
[-ArgumentList <Object[]>]
[-DisableNameChecking]
[-Verbose]

Specifies module to load

by name, assembly object,

or PSModuleInfo object

Names of members to

import from module

Cmdlet name

Returns PSModuleInfo
object for module being loaded

Loads into global

scope instead of

module ccope

Prefix for imported

module members

Forces module

to be reloaded

Displays imports and exports

on verbose stream
Disables checking verb used

in command names

Version of

module to load

List of arguments passed

to module script

Returns custom object instead

of PSModuleInfo object

Figure 9.2 The syntax for the Import-Module cmdlet. This cmdlet is used to import mod-

ules into the current module context or the global context if -Global is specified.
WORKING WITH MODULES 331

This shows that you have one module loaded named PSDiagnostics. This output is
substantially abbreviated when displayed as a table, so let’s use Format-List to see
the details of the loaded modules just as you did when you were exploring the on-disk
modules:

PS (3) > Get-Module | fl

Name : psdiagnostics
Path : C:\Windows\system32\WindowsPowerShell\v1.0\M
 odules\psdiagnostics\PSDiagnostics.psm1
Description :
ModuleType : Script
Version : 1.0.0.0
NestedModules : {}
ExportedFunctions : {Disable-PSTrace, Disable-PSWSManCombinedTra
 ce, Disable-WSManTrace, Enable-PSTrace...}
ExportedCmdlets : {}
ExportedVariables : {}
ExportedAliases : {}

Let’s examine this output for a minute. The most obvious thing to notice is that the
ExportedFunctions member in the output is no longer empty. When you load a mod-
ule, you can finally see all the available exported members. The other thing to notice
is that the module type has been changed from Manifest to Script. Again, the details
of the implementation of the module aren’t known until after the module has been
loaded. We’ll cover module manifests and the details on module types in chapter 10.

To see what commands were imported, you can use Get-Command with the
-Module option:

PS (5) > Get-Command -Module psdiagnostics

CommandType Name Definition
----------- ---- ----------
Function Disable-PSTrace ...
Function Disable-PSWSManCombin... ...
Function Disable-WSManTrace ...
Function Enable-PSTrace ...
Function Enable-PSWSManCombine... ...
Function Enable-WSManTrace ...
Function Get-LogProperties ...
Function Set-LogProperties ...
Function Start-Trace ...
Function Stop-Trace ...

This list matches the list of exports from the module, as you can see with Get-Module:

PS (6) > (Get-Module psdiag*).exportedfunctions

Key Value
--- -----
Disable-PSTrace Disable-PSTrace
Disable-PSWSManCombinedTrace Disable-PSWSManCombinedTrace
332 CHAPTER 9 USING AND AUTHORING MODULES

Disable-WSManTrace Disable-WSManTrace
Enable-PSTrace Enable-PSTrace
Enable-PSWSManCombinedTrace Enable-PSWSManCombinedTrace
Enable-WSManTrace Enable-WSManTrace
Get-LogProperties Get-LogProperties
Set-LogProperties Set-LogProperties
Start-Trace Start-Trace
Stop-Trace Stop-Trace

Let’s remove this module using the Remove-Module cmdlet and look at other ways
you can specify which module to load:

PS (7) > Remove-Module PSDiagnostics

Again the command completes with no output.
In addition to loading a module by name, you can also load it by path, again par-

alleling the way executables work. Let’s do this with the PSDiagnostics module.
You saw the path in the output of the earlier example. We’ll use this path to load the
module. Because this is a system module, it’s loaded from the PowerShell install
directory. This means that you can use the built-in $PSHOME variable in the path:

PS (8) > Import-Module $PSHOME/modules/psdiagnostics/psdiagnostics

Call Get-Module verify that it has been loaded

PS (9) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script psdiagnostics {Enable-PSTrace, Enable-...

and there it is.
By loading a module using a full path, you know exactly which file will be pro-

cessed. This can be useful when you’re developing modules, as you’ll see in section 9.4.
Let’s remove this module again as we move on to the next example:

PS (7) > Remove-Module PSDiagnostics

Tracing module loads with -Verbose

So far you’ve allowed the modules to be loaded without caring about the details of
what’s happening. This is fine as long as everything works, but remember how com-
plex the module search algorithm was. When you get into more complex scenarios
where you’re loading multiple modules, it’s useful to see what’s happening. You can
do this by specifying the -Verbose flag:

PS (15) > Import-Module psdiagnostics -Verbose
VERBOSE: Loading module from path
'C:\Windows\system32\WindowsPowerShell\v1.0\Modules\psdiagnostic
s\psdiagnostics.psd1'.
VERBOSE: Loading module from path
'C:\Windows\system32\WindowsPowerShell\v1.0\Modules\psdiagnostic
s\PSDiagnostics.psm1'.
WORKING WITH MODULES 333

VERBOSE: Importing function 'Disable-PSTrace'.
VERBOSE: Importing function 'Disable-PSWSManCombinedTrace'.
VERBOSE: Importing function 'Disable-WSManTrace'.
VERBOSE: Importing function 'Enable-PSTrace'.
VERBOSE: Importing function 'Enable-PSWSManCombinedTrace'.
VERBOSE: Importing function 'Enable-WSManTrace'.
VERBOSE: Importing function 'Get-LogProperties'.
VERBOSE: Importing function 'Set-LogProperties'.
VERBOSE: Importing function 'Start-Trace'.
VERBOSE: Importing function 'Stop-Trace'.

All of the output that begins with VERBOSE: is generated when the -Verbose flag is
specified. It shows two things: the path to the module file and a list of all members (in
this case, functions) being imported into your session. This is pretty straightforward
with a simple scenario, but you’ll see that it can become much more complicated
when we get to nested modules in section 9.4.6.

Imports and Exports

So far, you’ve defaulted to loading everything that a module exports into your session.
You don’t have to do that—and there are cases where you don’t want to do it. Import-
ing too many commands clutters up your session and makes it hard to find what
you’re looking for. To avoid this, you can control what gets imported by using the
-Function, -Cmdlet, -Alias, and -Variable parameters on Import-Module. As
you’d expect, each of these parameters controls a particular type of import from the
module. You’ve seen all the command types previously as well as PowerShell variables.
The PSDiagnostics module only exports functions, so you can use that feature to
restrict what gets loaded. Say you only wanted to load Enable-PSTrace. Here’s what
this would look like:

PS (12) > Import-Module psdiagnostics -Verbose -Function Enable-
PSTrace
VERBOSE: Loading module from path
'C:\Windows\system32\WindowsPowerShell\v1.0\Modules\psdiagnostic
s\psdiagnostics.psd1'.
VERBOSE: Loading module from path
'C:\Windows\system32\WindowsPowerShell\v1.0\Modules\psdiagnostic
s\PSDiagnostics.psm1'.
VERBOSE: Importing function 'Enable-PSTrace'.
PS (13) > get-command -module psdiagnostics

CommandType Name Definition
----------- ---- ----------
Function Enable-PSTrace ...

In the verbose output, you see that only Enable-PSTrace was imported into your
session.

Now you know how to avoid creating clutter in your session. But what if it’s too
late and you already have too much stuff loaded? You’ll learn how to fix that next.
334 CHAPTER 9 USING AND AUTHORING MODULES

9.3.3 Removing a loaded module

Because your PowerShell session can be long running, there may be times when you
want to remove a module. As you saw earlier, you do this with the Remove-Module
cmdlet.

NOTE Typically, the only people who remove modules are those who
are developing the module in question or those are working in an
application environment that’s encapsulating various stages in the pro-
cess as modules. A typical user rarely needs to remove a module. The
PowerShell team almost cut this feature because it turns out to be quite
hard to do in a sensible way.

The syntax for Remove-Module is shown in figure 9.3.

Figure 9.3 The syntax for Remove-Module. Note that this command doesn’t take wildcards.

When a module is removed, all the modules it loaded as nested modules are also
removed from the global module table. This happens even if the module was explicitly
loaded at the global level. To illustrate how this works, let’s take a look at how the mod-
ule tables are organized in the environment. This organization is shown in figure 9.4.

First let’s talk about the global module table. This is the master table that has ref-
erences to all the modules that have been loaded either explicitly or implicitly by
another module. Any time a module is loaded, this table is updated. An entry is also
made in the environment of the caller. In figure 9.4, modules 1 and 3 are loaded

Remove-Module
[-Name] <String[]>
[-ModuleInfo] <PSModuleInfo[]>

[-Force]
[-Verbose]

Lists all modules instead

of just default set

Name or PSModuleInfo
identifying module

to remove

Cmdlet name

Forces module to be removed

even if used by other modules

Global module table

Global

environment

Module1 Module3Module2

Figure 9.4 How the

module tables are orga-

nized. The global module

table holds a reference

to all loaded modules.

Each module in turn has

a reference to the mod-

ules it has loaded.
WORKING WITH MODULES 335

from the global module environment, so there are references from the top-level mod-
ule table. Module1 loads Module2, causing a reference to be added the global module
table and the private module table for Module1. Module2 loads Module3 as a nested
module. Because Module1 has already been loaded from the global environment, no
new entry is added to the global module table, but a private reference is added to the
module table for Module2.

Now you’ll remove Module3 from the global environment. The updated arrange-
ment of modules is shown in figure 9.5.

Next, you’ll update Module3 and reload it at the top level. The final arrangement
of modules is shown in figure 9.6.

Global module table

Global

environment

Module1 Module3Module2

Figure 9.5 How the module tables are organized after Module3 is removed at

the top level. The global module table no longer has a reference to Mo-dule3,

but the local module table for Module2 still has a link to that object.

Global module table

Global

environment

Module1
Module3

(original)
Module2

Module3

(new)

Figure 9.6 How the module tables are organized when the revised Module3

is loaded at the top level. The global module table now has a reference to the

new Module3, but the local module table for Module2 still has a link to the

original Module3.
336 CHAPTER 9 USING AND AUTHORING MODULES

In the final arrangement of modules in figure 9.6, there are two versions of Module3
loaded into the same session. Although this is extremely complicated, it permits mul-
tiple versions of a module to be loaded at the same time in the same session, allowing
different modules that depend on different versions of a module to work at the same
time. This is a pretty pathological scenario, but the real world isn’t always tidy. Even-
tually you do have to deal with things you’d rather ignore, so it’s good to know how.

How exported elements are removed

With an understanding of how modules are removed, you also need to know how the
imported members are removed. There are two different flavors of member removal
behavior depending on the type of member you’re removing. Functions, aliases, and
variables have one behavior. Cmdlets imported from binary modules have a slightly
different behavior. This is an artifact of the way the members are implemented. Func-
tions, aliases, and variables are data structures that are dynamically allocated and so can
be replaced. Cmdlets are backed by .NET classes, which can’t be unloaded from a ses-
sion because .NET doesn’t allow the assemblies containing these classes to be unloaded.
Because of this, the implementation of the cmdlet table depends on hiding or shadow-
ing a command when there’s a name collision when importing a name from a module.
For the other member types, the current definition of the member is replaced. So why
does this matter? It doesn’t matter at all until you try to remove a module.

If you remove a module that has imported cmdlets, causing existing cmdlets to be
shadowed, when the module is removed the previously shadowed cmdlets become
visible again. But when you remove a module importing colliding functions, aliases,
or variables, because the old definitions were overridden instead of shadowed, the
definitions are removed.

Okay, this has gotten a bit heavy. Let’s move on to something more creative and
exciting. In section 9.4, you’ll finally start writing your own modules.

9.4 WRITING SCRIPT MODULES

In this section we’ll start writing modules instead of just using them. For now, we’ll
limit our coverage to script modules. This is because script modules are written in the
PowerShell language—something you’re familiar with by now. In section 9.5, we’ll
expand our coverage to include binary modules, which requires dabbling with C#.

When showing you how to write script modules, we’ll also explain how script
modules work in more detail. Let’s start by describing what a script module is. A
script module is a file that contains PowerShell script text with a .psm1 extension
instead of a .ps1 extension. In other words, a PowerShell script module is just a script
with a different extension.

NOTE Because a script module is a form of script, it obeys execution
policy just like a script. So, before you can load a script module, you’ll
need to change the execution policy to be RemoteSigned as a mini-
mum, as described in section 8.1.1.
WRITING SCRIPT MODULES 337

Is it as simple as that? Well, almost. Let’s walk through an example where you convert
a script into a module and see what changes during the process.

9.4.1 A quick review of scripts

You’re going to write a short script to work with in this conversion exercise. This
script is indented to implement a simple counter. You get the next number from the
counter by calling Get-Count and you reset the sequence using the Reset-Count
command. Here’s what the script looks like:

PS (STA) (27) > Get-Content counter.ps1
$script:count = 0
$script:increment = 1

function Get-Count
{
 return $script:count += $increment
}

function Reset-Count
{
 $script:count=0
 setIncrement 1
}

function setIncrement ($x)
{
 $script:increment = $x
}

As you can see, this script defines the two functions we mentioned, Get-Count and
Reset-Count. But it also defines a number of other things that aren’t part of the
specification: a helper function, setIncrement, and two script-level variables,
$count and $increment. These variables hold the state of the counter. Obviously
just running the script won’t be useful as the commands are defined at the script
scope and are removed when the script exits. Instead, you’ll dot-source the script to
load the script members into your environment:

PS {2) > . .\counter.ps1
PS {3) >

This creates the elements without showing anything (which is what you want a
library to do in most cases.) Now manually verify that you got what you intended:

PS {3) > Get-Command *-count

CommandType Name Definition
----------- ---- ----------
Function Get-Count ...
Function Reset-Count ...
338 CHAPTER 9 USING AND AUTHORING MODULES

The functions are there so you can try them out. Start with Get-Count:

PS (4) > Get-Count
1
PS (5) > Get-Count
2

Each call to Get-Count returns the next number in the sequence. Now use the
Reset-Count command

PS (6) > Reset-Count

and call Get-Count to verify that the count has been reset:

PS (7) > Get-Count
1

Okay, great. But what about the other private members in the script? Using Get-
Command you see that the setIncrement function is also visible:

PS (8) > Get-Command setIncrement

CommandType Name Definition
----------- ---- ----------
Function setIncrement param($x)...

And you can even call it directly:

PS (9) > setIncrement 7
PS (10) > Get-Count
8
PS (11) > Get-Count
15

Because this function was supposed to be a private implementation detail, the fact
that it’s publicly visible isn’t desirable. Likewise, you can also get at the state variables
you created:

PS (12) > Get-Variable count, increment

Name Value
---- -----
count 15
increment 7

The problem with this is clear: $count isn’t a unique name so the chance of it collid-
ing with a similarly named variable from another script is high. This lack of isolation
between scripts makes using dot-sourcing a fragile way to build libraries.

Finally, let’s try to remove this script, emulating what you’ve been doing with
Remove-Module. This turns out to be quite complicated. You end up having to write
a command that looks like this:

PS (13) > Remove-Item -Verbose variable:count,
>>> variable:increment,function:Reset-Count,
WRITING SCRIPT MODULES 339

>>> function:Get-Count,function:setIncrement
VERBOSE: Performing operation "Remove Item" on Target
"Item: count".
VERBOSE: Performing operation "Remove Item" on Target
"Item: increment".
VERBOSE: Performing operation "Remove Item" on Target
"Item: Reset-Count".
VERBOSE: Performing operation "Remove Item" on Target
"Item: Get-Count".
VERBOSE: Performing operation "Remove Item" on Target
"Item: setIncrement".
PS (14) >

This is necessary because there’s no implicit grouping of all the members created by a
script.

At this point, it’s clear that, although it’s possible to build libraries using dot-sourcing,
there are a number of problems with this approach. Private implementation details
leak into the public namespace, and the members of a dot-sourced script lose any sort
of grouping that allows you to manage them as a whole. Let’s turn this script into a
module and see how that fixes the problem.

9.4.2 Turning a script into a module

Now let’s turn the counter script into a module. Do this simply by changing the
extension on the module from .ps1 to .psm1 (where the m stands for module):

PS (1) > copy .\counter.ps1 .\counter.psm1 -Force -Verbose
VERBOSE: Performing operation "Copy File" on Target "Item:
C:\wpia_v2\text\chapter09\code\counter.ps1 Destination:
C:\wpia_v2\text\chapter09\code\counter.psm1".
PS (2) >

Finding function definitions

It’s not true that there’s no way to find out which functions came from a particular file.
Another change in PowerShell v2 was to attach the path to the file where a function was
defined to the scriptblock of the function. For the counter example we’ve been
discussing, the path might look like

PS (23) > ${function:Get-Count}.File
C:\wpia_v2\text\chapter09\code\counter.ps1
PS (24) >

This File property makes it easier to figure out where things came from in your
environment when you have to debug it. For example, all the functions that were defined
in your profile will have the path to your profile in it, functions that were defined in the
system profile will have the system profile path, and so on. (We discussed the set of
profiles that PowerShell uses in chapter 2.) This only fixes part of the problem—managing
functions—and doesn’t deal with variables and aliases.
340 CHAPTER 9 USING AND AUTHORING MODULES

(You’re using the -Force parameter here to make the example work all the time.) Try
loading the renamed file. Figure 9.7 shows what you’ll probably see when you do this.

The module wasn’t run. The default action is to open the file in the editor associ-
ated with the extension. This is because module files aren’t commands and can’t just
be run. Instead, you need to use the Import-Module command to load this module:

PS {3) > Import-Module .\counter.psm1
PS {4) >

Now that you’ve loaded a module, you can try the Get-Module command and see
something useful:

PS {5) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script counter {setIncrement, Get-Coun...

Again let’s use the Format-List (alias: fl) cmdlet to see the object in more detail:

PS {6) > Get-Module | fl

Name : counter
Path : C:\wpia_v2\text\chapter09\code\counter.psm1
Description :
ModuleType : Script
Version : 0.0
NestedModules : {}
ExportedFunctions : {Get-Count, Reset-Count, setIncrement}
ExportedCmdlets : {}
ExportedVariables : {}
ExportedAliases : {}

Figure 9.7 What happens when you

try to directly run a module file. The

module file is opened up in the editor

associated with the .psm1 extension.
WRITING SCRIPT MODULES 341

An important thing to notice is that the Path property stores the full path to where
the module was loaded from. The module type is script and the version is 0.0—the
default for a script module. (When we look at manifests in chapter 10, you’ll see how
to change this.) The most important thing to notice are the export lists. You see that
all the functions defined in the script module are being exported but no variables are.
To verify this, use Get-Command to look for all the functions defined by the script:

PS {7) > Get-Command -Module counter

CommandType Name Definition
----------- ---- ----------
Function Get-Count ...
Function Reset-Count ...
Function setIncrement param($x)...

You can immediately see one of the benefits of using modules: you can work with sets
of related elements as a unit. (More on this in a bit.) Now that you’ve loaded the
functions, you have to run them to make sure they work:

PS {8) > Get-Count
1
PS {9) > Get-Count
2
PS {10) > Get-Count
3

As before, you see that Get-Count returns the next element in the sequence. Now
let’s check on the variables used by Get-Count. These were a big problem when you
dotted the script:

PS (14) > $count
PS (16) > $increment

Neither of them exist. Try assigning a value to $count and see whether it makes a
difference:

PS (17) > $count = 100
PS (18) > Get-Count
4

As desired, it has no effect on Get-Count. Try Reset-Count and verify that it works:

PS (19) > Reset-Count
PS (20) > Get-Count
1

And it does. Now let’s look at another issue you had to deal with when using script
libraries: how to remove the imported elements. With modules, you can simply
remove the module:

PS (21) > Remove-Module counter
342 CHAPTER 9 USING AND AUTHORING MODULES

This will remove the module from the session and remove all imported members, so
if you try to run Get-Count now, you get an error:

PS (22) > Get-Count
The term 'Get-Count' is not recognized as the name of a cmdlet,
function, script file, or operable program. Check the spelling o
f the name, or if a path was included, verify that the path is c
orrect and try again.
At line:1 char:10
+ Get-Count <<<<
 + CategoryInfo : ObjectNotFound: (Get-Count:String
) [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

In the next section, we’ll look at ways to get more fine-grained control over the things
that modules export.

9.4.3 Controlling member visibility with Export-ModuleMember

Let’s recap what you saw in the last example. You converted a script to a module sim-
ply by changing the file extension. When you imported the module, all the functions
you’d defined were visible by default but nothing else was. This is the default behavior
in a module when you don’t do anything to control member visibility. Because script
libraries written for v1 typically depended on this behavior, simply renaming them
with a .psm1 extension may be all that’s needed to turn them into modules.

Although this approach is simple, it’s not very flexible. For complex scenarios, you
need to be able to control exactly what gets exported. You do this with the Export-
ModuleMember cmdlet. This cmdlet lets you declare exactly which commands and
variables are exported from the module. We’ll start by reviewing how it works with
functions.

Controlling which functions are exported

First we’ll look at how you can hide the functions you want to be private in a module.
Let’s take a look at another variation of the counter module:

PS (1) > Get-Content .\counter1.psm1
$script:count = 0
$script:increment = 1

function Get-Count
{
 return $script:count += $increment
}

function Reset-Count
{
 $script:count=0
 setIncrement 1
}

WRITING SCRIPT MODULES 343

function setIncrement ($x)
{
 $script:increment = $x
}

Export-ModuleMember *-Count

The only difference between this version and the previous one is the last line, which
uses the Export-ModuleMember cmdlet. This line says “Export all functions match-
ing the pattern *-Count.” Now import the module:

PS (2) > Import-Module .\counter1.psm1

You verify that the count and reset commands are there:

PS (3) > Get-Command *-Count

CommandType Name Definition
----------- ---- ----------
Function Get-Count ...
Function Reset-Count ...

But the setIncrement command isn’t, because it wasn’t explicitly exported:

PS (4) > Get-Command setIncrement
Get-Command : The term 'setIncrement' is not recognized as the n
ame of a cmdlet, function, script file, or operable program. Che
ck the spelling of the name, or if a path was included, verify t
hat the path is correct and try again.
At line:1 char:12
+ Get-Command <<<< setIncrement
 + CategoryInfo : ObjectNotFound: (setIncrement:Str
 ing) [Get-Command], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException,Microsof
 t.PowerShell.Commands.GetCommandCommand

Remove the module to clean up after yourself:

PS (5) > Remove-Module counter1

Here’s the rule to remember: if there are no calls to Export-ModuleMember in a
script module, all functions are exported by default and all other member types are
private. If there’s at least one call to Export-ModuleMember, whatever the cmdlet
does overrides the default. This means that PowerShell doesn’t know exactly what set
of functions will be exported until the script has run to completion. We’ll return to
this concept in a minute but first let’s finish up with variables and aliases.

Controlling what variables and aliases are exported

Although functions are exported by default, variables and aliases aren’t. Again, to
change the default set of exports, use the Export-ModuleMember cmdlet. Let’s look
at a third variation on the counter module:

PS (6) > Get-Content .\counter2.psm1
$script:count = 0
$script:increment = 1
344 CHAPTER 9 USING AND AUTHORING MODULES

function Get-Count { return $script:count += $increment }

function Reset-Count { $script:count=0; setIncrement 1 }
New-Alias reset Reset-Count

function setIncrement ($x) { $script:increment = $x }

Export-ModuleMember -Function *-Count -Variable increment -Alias reset

This time there are two changes to the script. First you’re defining an alias for the
Reset-Count function. Second, you’re using the Export-ModuleMember to explic-
itly control all of the exports: functions, variables, and aliases. Now, if the member
doesn’t appear in a call to Export-ModuleMember, it won’t be exported. Let’s import
the updated module

PS (7) > Import-Module .\counter2.psm1

and verify the contents. Are the *-Count commands loaded?

PS (8) > Get-Command *-Count

CommandType Name Definition
----------- ---- ----------
Function Get-Count ...
Function Reset-Count ...

Yes, they’re all there. What about setIncrement? You were supposed to export it, so
there should be an error when you try calling

PS (9) > setIncrement 10
The term 'setIncrement' is not recognized as the name of a cmdle
t, function, script file, or operable program. Check the spellin
g of the name, or if a path was included, verify that the path i
s correct and try again.
At line:1 char:13
+ setIncrement <<<< 10
 + CategoryInfo : ObjectNotFound: (setIncrement:Str
 ing) [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

And there is. The function wasn’t exported from the module so it can’t be imported
by the module loaded. Finally, check to see if your variables were exported properly
by trying to display their contents:

PS (10) > $count
PS (11) > $increment
1

You can see that the $count variable wasn’t exported because nothing was displayed.
The $increment variable, on the other hand, was the value being output.

Next, check to see if the reset alias was exported. Run Get-Count a few times:

PS (12) > Get-Count
1
PS (13) > Get-Count
WRITING SCRIPT MODULES 345

2
PS (14) > Get-Count
3

And call the reset command:

PS (15) > reset

You didn’t get a “command not found error,” meaning that the command exists—so
check that the value was reset:

PS (16) > Get-Count
1
PS (17) > Get-Count
2

Once again, you can see from the output that it was.

When module exports are calculated

Now let’s return to something we mentioned earlier: the set of module members to
export is not known until runtime. In fact, the Export-ModuleMember cmdlet doesn’t
export the function; it adds it to a list of members to export. Once execution of the
module body is completed, the PowerShell runtime looks at the accumulated lists of
exports and exports those functions. The export algorithm is shown in figure 9.8.

Load module script

Execute module script

Has Export -ModuleMember been called?

If yes, get accumulated exports
If no, get list of all functions that

have been defined

Build export table from list

Export selected members

Figure 9.8 The ordering of the

steps when processing a module

manifest. At any point prior to

the next-to-the-last step, if an error

occurs, module processing will

stop and an error will be thrown.
346 CHAPTER 9 USING AND AUTHORING MODULES

As shown in the figure, PowerShell loads and executes the module file. As execution
proceeds, the module code defines functions and may or may not call Export-
ModuleMember. If it does call Export-ModuleMember, then the specified members to
export are added to the exports list. When execution has completed, control returns
to the module loader, which checks to see if anything was put into the export list. If
there were no calls to Export-ModuleMember, then this list is empty. In that case, the
loader finds all the functions defined in the module’s scope and exports them. If there
was at least one call to Export-ModuleMember, then the module loader uses the
export list to control what gets exported.

So far you’ve been loading the module using the path to the module file. This is a
good approach for development, but eventually you need to put it into production.
In the next section you’ll learn how.

9.4.4 Installing a module

Once you have your module debugged and ready to put into production, you need to
know how to install it. Fortunately, unlike with snap-ins, installation is simple. All
you have to do is create a subdirectory of one of the directories in the module
path—the proverbial “Xcopy install” that people like to talk about. Let’s look at the
first element of the module path:

PS (1) > ($ENV:PSModulePath -split ';')[0]
C:\Users\brucepay\Documents\WindowsPowerShell\Modules

The Modules directory in Documents\WindowsPowerShell is the user’s personal
module repository. You’re going to install the counter module in it so you don’t have
to load it using the full path anymore. Let’s get the repository path into a variable so
it’s easier to use:

PS (2) > $mm = ($ENV:PSModulePath -split ';')[0]

Next create the module directory:

PS (4) > mkdir $mm/Counter

 Directory: C:\Users\brucepay\Documents\WindowsPowerShell\Modules

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 1/31/2010 1:06 AM Counter

Install the module by copying it into the directory just created:

PS (7) > copy .\counter.psm1 $mm/Counter

Now try it out. Use the -List option on Get-Module to see if the module lookup
algorithm will find it:

PS (10) > Get-Module -List Counter | fl name, path

Name : Counter
Path : C:\Users\brucepay\Documents\WindowsPowerShell\Modules\Counter\
 Counter.psm1
WRITING SCRIPT MODULES 347

And it does. This means you should be able to load it by name:

PS (12) > Import-Module -Verbose counter
VERBOSE: Loading module from path
'C:\Users\brucepay\Documents\WindowsPowerShell\Modules\counter\counte
r.psm1'.
VERBOSE: Exporting function 'Get-Count'.
VERBOSE: Exporting function 'Reset-Count'.
VERBOSE: Exporting function 'setIncrement'.
VERBOSE: Importing function 'Get-Count'.
VERBOSE: Importing function 'Reset-Count'.
VERBOSE: Importing function 'setIncrement'.

It works. Installing a module is as simple as copying a file. You may be wondering
why you have to put in into a directory—it’s just a single file. In chapter 10, you’ll see
that a production module is more than just a single .psm1 file. This is why modules
are stored in a directory—it allows all the module resources to be gathered in one
place, making it easy to distribute a multifile module. Just zip it up and send it out.

NOTE Downloading and installing a zipped module on Windows 7
or Vista requires some extra steps because files downloaded using Inter-
net Explorer are blocked by default. PowerShell honors this blocking
attribute, so you won’t be able to load the module until you unblock it.
The most effective way to do this is to unblock the zip file before
unzipping it. Then, when you unzip it, all the extracted files will also
be unblocked. To unblock a file, right-click the file in Explorer, and
select the Properties option. When the property dialog appears, if the
file is blocked, you’ll see a message saying that the file came from
another computer. Beside the message text will be an Unblock button.
Click this button to unblock the file, and then click OK to close the
property dialog.

In all the exercises so far, you’ve depended on the module scoping semantics to make
things work. Now is a good time to develop your understanding of exactly how these
new scoping rules operate. In the next section, we’ll at how function and variable
names are resolved when using modules.

9.4.5 How scopes work in script modules

In section 8.4, we covered how scripts introduced script-specific scoping rules. As
you’ve seen, modules also introduce some new scoping rules. The primary goal of
these module-specific rules is to insulate modules from accidental contamination
picked up from the caller’s environment. This insulating property makes module
behavior more predictable and that, in turn, makes modules more reusable.

To accomplish this isolation, each module gets its own scope chain. As with the
default scope chain, the module scope chain eventually ends at the global scope
(which means that module and default scope chains both share the same global
348 CHAPTER 9 USING AND AUTHORING MODULES

variables). Walking up the module scope chain, right before you reach the global
scope, you’ll encounter a new distinguished scope: the module scope. This scope is
somewhat similar to the script scope except it’s only created once per loaded module
and is used to share and preserve the state of that module. A diagram of all of these
pieces is shown in figure 9.9.

Let’s spend some time walking through figure 9.9. In the diagram, you see boxes
indicating three functions. The two on the left (one and two) are defined in the
default scope and will use the default scope chain to look up variables. The function
shown on the right (foo) is defined inside a module and so uses the module scope
chain. Now let’s call function one. This function sets a local variable, $y, to 20 then
calls function two.

In the body of two, you’re adding $x and $y together. This means that you have
to look up the variables to get their values. The smaller gray arrows in figure 9.9 show
the order in which the scopes will be checked. Following the default scope path, the
first instance of a variable named $y is found in the local scope of function one and
has a value of 20. Next you follow the scope path to find $x, and you don’t find it
until you hit the global scope, where it resolves to 1. Now you can add them, yielding
the value 21.

Function two then calls the module function foo. This function also adds $x and
$y, but this time you’ll use the module scope chain to look up the variables. You
travel up the module chain and don’t find the defined variable $y until you hit the
global scope, where its value is 2. When you look up $x, you find that it was set to 10
in the module scope. You add 2 and 10 and get 12. This shows how local variables
defined in the caller’s scope can’t have an impact on the module’s behavior. The
module’s operations are insulated from the caller’s environment.

Global scope: $x = 1, $y = 2

Module scope: $x = 10

Function scope:

function foo { $x + $y }
returns 12

Function scope:

function one { $y = 20; two }

Function scope:

function two { $x + $y; foo }
returns 21, 12

Default scope chain Module scope chain

Figure 9.9 How variables are resolved in a module context. Function one calls

two, and two calls the module function foo. Functions one and two look up vari-

ables in the default scope. The module function foo uses the module scope chain.
WRITING SCRIPT MODULES 349

At this point, we’ve covered most of the important details of what happens when a
module is loaded into the global environment. But modules can be loaded into other
modules too. This is where reuse can really kick in—modules building on modules
delivering more and more functionality. You’ll see how this works in the next section
when we introduce nested modules.

9.4.6 Nested modules

In this section, we’ll cover what happens when modules import other modules.
Because the Import-Module cmdlet is just a regular cmdlet, it can be called from
anywhere. When it’s called from inside another module, the result is a nested module.
A nested module is only directly visible to the calling module. This is much easier to
show than to explain. Let’s look at a module called usesCount.psm1. Here are the
contents of the module file:

PS (1) > Get-Content usesCount.psm1
Import-Module .\counter2.psm1

function CountUp ($x)
{
 while ($x-- -gt 0) { Get-Count }
}

This module imports the counter2 module created earlier and then defines a single
function, countUp. Import this module:

PS (2) > Import-Module .\usesCount.psm1

Now call Get-Module to see what’s loaded:

PS (3) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script usesCount {CountUp, Get-Count, Res...

The first thing to notice in this output is that the list of loaded modules doesn’t show
the nested module. This is by design—you don’t want to expose module implementa-
tion details by default. The other thing to notice is that there are more commands in
the ExportedCommands list than just CountUp. Let’s use the Format-List (alias: fl)
to see all the information about the module:

PS (4) > Get-Module usesCount | fl

Name : usesCount
Path : C:\wpia_v2\text\chapter09\code\usesCount.psm
 1
Description :
ModuleType : Script
Version : 0.0
NestedModules : {counter2}
ExportedFunctions : {CountUp, Get-Count, Reset-Count}
350 CHAPTER 9 USING AND AUTHORING MODULES

ExportedCmdlets : {}
ExportedVariables : {}
ExportedAliases : {}

This shows you that three functions were exported from this module even though the
module itself only defined one function. This is because the functions that are being
imported from the nested module are exported from the root module, usesCount.
Remember, by default all defined functions in a module are exported by default. This
includes function definitions that were imported from a nested module as well as
those defined in the module body.

Although nested modules are hidden by default, there’s a way to see all the modules
that are loaded, including nested modules. You use the -All flag on Get-Module:

PS (5) > Get-Module -All

ModuleType Name ExportedCommands
---------- ---- ----------------
Script counter2 {Get-Count, Reset-Count}
Script usesCount {CountUp, Get-Count, Res...

Using this flag you see both of the modules that are loaded.
Now let’s look at some of the commands that were imported. First look at the

function that came from the root module:

PS (6) > Get-Command CountUp | fl -Force *

HelpUri :
ScriptBlock : param($x)
 while ($x-- -gt 0) { Get-Count }

CmdletBinding : False
DefaultParameterSet :
Definition : param($x)
 while ($x-- -gt 0) { Get-Count }

Options : None
Description :
OutputType : {}
Name : CountUp
CommandType : Function
Visibility : Public
ModuleName : usesCount
Module : usesCount
Parameters : {[x, System.Management.Automation.Paramete
 rMetadata]}
ParameterSets : {[[-x] <Object>]}

There’s a lot of information here; the properties that are most interesting for this dis-
cussion are ModuleName and Module. ModuleName names the module that this func-
tion was exported from, whereas the Module property points to the module that
defined this function. For top-level modules, the defining and exporting modules are
WRITING SCRIPT MODULES 351

the same; for nested modules, they aren’t. From the ModuleName property, you see
that this function was exported from module usesCount. Now let’s look at one of the
functions that was imported from the nested module and then re-exported:

PS (7) > Get-Command Get-Count | fl *

HelpUri :
ScriptBlock :
 return $script:count += $increment

CmdletBinding : False
DefaultParameterSet :
Definition :
 return $script:count += $increment

Options : None
Description :
OutputType : {}
Name : Get-Count
CommandType : Function
Visibility : Public
ModuleName : usesCount
Module : usesCount
Parameters : {}
ParameterSets : {}

From the output, you see that the module name for the function shows the top-level
module name, not the name of the module where the function was defined. This
makes sense because they’re both exported from the same module. But they were
defined in separate files. Knowing where a function is defined is critical to debugging,
as you’ll learn in chapter 15. The way to see where a function was defined is to look at
the File property on the scriptblock that makes up the body of the function:

PS (8) > ${function:CountUp}.File
C:\wpia_v2\text\chapter09\code\usesCount.psm1
PS (9) > ${function:Get-Count}.File
C:\wpia_v2\text\chapter09\code\counter2.psm1
PS (10) >

This is a fairly easy way to see where the module came from, once you know how.

Import into the global environment with -Global

When one module loads another, by default it becomes a nested module. This is usu-
ally what you want, but perhaps you want to write a module that manipulates mod-
ules. In this scenario, you need to be able to import the module into a context other
than your own. Although there isn’t a way to import directly into an arbitrary con-
text, the -Global flag on Import-Module allows you to import into the global con-
text. Let’s work on a variation of the usesCount module to see how this works. The
modified script module looks like this:

PS (1) > Get-Content .\usesCount2.psm1
Import-Module -Global .\counter2.psm1
352 CHAPTER 9 USING AND AUTHORING MODULES

function CountUp ($x)
{
 while ($x-- -gt 0) { Get-Count }
}

The significant difference in this version is the use of the -Global parameter on
Import-Module. First import the module

PS (2) > Import-Module .\usesCount2.psm1

and then look at the modules that are loaded:

PS (3) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script counter2 {Get-Count, Reset-Count}
Script usesCount2 CountUp

This time you see that both modules are loaded at the top level instead of one being
nested inside another. Also, the ExportedCommand property for usesCount2 doesn’t
report the functions defined in counter2 as being exported from usesCount2.
When you use Get-Command to look at functions from each of the modules:

PS (4) > Get-Command Get-Count | ft name,module

Name Module
---- ------
Get-Count counter2

The functions defined in counter2 are shown as being in the correct module, as is
the case for the CountUp functions:

PS (5) > Get-Command CountUp | ft name,module

Name Module
---- ------
CountUp usesCount2

In effect, you’ve written a module that manipulates modules.
This completes our coverage of script modules, which are the type of module

most people are likely to write. The next type of module we’ll look at are binary mod-
ules, which everyone uses but are usually created by programmers (because they’re
written in languages that must be compiled in an assembly or DLL file).

9.5 BINARY MODULES

This section explores how binary modules operate in PowerShell. Binary modules
contain the classes that define cmdlets and providers. Unlike script modules, binary
modules are written in compiled languages like C# or Visual Basic. They’re used to
deliver most of the packaged functionality in the PowerShell distribution. From a
technical perspective, a binary module is simply a .NET assembly (a DLL) compiled
against the PowerShell libraries.
BINARY MODULES 353

Programming topics aren’t the focus of the book, but we’ll spend a bit of time
looking at how binary modules are written and compiled. This implies that you’ll
have to do some C# programming to produce a module to work with. In the following
sections, we’ll look at how to create and load binary modules, how they interact with
script modules, and any issues you need to be aware of when working with them.

9.5.1 Binary modules vs. snap-ins

Binary modules are the preferred way of packaging compiled cmdlets and providers
in PowerShell v2. They essentially replace the snap-in concept used in PowerShell v1.
Although the emphasis is now on modules, the snap-in mechanism is still present in
v2, so we need to spend some time on it. (All the core assemblies in PowerShell v2 are
still delivered as snap-ins to avoid accidentally breaking things.)

Like binary modules, snap-ins are just assemblies with a .dll extension. Unlike
with modules, before you can load a snap-in into PowerShell, you have to register the
snap-in. This registration model is based on a similar mechanism used by the Micro-
soft Management Console (MMC) and has the singular advantage that all modules on
the system can be found by looking in the Registry. Unfortunately it also has a great
many disadvantages.

First, registration is done using the installutil.exe program. This utility is
installed in.NET Framework’s installation directory, not in the normal command
path, so you can’t just call it. Instead, the first thing you have to do to register a snap-
in is find installutil.exe. Fortunately you can create an alias to take care of this:

Set-Alias installutil `
 (Join-Path `
 (Split-Path ([object].Assembly.Location) -Parent) `
 installutil.exe)

This expression works by using the Location property on the assembly containing
the [object] type to find the .NET Framework directory. It joins that path with the
name of the command. Next, to be able to use this utility, you need to have local
administrator capabilities. This is because you have to write to the system Registry as
part of the registration process. Finally, all registered snap-ins are visible system-wide
as soon as the registration completes. This means that there’s no way to load and test
changes to a snap-in without making those changes visible to all users of the system.
All of these things combined make developing and testing snap-ins quite tedious.

Modules solve all of these problems: you don’t need a separate tool to load mod-
ules; you don’t need to be the admin on the machine; the module path allows public
and private modules; and finally, to test a module, you can just use Import-Module
and pass it the path to the file. There’s nothing novel here—it works the same way
for all types of modules. This consistency of experience is another benefit that mod-
ules provide.

Another difference between snap-ins and binary modules is the fact that the snap-
in, besides containing the cmdlets and providers, also contains the snap-in metadata:
354 CHAPTER 9 USING AND AUTHORING MODULES

its name, author, version, and so on, as part of the snap-in assembly. The module
mechanism handles this in a different way by specifying the metadata using a separate
manifest file. This separation allows for a common representation of metadata inde-
pendent of the type of module. (We’ll spend a lot of time on module manifests in
chapter 10.)

Now that you know the advantages provided by binary modules compared to
snap-ins, you can begin working with them.

9.5.2 Creating a binary module

The first thing you’ll need for our experiments is a module to work with, so in this
section, you’ll learn how to create that module. Remember that binary modules are
written in a language like C#, so you’ll do a bit of non-PowerShell programming. For-
tunately, you should have some C# code handy from the example cmdlet you saw in
chapter 2. Let’s take this code and make a binary module out of it:

PS (1) > Get-Content ExampleModule.cs

using System.Management.Automation;

[Cmdlet("Write", "InputObject")]
public class MyWriteInputObjectCmdlet : Cmdlet
{
 [Parameter]
 public string Parameter1;

 [Parameter(Mandatory = true, ValueFromPipeline=true)]
 public string InputObject;

 protected override void ProcessRecord()
 {
 if (Parameter1 != null)
 WriteObject(Parameter1 + ":" + InputObject);
 else
 WriteObject(InputObject);
 }
}

If you were paying attention in the previous chapter, this should be pretty compre-
hensible. You should certainly recognize the [Parameter()] attributes from
advanced functions. Before you can use this C# code as a module, you need to com-
pile it. PowerShell v2 adds a handy, powerful new cmdlet called Add-Type. This
cmdlet is designed to make this kind of thing easy. In this case, you’ll use it to com-
pile the source code from the path .\ExampleModule.cs into the output assembly
.\ExampleModule.dll:

PS (2) > Add-Type -Path .\ExampleModule.cs `
>> -OutputAssembly .\ExampleModule.dll
>>
BINARY MODULES 355

Use the dir command to make sure that you got what you wanted:

PS (3) > dir examplemodule.dll

 Directory: C:\wpia_v2\text\chapter09\code

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/31/2009 7:25 PM 3584 examplemodule.dll

There’s your module: examplemodule.dll. Once the module DLL has been created,
you can load it the same way you loaded a script module, using Import-Module:

PS (4) > Import-Module ./examplemodule.dll

As before, you’ll use Get-Module to look at the module information object for
ExampleModule:

PS (5) > Get-Module | Format-List

Name : examplemodule
Path : C:\wpia_v2\text\chapter09\code\examplemodule
 .dll
Description :
ModuleType : Binary
Version : 0.0.0.0
NestedModules : {}
ExportedFunctions : {}
ExportedCmdlets : Write-InputObject
ExportedVariables : {}
ExportedAliases : {}

You see the name and path as expected. The module type is binary, and it’s exporting
a single cmdlet, Write-InputObject. Now try this new cmdlet:

PS (7) > 1,2,3 | Write-InputObject -Parameter1 "Number"
Number:1
Number:2
Number:3

It’s all working fine.
So, other than the implementation of a binary module, there’s not much differ-

ence in behavior when using it. Well, there’s one major difference: binary modules
are implemented as .NET assemblies and .NET assemblies can’t be unloaded from a
session (it’s a .NET thing, not a PowerShell thing); therefore, binary modules can’t be
unloaded from a session. This means that you can’t update a binary module once it’s
been loaded. You can’t even update the assembly on disk because the file is locked
when the assembly is loaded. If you rerun the Add-Type cmdlet you used to build the
assembly earlier, you get a rather intimidating error message:

PS (8) > Add-Type -Path .\ExampleModule.cs `
>> -OutputAssembly .\ExampleModule.dll
>>
356 CHAPTER 9 USING AND AUTHORING MODULES

Add-Type : (0) : Could not write to output file 'c:\wpia_v2\text\chap
ter09\Code\ExampleModule.dll' -- 'The process cannot access the file
because it is being used by another process. '
At line:1 char:9
+ Add-Type <<<< -Path .\ExampleModule.cs `
 + CategoryInfo : InvalidData: (error CS0016: C...ther p
 rocess. ':CompilerError) [Add-Type], Exception
 + FullyQualifiedErrorId : SOURCE_CODE_ERROR,Microsoft.PowerShell
 .Commands.AddTypeCommand

Add-Type : Cannot add type. There were compilation errors.
At line:1 char:9
+ Add-Type <<<< -Path .\ExampleModule.cs `
 + CategoryInfo : InvalidData: (:) [Add-Type], InvalidOp
 erationException
 + FullyQualifiedErrorId : COMPILER_ERRORS,Microsoft.PowerShell.C
 ommands.AddTypeCommand

As we said, as long as the binary module is loaded into any PowerShell session, it can’t
be updated. This can be annoying when you’re developing a binary module, but in a
production environment it isn’t likely to be a problem—at least until you need to ser-
vice a binary module to fix a bug. This is one area where script modules do have an
advantage: they’re easier to update dynamically than binary modules.

A way to get aspects of both module types is to combine binary and script module
files together in a single module directory. You’ll learn how this all works next.

9.5.3 Nesting binary modules in script modules

In this section, we’ll look at how binary and script modules can be used together.
Back in section 9.4.6, we explored the idea of nested modules, where one script mod-
ule is imported into another. This nesting concept also works with binary modules so
script modules can import binary modules. One consequence is that it means that
script modules may also export cmdlets even though they can’t define them. The way
nested modules work, the calling module can filter the exports of the nested module.
This means you can use a script module to filter the members exported from a binary
module. Let’s see how this works. In the process of doing this, we’ll introduce a cou-
ple of Import-Module features that you haven’t seen so far.

For this example, you’ll write a script module that loads the binary module cre-
ated in the previous section. The text of this script module looks like this:

PS (1) > Get-Content .\WrapBinaryModule.psm1
param (
 [bool] $showCmdlet
)

Import-Module $PSScriptRoot\ExampleModule.dll -Verbose

function wof
{
 param ($o = "Hi there")
 Write-InputObject -InputObject $o
BINARY MODULES 357

}

if ($showCmdlet)
{
 Export-ModuleMember -Cmdlet Write-InputObject
}
else
{
 Export-ModuleMember -Function wof
}

There are a number of interesting things to see in this module. Right at the begin-
ning, you see a param statement defining a parameter for the module. As this implies,
script modules can be parameterized. The values to bind to the module’s parameters
are passed using the -ArgumentList parameter on Import-Module. This parameter is
used to pass a list of argument values, which means that module parameters can only
be positional.

The other new feature can be seen in the call to Import-Module, where you’re
loading the binary module. The path to the binary module is specified using the
$PSScriptRoot automatic variable. This variable was introduced in PowerShell v2
and contains the path to the directory from which the script module was loaded. In
the script, the call to Import-Module specifies the -Verbose parameter so you can
see this path.

NOTE You’d think the correct name for this variable would be
$PSModuleRoot, not $PSScriptRoot. As it happens, the original idea
was that this variable would also be available in regular scripts, not just
modules. Unfortunately that was never implemented, but the name
wasn’t changed either. And thus we have another question for the Pow-
erShell trivia contest.

In the body of the module, you define a function, wof. This function uses the
imported cmdlet to write an object to the output stream.

Finally, the module ends with an if statement that uses the $showCmdlet module
parameter to decide whether the function or the cmdlet should be exported from the
module. Let’s load the module without specifying any arguments and see what happens:

PS (2) > Import-Module .\WrapBinaryModule.psm1
VERBOSE: Loading module from path
'C:\wpia_v2\text\chapter09\code\ExampleModule.dll'.
VERBOSE: Importing cmdlet 'Write-InputObject'.

From the -Verbose output, you can see that the binary module has been loaded and
the location it has been loaded from. Now use Get-Module to get information about
the loaded module:

PS (3) > Get-Module WrapBinaryModule |
>> Format-List Name, ExportedFunctions, ExportedCmdlets
>>
358 CHAPTER 9 USING AND AUTHORING MODULES

Name : WrapBinaryModule
ExportedFunctions : {[wof, wof]}
ExportedCmdlets : {}

From the output, you see that the function was exported but no cmdlets were. Now
try the function

PS (4) > wof 123
123

and it works, so everything is as intended. This is an important pattern to be aware
of. Using this pattern, you can use a script module to wrap a cmdlet but leave the
cmdlet itself hidden. This allows you to customize the command experience even
though you may not be able to change the cmdlet itself.

Let’s reverse the scenario. You’ll reload the script module (using the -Force flag
to make sure the script gets processed again), but this time, you’ll pass in an argument
to the script:

PS (5) > Import-Module .\WrapBinaryModule.psm1 -Force `
>> -ArgumentList $true
>>
VERBOSE: Importing cmdlet 'Write-InputObject'.

Because the binary module is already loaded, you just see the importing message.
Remember, you can’t update a binary module in your session once it’s been loaded.
The point here is to use script modules to give you at least a partial workaround for
this scenario—in this case, controlling the visibility of the cmdlet. Once again call
Get-Module to see what was imported:

PS (6) > Get-Module WrapBinaryModule |
>> Format-List Name, ExportedFunctions, ExportedCmdlets
>>

Name : WrapBinaryModule
ExportedFunctions : {}
ExportedCmdlets : {[Write-InputObject, Write-InputObject]}

This time you see the cmdlet but not the function as intended. Even though you
couldn’t change the binary module, you could still control what it exported.

NOTE There are limits to this—you can’t export more cmdlets; you
can only filter the existing imports. You also can’t rename the cmdlet
itself, though you could proxy it through a function if you wanted to
change its name. See section 11.5.2 for a description of how to create
command proxies.

So far all of our work with modules has been pretty much ad hoc—we’re just making
stuff up as we go along. The modules have none of the metadata (description, author
information, copyright, and so on.) needed in a production environment for figuring
out things like which modules need to be patched. In the next chapter, we’ll address
this and see how module manifests are used to fill in the missing pieces.
BINARY MODULES 359

9.6 SUMMARY

In this chapter, we introduced PowerShell modules, a new feature in PowerShell v2.
Modules allow you to package collections of PowerShell resources into shareable,
reusable units. Using this feature, you can start to build your library of reusable mod-
ules in a manageable way. Here are the important points to remember:

• Modules are manipulated, managed, and imported using cmdlets in Power-
Shell. Unlike many languages, no special syntax is needed. Modules are discov-
ered, both in memory and on disk, using the Get-Module cmdlet. They’re
loaded with Import-Module and removed from memory with Remove-
Module. These three cmdlets are all you need to know if you just want to use
modules on your system.

• PowerShell uses the $ENV:PSModulePath environment variable to search the
file system for modules to load when an unqualified module name is specified.
Alternatively, a fully qualified path name can be used to load a module directly
without going through the search process.

• There are two basic types of modules: script modules, which are written using
the PowerShell language, and binary modules, which are written in a compiled
language. Both types of modules are simply files on disk. No registration pro-
cess is needed to make a module available for use—you just need to be able to
read the file somehow.

• Because script modules are another form of script (with a .psm1 extension),
they obey the Execution Policy setting just like regular scripts.

• Script modules execute in their own isolated environment, called the module
context. A script module also has access to the global environment, which is
shared across all modules.

In the next chapter we’ll continue our exploration of modules. The focus in this
chapter was on how to construct simple ad hoc modules. In the next chapter, we
introduce module manifests—a mechanism to add production metadata to our mod-
ules as well as provide a way to deal with multifile modules.
360 CHAPTER 9 USING AND AUTHORING MODULES

C H A P T E R 1 0

Module manifests
and metadata

10.1 Module folder structure 362
10.2 Module manifest structure 363
10.3 Production manifest elements 366
10.4 Construction manifest elements 370

10.5 Content manifest elements 375
10.6 Language restrictions in a manifest 376
10.7 Advanced module operations 378
10.8 Summary 390
The world is my world: this is manifest in the fact that the limits of
language (of that language which alone I understand) mean the limits of
my world.

 —Ludwig Wittgenstein, Tractatus Logico-Philosophicus

In chapter 9, we introduced PowerShell modules and covered the basics needed for
using and writing modules. That chapter focused on simple ad hoc modules and
ignored details like module descriptions and versioning. But it’s these details that
make the difference between ad hoc and production scripting. Because one of the
goals for PowerShell v2 was to enable production-oriented scripting in PowerShell,
there needed to be a way to attach production-oriented metadata to our modules.
This is where module manifests come in. They allow you to annotate and organize
the pieces in more complex, multifile modules.

Manifests are the subject of this chapter. We’ll start with a discussion of the layout
of a module’s directory structure. Then we’ll introduce the manifest and look at its
361

contents. We’ll explore the tools provided for authoring and testing manifests and
walk through each manifest element, describing its purpose and how to use it. You’ll
learn advanced module techniques, including how to manipulate metadata from
within a module, control the module access mode, and set up actions to take when a
module is removed.

10.1 MODULE FOLDER STRUCTURE

Before we jump into manifests, let’s spend a little time reviewing the way modules are
organized on disk. A module in the module path ($ENV:PSModulePath) is a direc-
tory containing a collection of files. One of the files in the module directory is the
module manifest. This file usually has the same name as the directory and has a .psd1
extension. You can see an example of this structure by looking at the contents of the
system module directory. This directory contains modules that are with Windows
and are visible in the directory $PSHome/Modules. The structure of some of the
modules in this directory is shown in figure 10.1.

BitsTransfer.psd1

Microsoft.BackgroundIntelligentTransfer.Management.Interop.dll

BitsTransfer

BitsTransfer.Format..ps1xml

en-US

Message catalogs
and help files...

PSDiagnostics

PSDiagnostics.psm1

$PSHome/modules

The contents of the system module folder is a collection of
modules, each module is in its own folder .

PSDiagnostics.psd1

Figure 10.1 The layout of the modules that ship with Windows. Each

module is stored in its own folder, with a .psd1 file containing the mod-

ule manifest. The PSDiagnostics folder contains the PSDiagnostics mod-

ule. And he BitsTransfer folder contains the BitsTransfer module.
362 CHAPTER 10 MODULE MANIFESTS AND METADATA

In figure 10.1, you see that two modules are stored in the system module directory.
These modules are just directories containing the files that make up the module con-
tents. Each folder contains a .psd1 file that’s the manifest for the module.

The first module is PSDiagnostics, which we looked at briefly in section 9.3.1
when we talked about finding modules on the system. The module directory contains
two files: the manifest file and a script module that defines the commands for this
module. Notice that the directory, manifest, and script file all have the same name.

The second module is the BitsTransfer module. The structure of this module
folder is a little more complicated. In addition to the manifest, it includes a format
file, an interop DLL, and a subdirectory, en-US. This subdirectory is used to hold the
message catalogs that allow for localized messages. We’ll go over how all these ele-
ments are used when we discuss the contents of module manifests in the next section.

10.2 MODULE MANIFEST STRUCTURE

As you saw in the previous section, a module manifest is stored in a file with a .psd1
extension. This extension indicates that it’s a PowerShell data file, which is a type of
script that’s limited in the things it can contain. We’ll talk about these restrictions in sec-
tion 10.6, but for now, you just need to know that it’s a text file containing some
PowerShell script. This script code must return a hash table containing a predetermined
set of keys when executed by the system. These keys define the manifest elements for
the module. Because these manifest files are fairly long and somewhat complex,
PowerShell provides a cmdlet, New-ModuleManifest, to help create a manifest. Go
ahead and run this command so you’ll have an example manifest to work with:

PS (1) > New-ModuleManifest testManifest.psd1

cmdlet New-ModuleManifest at command pipeline position 1
Supply values for the following parameters:
NestedModules[0]:
Author:
CompanyName:
Copyright:
ModuleToProcess:
Description:
TypesToProcess[0]:
FormatsToProcess[0]:
RequiredAssemblies[0]:
FileList[0]:
PS (2) >

The cmdlet takes advantage of the way PowerShell prompts for missing mandatory
parameters. It will prompt for each of the values to assign to elements in the gener-
ated hash table. In this example, you’re just pressing the Enter key and taking the
default value. The generated file will also contain comments for each element,
describing what the element is used for. Let’s take a look at the file that was generated:

PS (3) > Get-Content testManifest.psd1
#

MODULE MANIFEST STRUCTURE 363

Module manifest for module 'testManifest'

Generated by: brucepay

Generated on: 8/28/2009
#

@{

Script module or binary module file associated with this manifest
ModuleToProcess = ''

Version number of this module.
ModuleVersion = '1.0'

ID used to uniquely identify this module
GUID = '586ce129-7e3b-4383-9c2c-b6e2e6920e21'

Author of this module
Author = 'brucepay'

Company or vendor of this module
CompanyName = 'Unknown'

Copyright statement for this module
Copyright = '(c) 2011 brucepay. All rights reserved.'

Description of the functionality provided by this module
Description = ''

Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = ''

Name of the Windows PowerShell host required by this module
PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module
PowerShellHostVersion = ''

Minimum version of the .NET Framework required by this module
DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR) required
by this module
CLRVersion = ''

Processor architecture (None, X86, Amd64, IA64) required by this module
ProcessorArchitecture = ''

Modules that must be imported into the global environment prior to
importing this module

RequiredModules = @()

Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()
364 CHAPTER 10 MODULE MANIFESTS AND METADATA

Script files (.ps1) that are run in the caller's environment
prior to importing this module
ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @()

Modules to import as nested modules of the module specified in
 ModuleToProcess
NestedModules = @()

Functions to export from this module
FunctionsToExport = '*'

Cmdlets to export from this module
CmdletsToExport = '*'

Variables to export from this module
VariablesToExport = '*'

Aliases to export from this module
AliasesToExport = '*'

List of all modules packaged with this module
ModuleList = @()

List of all files packaged with this module
FileList = @()

Private data to pass to the module specified in ModuleToProcess
PrivateData = ''

}

Remember that we said it was long and complex? In fact, it’s complex enough that
PowerShell also includes a cmdlet to test a manifest. This cmdlet is called (surprise)
Test-ModuleManifest. You’ll use it to test the manifest you’ve generated to make
sure it’s valid (though it would be surprising if it wasn’t—after all, you just created it):

PS (4) > Test-ModuleManifest testManifest.psd1

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest testManifest {}

If the test is successful, the module information object is returned.
Now that you know it’s valid, you can import it. Normally a module doesn’t emit

anything, but in this case, you want to see it immediately. So specify -PassThru
(which will cause the module information object to be written to the output pipe),

PS (5) > Import-Module .\testManifest.psd1 -PassThru | Format-List

Name : testManifest
Path : C:\wpia_v2\text\chapter09\code\testManifest.
 psd1
MODULE MANIFEST STRUCTURE 365

Description :
ModuleType : Manifest
Version : 1.0
NestedModules : {}
ExportedFunctions : {}
ExportedCmdlets : {}
ExportedVariables : {}
ExportedAliases : {}

and you see your essentially empty module.
The New-ModuleManifest cmdlet creates a manifest that contains all the allowed

fields, but in fact most of the fields aren’t required. The only field that’s required
is the module version. You can manually generate the minimal manifest by using
redirection:

PS (4) > '@{ModuleVersion="1.0"}' > testManifest2.psd1

Now load the manifest and look at what was generated:

PS (5) > Import-Module .\testManifest2.psd1
PS (6) > Get-Module testManifest2 | fl

Name : testManifest2
Path : C:\wpia_v2\text\chapter09\code\testManifest2
 .psd1
Description :
ModuleType : Manifest
Version : 1.0
NestedModules : {}
ExportedFunctions : {}
ExportedCmdlets : {}
ExportedVariables : {}
ExportedAliases : {}

This is identical to what you got from the more complicated default manifest.
In practice, it’s always best to use New-ModuleManifest to generate a complete

manifest for your modules even if you aren’t going to use all the fields immediately.
Once you’ve generated the manifest, you can easily add additional data to it over time
using your favorite text editor.

In the next few sections, we’ll go over the contents of the manifest. To make our
exploration a bit more manageable, we’ve divided the manifest elements into three
broad categories: production, construction, and content elements. We’ll cover each
of these areas and the elements they contain, starting with the production elements.

10.3 PRODUCTION MANIFEST ELEMENTS

In this section we’ll explore the elements that make up the production metadata.
These elements are used to add things like copyright information and version num-
bers. The fields in the module for this are shown in table 10.1. The use of some of the
elements is pretty obvious: Author, CompanyName, Copyright, and so forth. We
366 CHAPTER 10 MODULE MANIFESTS AND METADATA

won’t cover them beyond the comments in the table. The remaining elements will be
covered in the subsections that follow.

Table 10.1 The manifest elements in a module manifest file that contain production-oriented

 metadata

Manifest element Type Default value Description

ModuleVersion String 1.0 The version number of this mod-
ule. This string must be in a form
that can be converted into an
instance of [System.Version].

GUID String Autogenerated ID used to uniquely identify this
module.

Author String None The name of the module creator.

CompanyName String Unknown The company, if any, that
produced this module.

Copyright String (c) Year Author.
All rights
reserved.

The copyright declaration for this
module with the copyright year
and name of the copyright holder.

Description String '' The description of this module.
Because this description may be
used when searching for a mod-
ule, it should be a reasonable
description, mentioning the pur-
pose of the module and technol-
ogy area it relates to.

PowerShellVersion String '' Minimum version of the Win-
dows PowerShell engine required
by this module.

PowerShell-
HostName

String '' Name of the Windows PowerShell
host required by this module

PowerShellHost-
Version

String '' Minimum version of the Win-
dows PowerShell host required by
this module.

DotNetFramework-
Version

String '' Minimum version of the .NET
Framework required by this
module.

CLRVersion String '' Minimum version of the common
language runtime (CLR) required.

Processor-
Architecture

String '' The processor architecture this
module requires. It may be '',
None, X86, Amd64, or IA64.

RequiredModules [object[]] @() Modules that must be imported
into the global environment prior
to importing this module.
PRODUCTION MANIFEST ELEMENTS 367

In the next few sections, you’ll see how the elements in this table are used to make mod-
ules more production worthy. We’ll begin with a very important topic: module identity.

10.3.1 Module identity

For modules to be shared and serviced (that is, patched) effectively, there needs to be
a strong notion of identity that allows you to uniquely identify a module. It can’t just
be the module name. The name of the module comes from the manifest filename and
there’s no guarantee somebody else won’t give their module the same name as yours. To
guarantee that you can always identify a module regardless of path changes, renames,
and so on, the manifest contains a globally unique identifier (GUID). The algorithm
used to generate GUIDs is guaranteed to produce a globally unique number. Once you
know the GUID for a module, you can always identify it, even if the file gets renamed.

Another important aspect of module identity is the version number. Versioning is
what allows you to determine if the module has been patched properly. The Module-
Version element in the manifest is used to hold the module’s version. This element
uses the type System.Version to represent the version of a module internally. In the
manifest file, the element should be assigned a string that can be converted into an
instance of System.Version. This string must have the form of #.#.#.#, for example,
1.0.0.0. When you use the -Version parameter on Import-Module, it will search the
path in $ENV:PSModulePath, looking for the first module whose name matches the
requested name and whose module version is at least as large as the required version.

NOTE Unfortunately, no mechanism has been provided for loading a
module by specifying its GUID. This is a deficiency in the current
implementation of Import-Module. The only place you can use the
GUID to identify a module is when you specify module dependencies
(as you’ll see in the next section). As a workaround for this issue, a
proxy function can be written that wraps Import-Module and adds
this functionality.

10.3.2 Runtime dependencies

The remainder of the production elements in the manifest relate to identifying envi-
ronmental dependencies—what needs to be in the environment for the module to
work properly. For many script modules, most of these elements can be left in their
default state. Let’s go through these elements and what they’re used for.

The CLRVersion and DotNetFrameworkVersion identify dependencies based on
what version of the CLR (or .NET) is installed on the system. So why do you need two
elements? Because the CLR runtime and the framework (all of the libraries) can and do
vary independently. This is exactly what happened with CLR 3.0. In this version, the
runtime version remained at 2.0, but there was a new framework version (3.0) where
the LINQ technologies were introduced (we’ll talk about LINQ in chapter 14). The
framework version changed again with CLR 3.5. As before, the runtime remained at 2.0
368 CHAPTER 10 MODULE MANIFESTS AND METADATA

but the framework moved to 3.5, where
things like Windows Presentation Foun-
dation (WPF) were added. The next ver-
sion of the CLR, version 4.0, will update
both the runtime and the framework. As
a consequence of this pattern, it’s neces-
sary to be able to independently express
the version requirements for each part.

When adding the dependencies to
the manifest, you should specify the
minimum highest version required. This
depends on the higher revisions being
backward compatible with earlier versions and is a fairly safe assumption for the CLR.

Expressing a dependency on the processor architecture isn’t likely to be common, but
it’s possible to have a module that uses .NET interoperation (chapter 17) or COM (chap-
ter 18) and, as a consequence, have some processor architecture-specific dependency.

The next set of dependencies is on PowerShell itself. The PowerShellVersion is
pretty straightforward. It specifies the minimum version of PowerShell needed by this
module. The PowerShellHostName and ModuleVersion are only slightly more com-
plex. They allow you to place a dependency on the application that’s hosting the Pow-
erShell runtime rather than on the runtime itself. For example, you can have a module
that adds custom elements to the PowerShell ISE. This module clearly has a depen-
dency on the name of the host. To find out the name of the string to place here, in the
host, look at the Name property on the object in $host. Figure 10.2 shows how this
looks in the PowerShell console host. Figure 10.3 shows the same information in the
PowerShell ISE.

Once you know which host you’re depending on, you also need the version num-
ber, which is available through the Version property on $host. This information for
both the console host and ISE are also shown in figures 10.2 and 10.3.

Figure 10.2 You can see the host name and

version properties for the PowerShell

console host.

Figure 10.3 You can see the host

name and version properties for

the PowerShell ISE.
PRODUCTION MANIFEST ELEMENTS 369

The final type of dependency is on the modules that are already loaded into the
system. This is done through the RequiredModules manifest element. This element
probably doesn’t do what you’d expect. It doesn’t load dependencies—it just checks to
see if certain modules are loaded. This seems a bit useless but, perhaps the version of
the required module currently loaded is too low and a newer module can’t be loaded
because there are other modules already using the loaded module. Whereas the other
elements you’ve seen so far are either simple strings or strings that can be converted
into a version number, this element can either take a module name string or a hash
table containing two or three elements. These hash table elements allow you to pre-
cisely specify the module you’re dependent on as they include the module name, the
version number, and the GUID of the module that must be loaded (although the
GUID is optional).

This covers all the production elements in the manifest. Now that you know you
have the right module (Identity) and that it will work in your environment (Depen-
dencies), let’s look at the manifest elements that control what happens when the mod-
ule is loaded. Load-time behavior is controlled by a set of manifest elements that
contain entries that are used to construct the in-memory representation of the module.

10.4 CONSTRUCTION MANIFEST ELEMENTS

The construction metadata in this module are the fields that tell the engine what to
load as part of this module. These fields are listed in table 10.2.

Table 10.2 The module manifest elements that contain data used in constructing the module

Manifest element Type
Default

value
Description

ModuleToProcess string '' Script module or binary module file associ-
ated with this manifest

RequiredAssemblies [string[]] @() Assemblies that must be loaded prior to
importing this module

ScriptsToProcess [string[]] @() Script files (.ps1) that are run in the caller’s
environment prior to importing this module

TypesToProcess [string[]] @() Type files (.ps1xml) to be loaded when
importing this module

FormatsToProcess [string[]] @() Format files (.ps1xml) to be loaded when
importing this module

NestedModules [string[]] @() Modules to import as nested modules of the
module specified in ModuleToProcess

FunctionsToExport String "*" Functions to export from this module

CmdletsToExport String "*" Cmdlets to export from this module

VariablesToExport String "*" Variables to export from this module

AliasesToExport String "*" Aliases to export from this module
370 CHAPTER 10 MODULE MANIFESTS AND METADATA

There are two subcategories in the construction elements: “things to load” and
“things to export.” We’ll start with loading because you can’t export anything until
something has been loaded. As mentioned previously, none of the fields are required.
If they aren’t there, then PowerShell assumes the default value for each field, as shown
in the table.

10.4.1 The loader manifest elements

The next few sections cover each of these manifest elements in the order that you’re
most likely to use them in when creating a manifest. This isn’t the order that they’re
processed in when the module is loaded. We’ll cover the load order as a separate topic
(in section 10.4.2).

ModuleToProcess manifest element

The first loader element we’ll discuss is ModuleToProcess. It’s the most commonly
used manifest element and identifies the main, or root, active module to load.

NOTE So why isn’t it called RootModule? Because the PowerShell
team named (and renamed and renamed again) this field throughout
the development process, but it wasn’t until everything was done and
we started to explain it to other people that the concept of a “root mod-
ule” started spontaneously popping up conversations. Unfortunately,
by then we were too far into the release process to be able to change it.
Thus, RootModule became victim of the tyranny of the clock.

By active, I mean that the file defines executable elements, instead of just providing
metadata definitions. The type of the module file specified in this member will deter-
mine the final module type. If no file is specified as the ModuleToProcess, then the
type shown in the module information object will be Manifest. If it’s a script or
binary module, it will be the respective module type. Other types will raise errors.
The various combinations are shown in table 10.3.

If a script or binary module is specified in the ModuleToProcess element, the type
of the loaded module will be the same as the type of the module specified in the

Table 10.3 Module types as determined by the ModuleToProcess member

Contents of ModuleToProcess Final module type

empty Manifest

Script module (.psm1) Script

Binary module (.dll, .exe) Binary

Module manifest (.psd1) Error—not permitted

Script file Error—not permitted
CONSTRUCTION MANIFEST ELEMENTS 371

ModuleToProcess element even though you’re loading through a manifest. In other
words, if the root module was binary, the Type property on the module information
object shows Binary. If the root module was script module, the Type property
returns Script. What it can’t be, however, is another manifest module. It must be
either a script or binary module (or be left empty). The reason for this constraint is
that the job of a manifest is to add metadata to a script or binary module. If the
main module is another manifest, you’d have to deal with colliding metadata. For
example, one manifest may declare that the module is version 1.0.0.0 but the second
module says it’s version 1.2.0.0. There’s no way to reconcile this type of collision so
it’s simply not allowed. As a result, PowerShell just won’t look for a .psd1 file when
searching for the module to process. As mentioned at the beginning of this subsec-
tion, it’s expected that production modules will use ModuleToProcess to identify a
single main module.

NestedModules manifest element

We’ll review NestedModules next. NestedModules are loaded before the Module-
ToProcess is loaded. Although the net effect is equivalent to having the main mod-
ule call Import-Module, there are two advantages to this approach. First, it’s easy to
see what the module is going to load before loading the module. Second, if there’s a
problem with loading the nested modules, the main module won’t have been loaded
and won’t have to deal with the load failures.

RequiredAssemblies manifest element

The RequiredAssemblies field sounds like it should have the same behavior as
RequiredModules from the previous section. It doesn’t. This field loads the assem-
blies listed in the element if they aren’t already loaded. Figure 10.4 shows the set of
steps taken when trying to find the module to load.

If one of the steps results in a successful load, PowerShell will proceed to the next
step in loading a module. If it fails, the entire module loading process is considered a
failure.

ScriptsToProcess manifest element

Now let’s talk about ScriptsToProcess and scripts in general. Something we didn’t
discuss earlier is that NestedModules can also refer to script files. These script files
are run in the root module’s context—essentially equivalent to dot sourcing them
into the root module script. The scripts listed in ScriptToProcess do something
quite different. These scripts are run in the caller’s environment, not the module
environment, and are run before any of the modules are loaded. This allows for cus-
tom setup and environment validation logic. We talked about how version checks
work—the first module with a version number equal to or greater than the requested
372 CHAPTER 10 MODULE MANIFESTS AND METADATA

version number will be loaded, assuming that things are backward compatible. In
fact, this might not be true but there’s no explicit support for this level of dependency
checking currently. If you’re in a situation where you have to do this, you can use a
script referenced in ScriptsToProcess.

TypesToProcess and FormatsToProcess manifest elements

The last of the “loaded” manifest elements are TypesToProcess and Formats-
ToProcess. These are files with a .ps1xml extension that contain formatting instruc-
tions and additional type metadata. (We’ll delve more into the content of these files
in chapter 16.)

Load using

assembly name Try to load assembly using assembly qualified

name using Assembly.Load() method

Load using a path

name

Load using a

partial name

Try to load assembly using a path with

Assembly.LoadFrom() method

Try to load assembly using partial assembly name

with Assembly.LoadWithPartialName() method

Success?

Success?

No

Yes

Load failed;

generate error and

halt processing

No

No

Load succeeded;

continue

processing

Figure 10.4 The steps taken when trying to load an assembly from the

RequiredAssemblies module manifest field
CONSTRUCTION MANIFEST ELEMENTS 373

10.4.2 Module component load order

Module components are loaded into the PowerShell environment using a fixed
sequence of steps called the module load order. This load order is shown in figure 10.5.

The order that these steps are taken in can be of significance when you’re trying to
construct a module with a complex structure. In particular, there’s an issue load order
that causes problems when using binary modules with types and format files.

Because types and format files are loaded before ModuleToProcess is, if the types
and format files contain references to any of the .NET types in the binary module, an
error saying that the referenced types can’t be found because the module’s DLL hasn’t
been loaded yet will occur. To work around this, you need to make sure the DLL for

Validate module manifest

Make sure module manifest is
syntactically correct and contains only

valid members. Also verify that it

contains a version number.

Check RequiredModules

Process RequiredAssemblies

Load types and format files

Load nested modules

Load module to process

Add to module table

Process exports

Raise error if any required modules

aren’t currently loaded. Missing modules

won’t be loaded.

Check for required assemblies, and load

any that are missing.

Process all type .ps1xml files ; then load
all format .ps1xml files.

Load all nested modules in the order
they appear in manifest element.

If no errors have occurred up to this

point, module has loaded successfully

and is added to module table.

Import all members exported from main

module context, subject to filters

specified for Import-Module cmdlet.

Finally, load main module if one has

been specified.

Figure 10.5 The ordering of the steps when processing a module manifest. If

an error occurs at any point prior to the next-to-last step, module processing

will stop and an error will be thrown.
374 CHAPTER 10 MODULE MANIFESTS AND METADATA

the binary module is loaded first. You do so by adding the DLL to the list of Required-
Assemblies. Because RequiredAssemblies is processed before the types and format
file entries, there won’t be a problem resolving the types. Then, when it’s time to load
the binary module, the DLL will already be loaded and will just need to be scanned to
find the cmdlets and providers. This resolves the problem with effectively no perfor-
mance impact and only a small increase of complexity for the module owner.

At this point, we’ve covered all the major module manifest topics. There are only
a couple of things left to look at and then we’ll be done.

10.5 CONTENT MANIFEST ELEMENTS

The content manifest elements are the component files that make up a module.
There are two lists provided: a list of all loadable module files and a separate list for
any other files (data files, icons, audio clips, and so on) that are part of the module.
These elements are shown in table 10.4.

Note that these “packing lists” are not normative. In other words, they aren’t processed
or enforced by PowerShell and filing them is entirely optional. As a best practice,
though, it’s recommended that they contain accurate data because external tools may
be created to do the actual validation.

This last manifest element—PrivateData—provides a way for module writers to
include custom data in manifests and make it available to modules when loaded. This
element can contain any type of object permitted by the restricted language subset of
PowerShell: strings, numbers, arrays, or hash tables. The system makes the data avail-
able to both script and binary modules, including to providers defined in binary
modules. We’ll look at how modules can access the data specified by this element in
section 10.7.3.

At long last, we’ve covered all the manifest elements. We have one last thing to
look at before we’re done with manifest content. Back in section 10.2, we said that,
although manifests are written in PowerShell, they use a restricted subset of the lan-
guage. The restricted language is used to reduce the potential security risk associated
with loading a script. This allows you to load a manifest file to access the metadata
without being concerned that you’ll execute malicious code. This also means that you

Table 10.4 Module manifest elements used to list the module’s contents

Manifest element Type Default value Description

ModuleList [string[]] @() Non-normative list of all modules packaged
with this module

FileList [string[]] @() Non-normative list of all files packaged
with this module

PrivateData [object] '' Private data to pass to the module
specified in ModuleToProcess
CONTENT MANIFEST ELEMENTS 375

need to know how to write these scripts properly. In the next section, you’ll learn
what you can do in a manifest file.

10.6 LANGUAGE RESTRICTIONS IN A MANIFEST

Because the manifest is a PowerShell data file, its contents are restricted to a small
subset of PowerShell language features. This subset includes the basic PowerShell data
types (numbers, strings, hash tables, and so on), the if statement, and the arithmetic
and comparison operators. Things like assignment statements, function definitions,
and loop statements aren’t allowed. (See appendix D for full details on the language
limitations.)

With only these elements, you’d be limited to using static values for element defi-
nitions. This means you wouldn’t be able to accommodate for variations in system
configuration—things like paths to system directories, software installation directo-
ries, and drive letters. To allow you to handle these situations, manifests are permit-
ted to read (but not write) the $ENV: environment provider and can use the Join-
Path cmdlet to construct paths at runtime. This allows manifest elements to be writ-
ten in such a way that system differences can be handled.

Let’s look at an example illustrating how these features can be used. In this exam-
ple, imagine you have an application that uses PowerShell for management. This
application installs its PowerShell modules in a directory in the module path, and
then puts the rest of the application files in Program Files. Because the modules
need access to some of the resources in the application directory, the application
installer will set an environment variable, $ENV:MYAPPDIR, at install time that can be
used by the manifest to find the necessary resources. A module entry using this envi-
ronment variable would look like this:

RequiredAssemblies = (Join-Path $ENV:MYAPPDIR requiredAssembly.dll)

In the fragment, the Join-Path cmdlet is used to generate the absolute path to the
required assembly using $ENV:MYAPPDIR. Now, to complicate things we’ll say that
this library is processor dependent, and you’ll need to load a different DLL based on
the setting of the system variable $ENV:PROCESSOR_ARCHITECTURE. This entry
would look like

RequiredAssemblies = if ($ENV:PROCESSOR_ARCHITECTURE -eq "X86") {
 Join-Path $ENV:MYAPPDIR requiredAssembly.dll
 } else {
 Join-Path $ENV:MYAPPDIR64 requiredAssembly.dll
 }

This second example uses the if statement to select a different branch based on the
processor architecture and then generates the system-specific path using Join-Path.
These techniques allow modules to be flexible when dealing with system variations.

One thing missing from the module manifest story is the ability for scripts to read
the manifest files without loading the module. This is unfortunate because it limits
376 CHAPTER 10 MODULE MANIFESTS AND METADATA

your ability to write scripts to explore the modules you have. The Test-Module-
Manifest cmdlet does process the manifest but it doesn’t return all the data in the
manifest file. Because the language in the manifests is a subset of regular PowerShell,
it’s possible to load the module file contents into a string and then use Invoke-
Expression to evaluate it. This will give you the data you want, but it means that
the module is no longer running in restricted mode. As a workaround, you can use a
hybrid approach. First, you’ll validate the manifest with Test-ModuleManifest.
This will verify that the manifest only contains elements that are permitted in the
restricted language. Then you’ll read and evaluate the module file to get the data. The
following listing shows a function that can be used to do this.

function Read-ModuleManifest ($manifestPath)
{
 trap { break }

 $fullpath = Resolve-Path $manifestPath -ErrorAction Stop
 if (Test-ModuleManifest $fullPath)
 {
 $PSScriptRoot = Split-Path -Parent $fullPath
 $content = (Get-Content $fullPath) -Join "`n"
 Invoke-Expression $content
 }
}

Let’s use this function to load the BitsTransfer module manifest:

PS {1) > cd $pshome\modules\BitsTransfer
PS {2) > Read-ModuleManifest .\BitsTransfer.psd1

Name Value
---- -----
ModuleVersion 1.0.0.0
CLRVersion 2.0
FormatsToProcess BitsTransfer.Format.ps1xml
PowerShellVersion 2.0
GUID {8FA5064B-8479-4c5c-86EA-...
NestedModules Microsoft.BackgroundIntel...
Copyright c Microsoft Corporation. ...
CompanyName Microsoft Corporation
Author Microsoft Corporation
RequiredAssemblies C:\Windows\System32\Windo...

The output of the function is the hash table defined in the manifest file.
And we’re done with manifests! Like bookkeeping and inventory management,

manifests are complicated and a bit boring but absolutely necessary when doing pro-
duction scripting. In the next section, we’ll explore features that are less tedious but
(hopefully) more exciting.

Listing 10.1 The Read-ModuleManifest function

Load manifest text

Evaluate with
Invoke-Expression
LANGUAGE RESTRICTIONS IN A MANIFEST 377

10.7 ADVANCED MODULE OPERATIONS

In this section, you’ll learn sophisticated things you can do with modules. These fea-
tures are not intended for typical day-to-day use, but they allow for some sophisti-
cated scripting. As always, if you aren’t just scripting for yourself, have pity on the
person who will have to maintain your code and avoid “stunt scripting.”

10.7.1 The PSModuleInfo object

PowerShell modules, like everything in PowerShell, are objects you can work with
directly. The type of the object used to reference modules is System.Manage-
ment.Automation.PSModuleInfo.

You’ve been looking at these objects all along—this is what Get-Module
returns—but you’ve only been using them to get basic information about a module.
In practice, there are a lot of other things that can be done once you have a PS-
ModuleObject. In this section, we’ll look at what can be done (and try to explain
why you’d do these things).

Invocation in the module context

In our discussion about module scopes, we introduced the concept of a module-level
scope, which is used to isolate the private variables and functions. When you execute
code where function and variable lookup is done in a module scope, we call this “exe-
cuting in the module context.” This is what happens anytime you execute a function
that has been exported from a module. But you can also cause arbitrary code to be
executed in the module context even though it wasn’t defined in that context. In
effect, you’re pushing code into the module context. This is done with a PSModule-
Info object using the call operator &.

NOTE Yes, this ability to inject code into a module context violates all
the principles of isolation and information hiding. And from a lan-
guage perspective, this is a bit terrifying, but people do it all the time
when debugging. One of the nice things about dynamic languages is
that you’re effectively running the debugger attached all the time.

To try this out, you’ll need a module object to play with. Let’s load the counter
module we looked at in section 9.4.1 again. First, let’s quickly review the contents of
the module—you’ll use the Select-Object cmdlet to limit what gets output to the
first eight lines, as that’s all you’re concerned with here:

PS (1) > Get-Content counter.psm1 | select -First 8
$script:count = 0
$script:increment = 1

function Get-Count
{
 return $script:count += $increment
}

378 CHAPTER 10 MODULE MANIFESTS AND METADATA

This module has private state in the form of the two variables—$count and $incre-
ment—and one public function, Get-Count. Now import it

PS (2) > Import-Module .\counter.psm1

and use Get-Module to get the module reference:

PS (3) > $m = Get-Module counter

You could have done this in one step with the -PassThru parameter, as you saw ear-
lier, but we’re using two steps here to illustrate that these techniques can be done with
any in-memory module. Now run the Get-Count function and it returns 1, as it
should right after the module is first loaded:

PS (4) > Get-Count
1

Now set a global variable, $count, using the Set-Variable command (again, we’re
using the command instead of assignment to set the variable for illustration
purposes):

PS (5) > Set-Variable count 33

When you run Get-Count again, it returns 2 because the $count variable it uses
exists in the module context:

PS (6) > Get-Count
2

So far nothing much to see. Now let’s do something a bit fancier. Let’s see what the
current value of $count in the module context is. You can do this by invoking Get-
Variable in the module context with the call operator:

PS (7) > & $m Get-Variable count

Name Value
---- -----
count 2

You see the value is 2. Great—now you can inspect the private inner state of a module
to see what’s going on. Next, let’s alter that state. You’ll execute the same Set-
Variable command as before, but inside the module this time:

PS (8) > & $m Set-Variable count 33

Call Get-Count to verify that you have made a change:

PS (9) > Get-Count
34

The call to Get-Count returned 34, so you’ve successfully changed the value of the
variable it uses in its operation.
ADVANCED MODULE OPERATIONS 379

Okay, you know how to get and set state in the module, so let’s try altering the
code. First look at the body of the Get-Count function:

PS (10) > & $m Get-Item function:Get-Count

CommandType Name Definition
----------- ---- ----------
Function Get-Count ...

Now redefine the function in the module. Instead of simply adding the increment,
add the increment times 2:

PS (11) > & $m {
>> function script:Get-Count
>> {
>> return $script:count += $increment * 2
>> }
>> }
>>

Although you’ve redefined the function in the module, you have to reimport the
module in order to get the new definition into your function table:

PS (12) > Import-Module .\counter.psm1

Now you can call the function again to make sure you’re getting what you expected:

PS (13) > Get-Count
36
PS (14) > Get-Count
38

Yes, Get-Count is now incrementing by 2 instead of 1.
All of these tweaks on the module only affect the module in memory. The module

file on disk hasn’t changed:

PS (15) > Get-Content counter.psm1 | select -First 8
$script:count = 0
$script:increment = 1

function Get-Count
{
 return $script:count += $increment
}

If you use the -Force parameter on Import-Module, you’ll force the system to
reload the file from disk, reinitializing everything to the way it was:

PS (16) > Import-Module .\counter.psm1 -Force

Verify this by running Get-Count:

PS (17) > Get-Count
1
PS (18) > Get-Count
2

380 CHAPTER 10 MODULE MANIFESTS AND METADATA

PS (19) > Get-Count
3

Again this is one of the characteristics of dynamic languages: the ability of programs
to modify themselves in a profound way at runtime and then restore the original
state. In the next section we’ll look at how to use properties on the PSModuleInfo to
access the members of a module without importing them.

Accessing modules exports using the PSModuleInfo object

The exported members of a module are discoverable through properties on the
PSModuleInfo object that represents the module. This gives you a way to look at the
exported members without having to import them into your environment. For exam-
ple, the list of exported functions is available in the ExportedFunctions member.
These properties are hash tables, indexed by the name of the exported member. Let’s
look at some examples of what you can do using these properties.

As always, you need a module to work with. In this case, you’ll use a dynamic
module, which we’ll cover in more detail in chapter 11. Dynamic modules don’t
require a file on disk, which makes them easy to use for experiments. You’ll create a
dynamic module and save the PSModuleInfo object in a variable called $m:

PS (1) > $m = New-Module {
>> function foo {"In foo x is $x"}
>> $x=2
>> Export-ModuleMember -func foo -var x }
>>

Now you can use the export lists on the PSModuleInfo to see what was exported:

PS (2) > $m | Format-List exported*

ExportedCommands : {foo}
ExportedFunctions : {[foo, foo]}
ExportedCmdlets : {}
ExportedVariables : {[x, System.Management.Automation.PSVariable]}
ExportedAliases : {}
ExportedFormatFiles : {}
ExportedTypeFiles : {}

In the output, you see that one function and one variable were exported. You also see
the function turn up in the ExportedCommands member. Modules can export more
than one type of command—functions, aliases, or cmdlets—and this property exists
to provide a convenient way to see all commands regardless of type.

NOTE By implementing the exported member properties as hash
tables, you can access and manipulate the state of the module in a fairly
convenient way. The downside is that the default output for the
exported members is a bit strange, especially for functions where you
see things like [foo, foo]. These tables map the name of a command
ADVANCED MODULE OPERATIONS 381

to the CommandInfo object for that command. When the contents of
the table are displayed, both the key and the value are displayed as
strings, and because the presentation of a CommandInfo object as a
string is the name of the object, you see the name twice.

Let’s use the ExportedFunctions property to see how the function foo is easier to write:

PS (3) > $m.ExportedFunctions.foo

CommandType Name Definition
----------- ---- ----------
Function foo "In foo x is $x"

The value returned from the expression is a CommandInfo object. This means that
you can use the call operator, &, to invoke this function:

PS (4) > & $m.ExportedFunctions.foo
In foo x is 2

You can also use the PSModuleInfo object to change the value of the exported vari-
able $x:

PS (5) > $m.ExportedVariables.x.value = 3

Call the function again to validate this change:

PS (6) > & $m.ExportedFunctions.foo
In foo x is 3

The return value from the call is the updated value as expected. Next, we’ll look at
some of the methods on PSModuleInfo objects.

10.7.2 Using the PSModuleInfo methods

The call operator isn’t the only way to use the module information object. The object
itself has a number of methods that can be useful. Take a look at some of these methods:

PS (20) > [psmoduleinfo].GetMethods() |
>> Select-String -notmatch '(get_|set_)'
>>

System.Management.Automation.ScriptBlock NewBoundScriptBlock(
 System.Management.Automation.ScriptBlock)
System.Object Invoke(System.Management.Automation.ScriptBlock,
 System.Object[])
System.Management.Automation.PSObject AsCustomObject()

We’ll cover the first two listed, Invoke() and NewBoundScriptBlock(), and save
AsCustomObject() for chapter 11.

The Invoke() method

This method is essentially a .NET programmer way of doing what you did earlier
with the call operator. Assuming you still have the counter module loaded, let’s use
382 CHAPTER 10 MODULE MANIFESTS AND METADATA

this method to reset the count and change the increment to 5. First get the module
information object:

PS (21) > $m = Get-Module counter

Now invoke a script block in the module context using this method:

PS (22) > $m.Invoke({$script:count = 0; $script:increment = 5})

The corresponding invocation using the call operator would be

& $m {$script:count = 0; $script:increment = 5}

This is scripter-friendly, but either way, let’s try to verify the result:

PS (23) > Get-Count
5
PS (24) > Get-Count
10
PS (25) > Get-Count
15
PS (26) >

And the count was reset and Get-Count now increments by 5 instead of 1. Next let’s
look at a way to attach modules to a script block.

The NewBoundScriptBlock() method

In this topic, we’re jumping ahead a bit as we won’t cover script blocks in depth until
chapter 11. Next we’ll explore module-bound script blocks.

A module-bound script block is a piece of code—a script block—that has the
module context to use attached to it. Normally an unbound script block is executed
in the caller’s context, but once a script block is bound to a module, it always executes
in the module context. In fact, that’s how exported functions work—they’re implic-
itly bound to the module that defined them.

Let’s use this mechanism to define a script block that will execute in the context of
the counter module. First you need to get the module (again). You could use Get-
Module as before, but now that you know that exported functions are bound to a
module, you can just use the Module property on an exported command to get the
module information object. Do so with Get-Count:

PS (26) > $gcc = Get-Command Get-Count

Now you can get the module for this command:

PS (27) > $gcc.module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script counter {setIncrement, Get-Count...

Next you need to define the script block you’re going to bind. Do this and place the
script block into a variable:

PS (28) > $sb = {param($incr) $script:increment = $incr}
ADVANCED MODULE OPERATIONS 383

This script block takes a single parameter, which it uses to set the module-level
$increment variable. Now you’ll bind it to the target module. Note that this doesn’t
bind the module to the original script block; instead it creates a new script block with
the module attached.

PS (29) > $setIncrement = $gcc.Module.NewBoundScriptblock($sb)

Now test using the script block to set the increment. Invoke the script block with the
call operator passing in an increment of 10:

PS (30) > & $setIncrement 10

And verify that the increment has been changed.

PS (31) > Get-Count
110
PS (32) > Get-Count
120

Okay, good. But if you want to use this mechanism frequently, it would be useful to
have a named function. You can do this by assigning the scriptblock to Set-
Increment in the function: drive:

PS (33) > ${function:Set-CountIncrement} = $setIncrement

Let’s test the function:

PS (34) > Set-CountIncrement 100
PS (35) > Get-Count
220
PS (36) > Get-Count
320

And now the increment is 100 per the argument to the Set-CountIncrement. Now
use Get-Command to look at the function you’ve defined:

PS (37) > Get-Command Set-CountIncrement | Format-Table name, module

Name Module
---- ------
Set-CountIncrement counter

Similar to Get-Count, it’s listed as being associated with the counter module. Now
that you’ve introduced the idea of a function being dynamically attached to a module,
you should learn about the context where a function gets evaluated—which we’ll
cover in the next section.

10.7.3 The defining module versus the calling module

In this section we’ll go into greater detail about how the execution context for a mod-
ule is established. We covered module scoping in section 9.4.4. By providing you
with a deeper understanding of the details of how this works, we’re setting the stage
for some of the more advanced topics we’ll cover in chapter 11.
384 CHAPTER 10 MODULE MANIFESTS AND METADATA

Commands always have two module contexts: the context where they were
defined and the context where they were called from. This is a somewhat subtle con-
cept. Before PowerShell had modules, this wasn’t terribly interesting except for get-
ting filename and line number information for where the function was called and
where it was defined. With modules, this distinction becomes more significant.
Among other things, the module where the command was defined contains the mod-
ule-specific resources like the manifest PrivateData element mentioned in section
10.5. For functions, the ability to access the two contexts allows the function to
access the caller’s variables instead of the module variables.

Accessing the defining module

The module that a function was defined in can be retrieved by using the expression
$MyInvocation.MyCommand.Module. Similarly, the module a cmdlet was defined in
is available through the instance property this.MyInvocation.MyCommand.Module.
If the function is defined in the global scope (or top level), the module field will be
$null. Let’s try this. First define a function at the top level:

PS (1) > function Test-ModuleContext {
>> $MyInvocation.MyCommand.Module
>> }
>>

Then run it, formatting the result as a list showing the module name and Private-
Data fields:

PS (2) > Test-ModuleContext | fl name,privatedata
PS (3) >

Nothing was output because the defining module at the top level is always $null.
Now let’s define the function inside a module. Use a here-string to create a .psm1 file:

PS (4) > @'

>> function Test-ModuleContext {
>> $MyInvocation.MyCommand.Module
>> }
>> '@ > TestModuleContext.psm1
>>

Now load the file and run the same test command as you did previously:

PS (5) > Import-Module ./TestModuleContext.psm1
PS (6) > Test-ModuleContext | fl name,privatedata

Name : TestModuleContext
PrivateData :

This time the result of the function was not $null—you see the module name and,
of course, the PrivateData field is empty because there was no module manifest to
provide this data. You can remedy this by creating a module manifest to go along
ADVANCED MODULE OPERATIONS 385

with the .psm1 file. This abbreviated manifest defines the minimum—the module
version, the module to process, and a hash table for PrivateData:

PS (7) > @'
>> @{
>> ModuleVersion = '1.0.0.0'
>> ModuleToProcess = 'TestModuleContext.psm1'
>> PrivateData = @{a = 1; b = 2 }
>> }
>> '@ > TestModuleContext.psd1
>>

Load the module using the manifest and -Force to make sure everything gets
updated:

PS (8) > Import-Module -Force ./TestModuleContext.psd1

And run the test command:

PS (9) > Test-ModuleContext | fl name,privatedata

Name : TestModuleContext
PrivateData : {a, b}

You see that the PrivateData field is now also filled in.

Accessing the calling module

The module that a function was called from can be retrieved by using the expression
$PSCmdlet.SessionState.Module. Similarly, the module a cmdlet is called from is
available through this.SessionState.Module. In either case, if the command is
being invoked from the top level, this value will be $null because there is no “global
module.”

NOTE It’s unfortunate that we didn’t get a chance to wrap the global
session state in a module before we shipped. This means that this kind
of code has to be special case for the module being $null some of the time.

Working with both contexts

Now let’s look at a tricky scenario where you access both contexts at once. This is
something that’s rarely necessary but, when needed, is absolutely required.

In functions and script modules, accessing the module session is trivial since unqual-
ified variables are resolved in the module context by default. To access the caller’s con-
text you need to use the caller’s session state, which is available as a property on $PS-
Cmdlet. Let’s update the Test-ModuleContext module to access a variable, $testv,
both in the caller’s context and the module context. Here’s the module definition:

PS (1) > @'
>> $testv = 123
>> function Test-ModuleContext {
>> [CmdletBinding()] param()
386 CHAPTER 10 MODULE MANIFESTS AND METADATA

>> "module testv is $testv"
>> $ctestv = $PSCmdlet.SessionState.PSVariable.Get("testv").Value;
>> "caller's testv is $ctestv"
>> }
>> '@ > TestModuleContext.psm1
>>

This defines your test function, specifying that the cmdlet binding be used so you can
access $PSCmdlet. The module body also defines a module-scoped variable, $testv.
The test function will emit the value of this variable and then use the expression

$PSCmdlet.SessionState.PSVariable.Get("testv").Value

to get the value of the caller’s $testv variable. Next load the module:

PS (2) > Import-Module -Force ./TestModuleContext.psm1

Now define a global $testv:

PS (3) > $testv = "456"

Next, run the command:

PS (4) > Test-ModuleContext
module testv is 123
caller's testv is 456

And you see the module $testv was correctly displayed as 123 and the caller’s vari-
able is the global value 456. Now wait a minute, you say, you could’ve done this
much more easily by specifying $global:testv. This is true if you were only inter-
ested in accessing variables at the global level. But sometimes you want to get the
local variable in the caller’s dynamic scope. Let’s try this. Define a new function,
nested, that will set a local $testv:

PS (5) > function nested {
>> $testv = "789"
>> Test-ModuleContext
>> }
>>

This function-scoped $testv variable is the caller’s variable you want to access so you
should get 789 instead of the global value 456:

PS (6) > nested
module testv is 123
caller's testv is 789

It works. The module $testv was returned as 123 and the caller’s $testv returned
the value of the function-scoped variable instead of the global variable.

So when would you need this functionality? If you want to write a function that
manipulates the caller’s scope—say something like the Set-Variable cmdlet imple-
mented as a function—then you’d need this capability. The other time you might
need to do this is when you want to access the value of locally scoped configuration
variables, such as $OFS.
ADVANCED MODULE OPERATIONS 387

10.7.4 Setting module properties from inside a script module

We’ve talked at length about how manifests are required to set metadata on a module,
but there’s a way for the script module to do some of this itself during the module
load operation. To do this it needs to have access to its own PSModuleInfo object
during the load. This can be retrieved using the rather awkward expression

$MyInvocation.MyCommand.ScriptBlock.Module

But once you have the PSModuleInfo object, the rest is easy. Try it out by setting the
Description property on your own module.

Setting the module description

In this example, you’ll set the Description property for a module from within the
module itself. You’ll create a module file in the current directory called setdescrip-
tion.psm1. Here are the contents of this file:

PS (1) > Get-Content .\setdescription.psm1
$mInfo = $MyInvocation.MyCommand.ScriptBlock.Module
$mInfo.Description = "My Module's Description on $(Get-Date)"

On the first line of the module, you copy the reference to the PSModuleInfo object
into a variable, $mInfo. On the second line, you assign a value to the Description
property on that object. Import the module:

PS (2) > Import-Module .\setdescription.psm1

Then, call Get-Module, piping into Format-List so you can just see the module
name and its description:

PS (3) > Get-Module setdescription |
>> Format-List name, description
>>

Name : setdescription
Description : My Module's Description on 01/16/2010 21:33:13

And there you go. You’ve dynamically set the Description property on your module.
Along with being able to set this type of metadata entry on the PSModuleInfo

object, there are a couple of behaviors you can control as well. You’ll see how this
works in the next two sections.

10.7.5 Controlling when modules can be unloaded

The module AccessMode feature allows you to restrict when a module can be
unloaded. There are two flavors of restriction: static and constant. A static module is a
module that can’t be removed unless the -Force option is used on the Remove-
Module cmdlet. A constant module can never be unloaded and will remain in memory
until the session that loaded it ends. This model parallels the pattern for making vari-
ables and functions constant.
388 CHAPTER 10 MODULE MANIFESTS AND METADATA

To make a module either static or constant, you need to set the AccessMode
property on the module’s PSModuleInfo object to the appropriate setting. Set it to
ReadOnly for static modules and Constant for constant modules. Let’s see how this
is done. Here’s an example script module called readonly.psm1 that makes itself
ReadOnly:

PS (1) > Get-Content .\readonly.psm1
$mInfo = $MyInvocation.MyCommand.ScriptBlock.Module
$mInfo.AccessMode = "readonly"

The first line of the module is the same as the example in the previous section and
retrieves the PSModuleInfo object. The next line sets the AccessMode to readonly.
Now load this module and verify the behavior:

PS (2) > Import-Module .\readonly.psm1
PS (3) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script readonly {}

You’ve verified that it’s been loaded, so now try to remove it:

PS (5) > Remove-Module readonly
Remove-Module : Unable to remove module 'readonly' because it is
read-only. Use the -force flag to remove read-only modules.
At line:1 char:14
+ Remove-Module <<<< readonly
 + CategoryInfo : PermissionDenied: (readonly:PSModuleInfo)
 [Remove-Module], InvalidOperationException
 + FullyQualifiedErrorId :
 Modules_ModuleIsReadOnly,
 Microsoft.PowerShell.Commands.RemoveModuleCommand

When you try to remove the module, you get an error stating that -Force must be
used to remove it. So do that:

PS (6) > Remove-Module readonly -Force

This time you don’t get an error. You verify that the module has been removed by
calling Get-Module:

PS (7) > Get-Module
PS (8) >

Nothing was returned, confirming that the module has been removed. The same
approach is used to mark a module as constant.

And now, the final feature we’re going to cover: how to run an action when a
module is unloaded.

10.7.6 Running an action when a module is removed

Sometimes you need to do some cleanup when a module is unloaded. For example, if
the module establishes a persistent connection to a server, when the module is
ADVANCED MODULE OPERATIONS 389

unloaded you’ll want that connection to be closed. You’ll see an example of this pat-
tern when we look at implicit remoting in chapter 13. The PSModuleInfo object pro-
vides a way to do this through its OnRemove property.

To set up an action to execute when a module is unloaded, assign a script block
defining the action to the OnRemove property on the module’s PSModuleInfo
object. Here’s an example that shows how this is done:

PS (1) > Get-Content .\onremove.psm1
$mInfo = $MyInvocation.MyCommand.ScriptBlock.Module
$mInfo.OnRemove = {
 Write-Host "I was removed on $(Get-Date)"
 }

You get the PSModuleInfo object in the first line, and then assign a script block that
displays a message to the OnRemove property. (Note that you have to call Write-
Host if you want to see the message because the output of the script block is simply
ignored.) Let’s try it out. Import the module:

PS (2) > Import-Module .\onremove.psm1

Then remove it:

PS (3) > Remove-Module onremove
I was removed on 01/16/2010 22:05:00

And the message from the script block was printed, confirming that the OnRemove
action was executed.

And with that, we’re done with modules...well, mostly done—there are a few even
more advanced techniques that will be covered in chapter 11.

10.8 SUMMARY

In this chapter, you expanded your knowledge of PowerShell modules by exploring
features provided to support production-oriented coding in PowerShell. We looked at
module manifests and how they’re used to add metadata to a module. Next we exam-
ined each of the manifest elements and their role in the process. Finally we investi-
gated some advanced techniques using the module information object. Here are some
important points about using modules with manifests:

• Production modules are stored in a directory containing the module manifest
and content. The metadata or information about a module is contained in a
.psd1 file usually with the same name as the module directory.

• The easiest way to create a module manifest is to use the New-ModuleManifest
cmdlet. A second cmdlet, Test-ModuleManifest, is provided to test an exist-
ing module for issues.

• A manifest lets you define three types of information for your module: produc-
tion, construction, and content. Production metadata defines things like ver-
sion number and dependencies. Construction elements control how a module is
390 CHAPTER 10 MODULE MANIFESTS AND METADATA

constructed, including specifying any nested modules. Content manifest
elements deal with other types of content in the module.

In the latter part of this chapter, we looked in more detail at how modules are repre-
sented in memory and the kinds of operations you can perform once you have the
module information object. Here are some of the key topics we covered:

• Modules in memory are represented by a PSModuleInfo object. This object
allows you to perform a number of advanced scenarios with modules.

• The PSModuleInfo object for a module can be retrieved using Get-Module.
Alternatively, the module object for a function can be retrieved using the
Module property on a script block for that function.

• If you have access to the PSModuleInfo object for a module, you can inject
code into the module, where it will be executed in the module context. This
allows you to manipulate the state of a module without having to reload it. This
feature is primarily intended for diagnostic and debugging purposes.

• From within a script module, you can use the PSModuleInfo object to directly
set some metadata elements like the module description.

• PSModuleInfo object has an AccessMode field that controls the ability to
update or remove a module from the session. This field is set to ReadWrite by
default but can be set to Static, requiring the use of the -Force parameter (to
update it) or Constant (which means it can’t be removed from the session). A
Constant module remains in the session until the session ends.

• To set up an action to be taken when a module is removed, you can assign a
script block to the OnRemove property on the PSModuleInfo object for that
module.

Let’s stop for a minute and check where we are. With this chapter, we’ve now covered
all the core topics necessary for understanding how to script in PowerShell. We dis-
cussed syntax, operators, and data types in chapters 2 through 6. In chapters 7 and 8,
we covered functions and scripts, and finally, in chapters 9 and 10 we explored mod-
ules. In the next chapter, we’ll look at some more advanced programming topics that
build on what you’ve learned. These advanced topics will not only introduce some
powerful new ways of using PowerShell, they’ll also engender a deep understanding of
how PowerShell works.
SUMMARY 391

C H A P T E R 1 1

Metaprogramming with
scriptblocks and
dynamic code
11.1 Scriptblock basics 393 11.6 A closer look at the type-system

11.2 Building and manipulating

objects 400
11.3 Using the Select-Object cmdlet 410
11.4 Dynamic modules 412
11.5 Steppable pipelines 418

plumbing 423
11.7 Extending the PowerShell

language 428
11.8 Building script code at runtime 436
11.9 Compiling code with Add-Type 440
11.10 Summary 445
Philosophy have I digested, The whole of Law and Medicine, From each its secrets I
have wrested, Theology, alas, thrown in. Poor fool, with all this sweated lore, I stand
no wiser than I was before.

 —Johann Wolfgang Goethe, Faust

Greek letters are cool...
 —Not actually a quote from Beavis and Butthead

Chapters 7 and 8 covered the basic elements of programming in PowerShell: func-
tions and scripts. Chapters 9 and 10 introduced modules as a way of aggregating your
code into reusable pieces through modules. In this chapter, we’ll take things to the
392

next level and talk about metaprogramming. Metaprogramming is the term used to
describe the activity of writing programs that create or manipulate other programs. If
you’re not already familiar with this concept, you may be asking why you should care.
In chapter 1, we talked about designing classes and how hard it is to get those designs
right. In most environments, if the designer makes a mistake, the user is stuck with
the result. This isn’t true in PowerShell. Metaprogramming lets you poke into the
heart of the system and make things work the way you need them to. Here’s an anal-
ogy that should give you the full picture.

Imagine buying a computer that was welded shut. There’s still a lot you can do with
it—run all the existing programs and even install new programs. But there are some
things you can’t do. If it doesn’t have any USB ports, you can’t add them. If it doesn’t
have any way to capture video, you can’t add that either without opening the case. And
even though most people buy a computer with the basic features they need and never
add new hardware, a case that’s welded shut doesn’t allow for hardware tinkering.

Traditional programming languages are much like that welded computer. They
have a basic set of features, and although you can extend what they do by adding librar-
ies, you can’t extend the core capabilities of the language. For example, you can’t add
a new type of looping statement. On the other hand, in a language that supports
metaprogramming, you can undertake such activities as adding new control structures.
This is how the Where-Object and ForEach-Object cmdlets are implemented. They
use the metaprogramming features in PowerShell to add what appear to be new lan-
guage elements. You can even create your own variations of these commands.

We’ll begin our investigation with a detailed discussion of PowerShell script-
blocks, which are at the center of most of the metaprogramming techniques. This
discussion takes up the first part of this chapter and lays the groundwork for the rest
of what we’ll discuss. With that material as context, we’ll look at how and where
scriptblocks are used in PowerShell. We’ll look at the role scriptblocks play in the
creation of custom objects and types, and how they can be used to extend the Pow-
erShell language. We’ll cover techniques like proxy functions, dynamic modules, and
custom objects—all of which are examples of applied metaprogramming. Then we’ll
move on, and you’ll see how you can use similar techniques with static languages
like C# from within your scripts. Finally, we’ll look at using events—a related tech-
nique that also involves scriptblocks. But first, you need to understand scriptblocks
themselves.

11.1 SCRIPTBLOCK BASICS

In this section we’ll talk about how to create and use scriptblocks. We’ll begin by
explaining how commands are invoked so you can understand all the ways to invoke
scriptblocks. Next, we’ll cover the syntax for scriptblock literals and the various types
of scriptblocks you can create. This includes using scriptblocks as functions, as filters,
and as cmdlets. Finally, we’ll discuss how you can use scriptblocks to define new func-
tions at runtime. Let’s dive into the topic by starting with definitions.
SCRIPTBLOCK BASICS 393

In PowerShell, the key to metaprogramming (writing programs that write or
manipulate other programs) is the scriptblock. This is a block of script code that exists
as an object reference but doesn’t require a name. The Where-Object and ForEach-
Object cmdlets rely on scriptblocks for their implementation. In the example

1..10 | foreach { $_ * 2 }

the expression in braces—{ $_ * 2 }—is actually a scriptblock. It’s a piece of code
that’s passed to the ForEach-Object cmdlet and is called by the cmdlet as needed.

So that’s all a scriptblock is—a piece of script in braces—but it’s the key to all the
advanced programming features in PowerShell.

NOTE What we call scriptblocks in PowerShell are called anonymous
functions or sometimes lambda expressions in other languages. The
term lambda comes from the lambda calculus developed by Alonzo
Church and Stephen Cole Kleene in the 1930s. A number of languages,
including Python and dialects of LISP, still use lambda as a language
keyword. In designing the PowerShell language, the PowerShell team
felt that calling a spade and spade (and a scriptblock a scriptblock) was
more straightforward (the coolness of using Greek letters aside).

We’ve said that scriptblocks are anonymous functions, and of course functions are
one of the four types of commands. But wait! You invoke a command by specifying
its name. If scriptblocks are anonymous, they have no name—so how can you invoke
them? This necessitates one more diversion before we really dig into scriptblocks.
Let’s talk about how commands can be executed.

11.1.1 Invoking commands

The way to execute a command is just to type its name followed by a set of argu-
ments, but sometimes you can’t type the command name as is. For example, you
might have a command with a space in the name. You can’t simply type the com-
mand because the space would cause part of the command name to be treated as an
argument. And you can’t put it in quotes, because this turns it into a string value. So
you have to use the call operator, &. If, for instance, you have a command called my
command, you’d invoke this command by typing the following:

& "my command"

The interpreter sees the call operator and uses the value of the next argument to look
up the command to run. This process of looking up the command is called command
discovery. The result of this command discovery operation is an object of type
System.Management.Automation.CommandInfo, which tells the interpreter what
command to execute. There are different subtypes of CommandInfo for each of the
types of PowerShell commands. In the next section, you’ll learn how to obtain these
objects and how to use them.
394 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

Getting CommandInfo objects

You’ve used the Get-Command cmdlet before as a way to attain information about a
command. For example, to get information about the Get-ChildItem cmdlet, you’d
use the following:

PS (1) > Get-Command Get-ChildItem

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-ChildItem Get-ChildItem [[-Pat...

This shows you the information about a command: the name of the command, the
type of command, and so on.

NOTE In the previous Get-Command example, the command’s defini-
tion was truncated to fit the book-formatting requirements. You can
control how this information is described by using the Format-List
and Format-Table commands.

This is useful as a kind of lightweight help, but in addition to displaying information,
the object returned by Get-Command can be used with the call operator to invoke that
command. This is significant. This extra degree of flexibility, invoking a command
indirectly, is the first step on the road to metaprogramming.

Let’s try this out—first get the CommandInfo object for the Get-Date command:

PS (1) > $d = Get-Command Get-Date
PS (2) > $d.CommandType
Cmdlet
PS (3) > $d.Name
Get-Date

As you can see from this example, the name Get-Date resolves to a cmdlet with the
name Get-Date. Now run this command using the CommandInfo object with the
call operator:

PS (4) > & $d

Sunday, May 21, 2006 7:29:47 PM

It’s as simple as that. So why should you care about this? Because it’s a way of getting
a handle to a specific command in the environment. Say you defined a function Get-
Date:

PS (1) > function Get-Date {"Hi there"}
PS (2) > Get-Date
Hi there

Your new Get-Date command outputs a string. Because PowerShell looks for func-
tions before it looks for cmdlets, this new function definition hides the Get-Date
cmdlet. Even using & with the string “Get-Date” still runs the function:

PS (3) > & "Get-Date"
Hi there
SCRIPTBLOCK BASICS 395

Because you created a second definition for Get-Date (the function), now if you use
Get-Command you’ll see two definitions. So how do you unambiguously select the
cmdlet Get-Date?

PS (4) > Get-Command Get-Date

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Date Get-Date [[-Date] <D...
Function Get-Date "Hi there"

One way is to select the CommandInfo object based on the type of the command:

PS (5) > Get-Command -CommandType cmdlet Get-Date

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Date Get-Date [[-Date] <D...

Now put the result of this command into a variable

PS (6) > $ci = Get-command -CommandType cmdlet Get-Date

and then run it using the call operator:

PS (7) > & $ci

Sunday, May 21, 2006 7:34:33 PM

The Get-Date cmdlet was run as expected. Another way to select which command to
run, because Get-Command returns a collection of objects, is to index into the collec-
tion to get the right object:

PS (8) > &(Get-Command Get-Date)[0]

Sunday, May 21, 2006 7:41:28 PM

Here you used the result of the index operation directly with the call operator to run
the desired command.

This is all interesting, but what does it have to do with scriptblocks? We’ve dem-
onstrated that you can invoke a command through an object reference instead of by
name. This was the problem we set out to work around. Scriptblocks are functions
that don’t have names; so, as you might expect, the way to call a scriptblock is to use
the call operator. Here’s what that looks like

PS (1) > & {param($x,$y) $x+$y} 2 5
7

In this example, the scriptblock is

{param($x,$y) $x+$y}

This example used the call operator to invoke it with two arguments, 2 and 5, so the
call returns 7. This is how you can execute a function if it doesn’t have a name. As
long as you have access to the scriptblock, you can call it.
396 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

11.1.2 The scriptblock literal

Scriptblocks are the center of pretty much everything we do in this chapter. Because
the most common form of scriptblock is the scriptblock literal, it’s worth investing
some time looking at them in detail. You’ll learn how to specify a scriptblock literal
that acts as a function, how to specify one that acts like a filter, and finally how to
define a scriptblock cmdlet.

What you’ve been writing to create scriptblocks is called a scriptblock literal—in
other words, a chunk of legitimate PowerShell script surrounded by braces. The syn-
tax for this literal is shown in figure 11.1.

The definition of a scriptblock looks more or less like the definition of a function,
except the function keyword and function name are missing. If the param state-
ment isn’t present, the scriptblock will get its arguments through $args, exactly as a
function would.

Scriptblocks, like regular functions or scripts, can also behave like cmdlets. In other
words, they can have one or all of the begin, process, or end clauses that you can

{ param (<parameter list>) <statementList> }

param keyword List of parameters

to scriptblock

List of statements that make up

scriptblock body

Braces marking beginning and end

of scriptblock body

Figure 11.1 Defining a simple scriptblock. Note that the param statement is optional,

so a minimal scriptblock only has the braces.

Param vs. lambda

The param statement in PowerShell corresponds to the lambda keyword in other
languages. For example, the PowerShell expression

& {param($x,$y) $x+$y} 2 5

is equivalent to the LISP expression

(lambda (x y) (+ x y)) 2 5)

or the Python expression

(lambda x,y: x+y)(2,5)

Also note that, unlike Python lambdas, PowerShell scriptblocks can contain any
collection of legal PowerShell statements.
SCRIPTBLOCK BASICS 397

have in a function or script. Figure 11.2 shows the most general form of the script-
block syntax, including all three clauses.

As was the case with a regular function, you don’t have to define all the clauses.
Here’s an example that uses only the process clause:

PS (1) > 1..5 |&{process{$_ * 2}}
2
4
6
8
10

A scriptblock written this way works like the filters you saw in chapter 7. It also works
like the ForEach-Object cmdlet, as shown here:

PS (2) > 1..5 |foreach {$_ * 2}
2
4
6
8
10

The ForEach-Object cmdlet is effectively a shortcut for the more complex script-
block construction.

As we’ve been going along, we keep talking about how scriptblocks are anony-
mous functions. This is a good time to see how scriptblocks and named functions are
related.

11.1.3 Defining functions at runtime

In earlier sections, we said that scriptblocks were functions without names. The con-
verse is also true—functions are scriptblocks with names. So what exactly is the rela-
tionship between the two? In chapter 7, you learned how to manage the functions in
your PowerShell session using the function: drive. To get a list of functions, you could
do a dir of that drive:

dir function:/

{
param (<parameter list>)
begin {

<statementList>
}
process {

<statementList>
}
end {

<statementList>
}

}

param keyword List of formal parameters

to scriptblock

List of statements to process

in begin phase

List of statements to execute

for each pipeline object

List of statements to process

during end phase
Figure 11.2

A scriptblock that

works like a cmdlet
398 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

You could also delete or rename functions. But we didn’t cover the whole story. In
fact, the function: drive is, in effect, a set of variables containing scriptblocks. Let’s
explore this further. First, let’s define our favorite function, foo:

PS (1) > function foo {2+2}
PS (2) > foo
4

You can use the dir cmdlet to get the command information from the function
provider:

PS (3) > dir function:foo

CommandType Name Definition
----------- ---- ----------
Function foo 2+2

Now use Get-Member to get more information about the object that was returned:

PS (4) > dir function:foo | Get-Membersc*

 TypeName: System.Management.Automation.FunctionInfo

Name MemberType Definition
---- ---------- ----------
ScriptBlock Property System.Management.Automation.ScriptBlo...

The object that came back to you was a FunctionInfo object. This is the subclass of
CommandInfo that’s used to represent a function. As you see, one of the properties on
the object is the scriptblock that makes up the body of the function. Retrieve that
member:

PS (5) > (dir function:foo).ScriptBlock
2+2

The scriptblock, when displayed as a string, shows the source code for the script-
block. Another, simpler way to get back the scriptblock that defines a function is to
use the variable syntax:

PS (6) > $function:foo
2+2
PS (7) > $function:foo.GetType().Fullname
System.Management.Automation.ScriptBlock

Now here’s the interesting part. Change the definition of this function by assigning a
new scriptblock to the function:

PS (8) > $function:foo = {"Bye!"}

When you run the function again

PS (9) > foo
Bye!

you see that it’s changed. The function keyword is, in effect, shorthand for assigning
to a name in the function provider.
SCRIPTBLOCK BASICS 399

Now that you know how to manipulate scriptblocks and functions, let’s take this
one step further. As discussed in chapter 1, objects encapsulate data and code. We’ve
spent a lot of time on data in the earlier chapters, and now we have a way of manipu-
lating code too. This means that you’re ready to take the next step and see how you
can use data and scriptblocks to build your own objects.

11.2 BUILDING AND MANIPULATING OBJECTS

Let’s kick our scripting up a notch and look at ways to build custom objects. Up to this
point in the chapter we’ve been talking about scriptblocks as stand-alone functions.
Now it’s time to talk about how to use scriptblocks to build objects. At their core, as
discussed in chapter 1, objects are a binding of data and behaviors. These behaviors are
implemented by blocks of script. You needed to know how to build the blocks of code,
scriptblocks, before we could talk about building objects. With a good understanding
of scriptblocks, we can now discuss manipulating and building objects in PowerShell.

In chapter 2, we talked extensively about types. Now we’re concerned with
objects—that is, instances of types. A type is the pattern or template that describes an
object, and an object is an instance of that pattern. In statically typed languages such
as C#, once an object is instantiated, its interfaces can’t be changed. With dynamic
languages such as PowerShell (or Ruby or Python), this isn’t true. Dynamic lan-
guages allow you to alter the set of members available at runtime.

NOTE As of C# 4.0, the language is no longer strictly statically typed.
C# 4.0 introduced a new “dynamic” keyword, allowing you to write
programs that have dynamic types.

In the rest of this section, we’ll explore manipulating objects and types in PowerShell.
We’ll start with a discussion of how to examine existing members, followed by a look
at the types of members available on an object. Then we’ll cover the various ways to
add members to an object, and finally we’ll look at the plumbing of the PowerShell
type system to give you a sense of the flexibility of the overall system and how it facil-
itates your goal of writing programs to manipulate programs.

11.2.1 Looking at members

An object’s interface is defined by the set of public members it exposes. Public mem-
bers are the public fields, properties, and methods of the class. As always, the easiest
way to look at those members is with the Get-Member cmdlet. For example, here are
the members defined on an integer:

PS (1) > 12 | Get-Member

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
CompareTo Method System.Int32 CompareTo(Int32 value), S...
Equals Method System.Boolean Equals(Object obj), Sys...
400 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method System.String ToString(), System.Strin...

Note that this doesn’t show you all the members on an [int]. It only shows you the
instance members. You can also use Get-Member to look at the static members:

PS (2) > 12 | Get-Member -Static

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
Equals Method static System.Boolean Equals(Objec...
Parse Method static System.Int32 Parse(String s...
ReferenceEquals Method static System.Boolean ReferenceEqu...
TryParse Method static System.Boolean TryParse(Str...
MaxValue Property static System.Int32 MaxValue {get;}
MinValue Property static System.Int32 MinValue {get;}

You’ll use this mechanism to look at the members you’ll be adding to objects in the
next couple of sections.

Defining synthetic members

One of the most powerful features in the PowerShell environment is the ability to
extend existing object types and instances. This allows PowerShell to perform adapta-
tion across a wide variety of types of data. By adaptation, we mean overlaying a com-
mon set of interfaces onto existing data sources. This may be as simple as unifying the
name of the property that counts a collection to be the string “count” across all
countable objects or as complex as taking a string containing some XML data and
being able to treat that string as an object with a set of properties and attributes.

This isn’t the same as subclassing or creating derived types as you would in tradi-
tional object-oriented programming languages. In those languages, if you want to
extend a new type, you can do so only by creating an entirely new type. In dynamic
languages such as PowerShell, you can add members to existing types and objects.
This sounds odd from the point of view of a conventional object-oriented language,
because types and member definitions are so tightly tied together. In languages such
as PowerShell, it’s possible to have objects that don’t have any type at all.

NOTE If you’re a JavaScript user, this won’t be surprising. The
object-oriented mechanisms in JavaScript use a mechanism called pro-
totypes. Prototype-based systems don’t have types as discrete objects.
Instead, you use an object that has the set of members you want to use
and use it as the prototype for your new object. Although PowerShell
isn’t strictly a prototype-based language, its type extension mechanisms
can be used in much the same way.
BUILDING AND MANIPULATING OBJECTS 401

Because the members you’ll be adding to objects aren’t natively part of the object’s
definition, they’re called synthetic members. Synthetic members are used extensively
throughout PowerShell for adaptation and extension. Let’s look at an example. First,
we’ll examine the synthetic properties on an object returned by dir from the file
system:

PS (6) > dir $profile | Get-Member ps*

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
PSChildName NoteProperty System.String PSChildName=Microsof...
PSDrive NoteProperty System.Management.Automation.PSDri...
PSIsContainer NoteProperty System.Boolean PSIsContainer=False
PSParentPath NoteProperty System.String PSParentPath=Microso...
PSPath NoteProperty System.String PSPath=Microsoft.Pow...
PSProvider NoteProperty System.Management.Automation.Provi...

Now let’s get the same information from the Registry:

PS (8) > dir hklm:\software | Get-Member ps*

 TypeName: Microsoft.Win32.RegistryKey

Name MemberType Definition
---- ---------- ----------
PSChildName NoteProperty System.String PSChildName=Adobe
PSDrive NoteProperty System.Management.Automation.PSDri...
PSIsContainer NoteProperty System.Boolean PSIsContainer=True
PSParentPath NoteProperty System.String PSParentPath=Microso...
PSPath NoteProperty System.String PSPath=Microsoft.Pow...
PSProvider NoteProperty System.Management.Automation.Provi...

You can see the same set of PS* properties with the PowerShell (PS) prefix on the
object, even though they’re completely different types. Take a look at these properties.
They allow you to work with these two different objects in the same way. This means
that you can always tell if an object might have children by looking at the PSIs-
Container property, regardless of the type of the underlying object. And you can
always get the path to the object through the PSPath property. We call this type of
adaptation object normalization. By adding this set of synthetic properties to all
objects returned from the provider infrastructure, you make it possible to write
scripts that are independent of the type of object that the provider surfaces. This
makes the scripts both simpler and more reusable. In the next section we’ll start look-
ing at ways to create synthetic members.

11.2.2 Using Add-Member to extend objects

The Add-Member cmdlet is the easiest way to add a new member to an object
instance, either a static .NET object type or a custom synthetic object. It can be used
402 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

to add any type of member supported by the PowerShell type system. The list of
possible member types that can be added with Add-Member is shown in table 11.1.

You’ll work through some examples showing how to use these members. You’ll
use an instance of the string “Hi there” to do this. For convenience, store it in a vari-
able $s as shown:

PS (1) > $s = "Hi there"

Now let’s go over how you add these member types to an object instance.

Table 11.1 Member types that can be added with Add-Member

Member type Version Description

AliasProperty v1, v2 An alias property provides an alternate name for an exist-
ing property. For example, if there is an existing Length
property, then you might alias this to Count.

CodeProperty v1, v2 A property that maps to a static method on a .NET class.

Property v1, v2 A native property on the object. In other words, a prop-
erty that exists on the underlying object that is surfaced
directly to the user. For example, there might be a native
property Length that you choose to also make available
through an extended alias member.

NoteProperty v1, v2 A data-only member on the object (equivalent to a .NET
field).

ScriptProperty v1, v2 A property whose value is determined by a piece of Pow-
erShell script.

Properties v1, v2 The collection of properties exposed by this object.

PropertySet v1, v2 A named group of properties.

Method v1, v2 A native method on the underlying object. For example,
the SubString() method on the class
System.String shows up as a method.

CodeMethod v1, v2 A method that is mapped to a static method on a .NET
class.

ScriptMethod v1, v2 A method implemented in PowerShell script.

ParameterizedProperty v1, v2 A property that takes both arguments and a value to
assign. This is typically used for things like indexers and
might look like
$collection.item(2.3) = "hello"
This sets the element at 2,3 in the collection to the value
"hello".

PSVariableProperty v2 A property that is backed by a variable. This type of mem-
ber was introduced in version 2 along with modules. It
has an advantage over note properties because it can be
type-constrained.
BUILDING AND MANIPULATING OBJECTS 403

Adding AliasProperty members

The first type of synthetic member you’ll add is called an alias property. This prop-
erty, whose name is (surprise) AliasProperty, allows you to provide a new name for
an existing property. Let’s work with the Length property on a string:

PS (2) > $s.Length
8

As you can see, this string has a length of 8. Let’s say that you want to add an alias
size for Length because you’ll be working with a set of objects that all have a size
property:

PS (3) > $s = Add-Member -PassThru -in $s AliasProperty size length

There are a couple things to note in this example. First (and most important) is that
when you first add a synthetic member to an object, you’re creating a new object (but
not a new type). This new object wraps the original object in an instance of System
.Management.Automation.PSObject. Just as System.Object is the root of the
type system in .NET, PSObject is the root of the synthetic type system in Power-
Shell. For this reason, you assign the result of the Add-Member call back to the origi-
nal variable. To do this, you have to add the -PassThru parameter to the command
since, by default, the Add-Member cmdlet doesn’t emit anything.

Let’s look at the new member you’ve added using gm (the alias for Get-Member):

PS (4) > $s | gm size

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
size AliasProperty size = length

Again, there are a couple of things to note. You can see that the size member is there
and is an alias property that maps size to Length. Also, you need to note that the
object’s type is still System.String. The fact that it’s wrapped in a PSObject is
pretty much invisible from the script user’s view, though you can test for it as shown
in the next example. Using the -is operator, you can test to see whether or not the
object you’re dealing with is wrapped in a PSObject:

PS (5) > $s -is [PSObject]
True
PS (6) > "abc" -is [PSObject]
False
PS (7) > $s -is [string]
True

The result of the first command in the example shows that $s does contain a
PSObject. The second command shows that the raw string doesn’t, and the last line
shows that the object in $s is still considered a string, even though it’s also a
PSObject.
404 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

The question now is, after all that explanation, did you actually create this aliased
member? The answer is, yes:

PS (8) > $s.size
8
PS (9) > $s.Length
8

Both the size and length members return the value 8.

Adding NoteProperty members

Now let’s add a note property. A note property is a way of attaching a new piece of
data (a note) to an existing object, rather like putting a sticky note on your monitor.
Again you’ll use the same string in $s. Let’s add a note property called Description.
In this example, because you know that $s is already wrapped in a PSObject, you
don’t need to use -PassThru and do the assignment—you simply add the property
to the existing object:

PS (10) > Add-Member -in $s NoteProperty description "A string"
PS (11) > $s.Description
A string

You’ve added a Description property to the object with the value “A string”. And,
to prove that this property isn’t present on all strings:

PS (12) > "Hi there".Description
PS (13) >

You see that the property returned nothing.
Of course, the note property is a settable property, so you can change it with an

assignment like any other settable property:

PS (14) > $s.Description = "A greeting"
PS (15) > $s.Description
A greeting

In this example, you changed the value in the note property to “A greeting”. Note
properties allow you to attach arbitrary data to an object. They aren’t type con-
strained, so they can hold any type.

NOTE Sooner or later, if you’re working through all the examples in this
chapter, something will fail because one example collides with another.
If that happens, start a new PowerShell session and keep going. If you’re
using the ISE, you can switch to a new tab by pressing Ctrl-T. This will
allow you to flip back and forth between sessions to compare things.

Next, set the Description property to a [datetime] object:

PS (16) > $s.Description = Get-Date
PS (17) > $s.Description

Sunday, May 28, 2006 4:24:50 PM
BUILDING AND MANIPULATING OBJECTS 405

But the value stored in the object is still a [datetime] object, not a string. As such,
you can get the DayOfWeek property out of the description property:

PS (18) > $s.Description.dayofweek
Sunday
PS (19) > $s.Description.GetType().FullName
System.DateTime

Adding ScriptMethod members

Both of the synthetic members you’ve added so far have been pure data properties; no
code was involved. Now we’ll look at adding members that execute code. We’ll start
with ScriptMethods, because they’re easiest. You’ll add a method that returns the
string that it’s associated with, reversed. First, let’s find an easy way to reverse a string.
If you examine [string], you’ll see that there is (unfortunately) no reverse method on
the string class. There is, though, a static reverse method on [array] that you can use:

PS (1) > [array] | Get-Member -Static reverse

 TypeName: System.Array

Name MemberType Definition
---- ---------- ----------
Reverse Method static System.Void Reverse(Array array), s...

This method takes an array and, because it’s void, it must (obviously) reverse the array
in place. This tells us two things: we need to turn the string into an array (of charac-
ters) and then save it in a variable so it can be reversed in place. Converting the string
to an array of characters is simple—you can use a cast:

PS (19) > $s
Hi there
PS (20) > $a = [char[]] $s

Casting a string into the type [char[]] (array of characters) produces a new object
that’s the array of individual characters in the original string. Just to verify this:

PS (21) > $a.GetType().FullName
System.Char[]
PS (22) > "$a"
H i t h e r e

You see that the type of the new object is [char[]] and it does contain the expected
characters. Now reverse it using the [array]::reverse() static method:

PS (23) > [array]::reverse($a)
PS (24) > "$a"
e r e h t i H

When you look at the contents of the array, you see that the array has been reversed.
But it’s still an array of characters. The final step is to turn this back into a string. To
do this, you’ll use the unary -join operator:

PS (25) > $ns = -join $a
PS (26) > $ns
406 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

ereht iH
PS (27) > $ns.GetType().FullName
System.String

At this point you have the reversed string in $ns. But the goal of this effort was to
attach this as a method to the string object itself. To do so, you need to construct a
scriptblock to use as the body of the ScriptMethod. This definition looks like

PS (28) > $sb = {
>> $a = [char[]] $this
>> [array]::reverse($a)
>> -join $a
>> }
>>

This example introduces a new “magic” variable, which is defined only for script-
blocks that are used as methods or properties: the $this variable. $this holds the
reference to the object that the ScriptMethod member was called from. Now let’s
bind this scriptblock to the object as a ScriptMethod using Add-Member:

PS (29) > Add-Member -in $s ScriptMethod Reverse $sb

Try it out:

PS (30) > $s.reverse()
ereht iH

You get the reversed string as desired.

Adding ScriptProperty members

The next type of member we’ll look at is the ScriptProperty. A ScriptProperty
has up to two methods associated with it—a getter and (optionally) a setter, just like
a .NET property. These methods are expressed using two scriptblocks. As was the case
with the ScriptMethod, the referenced object is available in the $this member. And,
in the case of the setter, the value being assigned is available in $args[0]. Here’s an
example. You’re going to add a ScriptProperty member, desc, to $s that will pro-
vide an alternate way to get at the description NoteProperty you added earlier, with
one difference: you’re only going to allow values to be assigned that are already strings.
An attempt to assign something that isn’t a string will result in an error.

Here’s the definition of this property:

PS (31) > Add-Member -in $s ScriptProperty Desc `
>> {$this.Description} `
>> {
>> $t = $args[0]
>> if ($t -isnot [string]) {
>> throw "this property only takes strings"
>> }
>> $this.Description = $t
>> }
>>
BUILDING AND MANIPULATING OBJECTS 407

The first scriptblock

{$this.Description}

is the code that will be executed when getting the property’s value. All it does is return
the value stored in the description NoteProperty. Because the setter needs to do
some additional work, its scriptblock is more complex:

{
 $t = $args[0]
 if ($t -isnot [string])
 {
 throw "this property only takes strings"
 }
 $this.Description = $t
}

First, it saves the value to be assigned into a local variable, $t. Next, it checks whether
this variable is of the correct type. If not, it throws an exception, failing the assignment.

Let’s try out this property. First, directly set the note property to the string “Old
description”:

PS (32) > $s.Description = "Old description"

Now use the ScriptProperty getter to retrieve this value:

PS (33) > $s.Desc
Old description

You see that it’s changed as expected. Next use the ScriptProperty to change the
description:

PS (34) > $s.desc = "New description"

Verify the change by checking both the NoteProperty and the ScriptProperty:

PS (35) > $s.Description
New description
PS (36) > $s.desc
New description
PS (37) >

Yes, it’s been changed. Now try assigning a [datetime] object to the property as you
did with the description NoteProperty previously:

PS (37) > $s.desc = Get-Date
Exception setting "desc": "this property only takes strings"
At line:1 char:4
+ $s.d <<<< esc = Get-Date

The assignment failed. Using ScriptProperty members is a way to do validation
and transformation in properties on objects.

NOTE The idea of adding properties to synthetic objects may seem
like an academic exercise, but it turns out to be useful. In particular,
408 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

it’s incredibly useful when you need to adapt existing utilities so that
they work effectively in the PowerShell environment. For example,
section 11.7 shows how to adapt the output of the task scheduler util-
ity schtasks.exe so that it can work effectively in the PowerShell
environment. Another useful scenario for this technique is joining
two collections of data properties into a single object, as illustrated in
appendix B.

11.2.3 Adding note properties with New-Object

The most common case for adding members is when creating a synthetic object with
a set of note properties. This is equivalent to creating records in other languages. In
many cases, hashtables are sufficient for record-like scenarios, creating objects has
some advantages—the formatting system treats objects in a more sophisticated way,
and assigning to a member that doesn’t exist is treated as an error, whereas assigning
to a member that doesn’t exist in a hashtable simply creates a new member. This is a
common enough scenario that there’s special support for this in PowerShell v2 with a
new parameter on the New-Object cmdlet: -Property. This parameter takes a
hashtable and sets each member on the object being created that corresponds to
member in the hashtable. If the member doesn’t exist, then a note property is added.
If the object being created is a PSObject, then you end up with a pure synthetic
object. Here’s an example of how this works:

PS (1) > $obj = New-Object PSObject -Property @{a=1; b=2; c=3}

In this example, you created a new object with three properties: a, b, and c:

PS (2) > $obj | Format-Table -auto
a b c
- - -
1 2 3

Using Get-Member you can see that they are all of type NoteProperty:

PS (3) > $obj | Get-Member

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
a NoteProperty System.Int32 a=1
b NoteProperty System.Int32 b=2
c NoteProperty System.Int32 c=3

Also notice that the type of the object returned is System.Management.Automation
.PSCustomObject, which isn’t a type you’ve seen before. This type of object is used as
BUILDING AND MANIPULATING OBJECTS 409

the base for all pure synthetic objects. Because the properties you added are note prop-
erties, you can change their values:

PS (4) > $obj.a = 5
PS (5) > $obj | Format-Table -auto
a b c
- - -
5 2 3

But if you try to assign to a nonexistent property

PS (6) > $obj.d = 10
Property 'd' cannot be found on this object; make sure it exists
 and is settable.
At line:1 char:6
+ $obj. <<<< d = 10
 + CategoryInfo : InvalidOperation: (:) [], Runtime
 Exception
 + FullyQualifiedErrorId : PropertyAssignmentException

you get an error. This can help catch runtime bugs in your code and is one reason to
favor synthetic objects over hashtables.

All New-Object -Property is doing is creating and attaching note properties in
the cmdlet instead of requiring the user do it one at a time. There’s another way to do
this that’s available in both v1 and v2 of PowerShell: the Select-Object cmdlet.
Let’s look at how this cmdlet lets you build custom objects.

11.3 USING THE SELECT-OBJECT CMDLET

Now that you know how to attach members using Add-Member and New-Object,
let’s explore some other ways to build synthetic objects. The Select-Object cmdlet,
which is used to select a subset of properties on an object, creates a synthetic object to
hold these properties.

The Select-Object cmdlet is also a way to select elements from a stream of
objects. You can select a range of objects:

PS (1) > 1..10 | Select-Object -First 3
1
2
3

Here you’ve selected the first three elements. But, much more interesting for this dis-
cussion, it’s a way to select fields from an object:

PS (1) > dir | Select-Object name,length

Name Length
---- ------
a.txt 98
b.txt 42
c.txt 102
d.txt 66
410 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

At first this looks a lot like Format-Table. Let’s use Get-Member to see how different
it is:

PS (2) > dir | Select-Object name,length | Get-Member

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
Length NoteProperty System.Int64 Length=98
Name NoteProperty System.String Name=a.txt

As was the case with the objects returned from New-Object -Property, the type of
the object is System.Management.Automation.PSCustomObject. As mentioned in
the previous section, this is a PowerShell-specific type that’s used as the base for pure
synthetic objects. An object whose base is PSCustomObject has only synthetic mem-
bers and is therefore called a synthetic object.

Even though it’s a synthetic object, it’s still a “first-class” citizen in the PowerShell
environment. You can sort these objects

PS (3) > dir | Select-Object Name,Length | sort Length

Name Length
---- ------
b.txt 42
d.txt 66
a.txt 98
c.txt 102

or do anything else that you can do with a regular object.
But there’s more to using Select-Object than simply selecting from the existing

set of members. For example, say you want to add a new field “minute” to these
objects. This will be a calculated field as follows:

PS (9) > dir | foreach {$_.LastWriteTime.Minute}
5
51
56
54

In other words, it will be the minute at which the file was last written. You attach this
field by passing a specially constructed hashtable describing the member to Select-
Object. This hashtable has to have two members: name and expression (which can
be shortened to “n” and “e” for brevity). The name is the name to call the property,
and the expression is the scriptblock used to calculate the value of the field. The defi-
nition will look like this:

@{Name="minute";Expression={$_.LastWriteTime.Minute}}
USING THE SELECT-OBJECT CMDLET 411

Let’s use it in the pipeline:

PS (11) > dir | Select-Object Name,Length,
>> @{Name="Minute";Expression={$_.LastWriteTime.Minute}}
>>

Name Length minute
---- ------ ------
a.txt 98 55
b.txt 42 51
c.txt 102 56
d.txt 66 54

As intended, the result has three fields, including the synthetic minute property you
specified with the hashtable. Use Get-Member to see what the object looks like:

PS (12) > dir | Select-Object name,length,
>> @{n="minute";e={$_.lastwritetime.minute}} | Get-Member
>>

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
Length NoteProperty System.Int64 Length=98
minute NoteProperty System.Management.Automation.PSObjec...
Name NoteProperty System.String Name=a.txt

You see that there are now three NoteProperty members on the objects that were
output.

For the last few sections, we’ve been focusing on individual functions (script-
blocks) and object members. Let’s switch gears a bit and look at how modules fit into
all of this. In chapters 9 and 10, we talked only about modules that that were loaded
from disk, but there’s also a way to create modules dynamically.

11.4 DYNAMIC MODULES

Dynamic modules are modules created in memory at runtime rather than being
loaded from disk. Dynamic modules relate to regular modules in much the same way
as functions are related to scripts. In this section, we’ll cover how to use dynamic
modules to encapsulate local state in scripts, how they’re used to implement a
dynamic equivalent of the closure feature found in other languages, and finally, how
they can be used to simplify the way you create custom objects.

11.4.1 Dynamic script modules

Just as there were two types of on-disk modules—script modules and binary modules
(we can ignore manifest modules for this discussion)—there are also two types of
412 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

dynamic modules. The first type is the dynamic script module. Let’s create one and
see what’s involved.

To create a dynamic module, use the New-Module cmdlet. This cmdlet takes a
scriptblock as an argument. This scriptblock is executed to define the modules con-
tents. Here’s what it looks like:

PS (1) > $dm = New-Module {
>> $c=0
>> function Get-NextCount
>> { $script:c++; $script:c }}
>>

Other than how they’re created, the content of the module looks pretty much like the
on-disk modules you created in chapter 9. This is by design and means that all of the
concepts you learned for on-disk modules also apply to dynamic modules. As we dis-
cussed in the previous chapter, if there’s no call to Export-ModuleMember, all of the
functions defined in the module are exported and the other types of module members
aren’t. Verify this by calling the function you defined

PS (2) > Get-NextCount
1
PS (3) > Get-NextCount
2

which works properly. And, because it wasn’t exported, there’s no variable $c:

PS (4) > $c

(Or at least not one related to this dynamic module.) Now try to use Get-Module to
look at the module information

PS (5) > Get-Module

and you don’t see anything. So what happened? Well, dynamic modules are objects
like everything else in PowerShell. The New-Module cmdlet has created a new mod-
ule object but hasn’t added it to the module table. This is why you assigned the out-
put of the cmdlet to a variable—so you’d have a reference to the module object. Let’s
look at that object:

PS (6) > $dm | fl

Name : __DynamicModule_55b674b0-9c3c-4db0-94a3-a095
 a4ac984e
Path : 55b674b0-9c3c-4db0-94a3-a095a4ac984e
Description :
ModuleType : Script
Version : 0.0
NestedModules : {}
ExportedFunctions : Get-NextCount
ExportedCmdlets : {}
ExportedVariables : {}
ExportedAliases : {}
DYNAMIC MODULES 413

The interesting fields are the name and path fields. Because no file is associated with
the module, you had to make up a unique “path” for that object. Likewise, you didn’t
specify a name, so the runtime made one up for you. So why did it do these things? It
did this because, although a dynamic module isn’t registered by default, it can be
added to the module table by piping it to Import-Module. Let’s give it a try:

PS (6) > $dm | Import-Module

Now check the module table:

PS (7) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script __DynamicModule_b6dea7... Get-NextCount

There it is, ugly name and all. Now you can give a dynamic module a specific name
using the -Name parameter on the New-Module cmdlet. First, clean up from the last
example

PS (1) > Get-Module | Remove-Module

and define a new dynamic module, with the same body as last time:

PS (2) > New-Module -Name Dynamic1 {
>> $c=0
>> function Get-NextCount
>> { $script:c++; $script:c }} |
>> Import-Module
>>

Rather than saving the result to a variable, you’re piping it directly to Import-
Module. Now look at the result:

PS (3) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Script Dynamic1 Get-NextCount

This time the module is registered in the table with a much more reasonable name.
So when would you use dynamic modules? When you need to create a function or

functions that have persistent resources that you don’t want to expose at the global
level. This is basically the same scenario as the on-disk case, but this way you can
package the module or modules to load into a single script file.

There’s also another way the dynamic module feature is used: to implement the
idea of closures in PowerShell. Let’s move on and see how that works.

11.4.2 Closures in PowerShell

PowerShell uses dynamic modules to create dynamic closures. A closure in computer
science terms (at least as defined in Wikipedia) is “a function that is evaluated in an
environment containing one or more bound variables.” A bound variable is, for our
414 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

purposes, a variable that exists and has a value. The environment in our case is the
dynamic module. Finally, the function is just a scriptblock. In effect, a closure is the
inverse of an object, as discussed in chapter 1. An object is data with methods (func-
tions) attached to that data. A closure is a function with data attached to that method.

The best way to understand what all this means is to look at an example. You’ll use
closures to create a set of counter functions, similar to what you did in chapter 9. The
advantage closures give you over plain functions is that you can change what incre-
ment to use after the counter function has been defined. Here’s the basic function:

function New-Counter ($increment=1)
{
 $count=0;
 {
 $script:count += $increment
 $count
 }.GetNewClosure()
}

There’s nothing you haven’t seen so far—you create a variable and then a scriptblock
that increments that variable—except for returning the result of the call to the Get-
NewClosure() method. Let’s try this function to see what it does. First, create a counter:

PS (1) > $c1 = New-Counter
PS (2) > $c1.GetType().FullName
System.Management.Automation.ScriptBlock

Looking at the type of the object returned, you see that it’s a scriptblock, so you use
the & operator to invoke it:

PS (3) > & $c1
1
PS (4) > & $c1
2

The scriptblock works as you’d expect a counter to work. Each invocation returns the
next number in the sequence. Now, create a second counter, but this time set the
increment to 2:

PS (5) > $c2 = New-Counter 2

Invoke the second counter scriptblock:

PS (6) > & $c2
2
PS (7) > & $c2
4
PS (8) > & $c2
6

It counts up by 2. But what about the first counter?

PS (9) > & $c1
3

DYNAMIC MODULES 415

PS (10) > & $c1
4

The first counter continues to increment by 1, unaffected by the second counter. So the
key thing to notice is that each counter instance has its own copies of the $count and
$increment variables. When a new closure is created, a new dynamic module is cre-
ated, and then all the variables in the caller’s scope are copied into this new module.

Here are some more examples of working with closures to give you an idea of how
flexible the mechanism is. First, you’ll create a new closure using a param block to set
the bound variable $x. This is essentially the same as the previous example, except
that you’re using a scriptblock to establish the environment for the closure instead of
a named function:

PS (11) > $c = & {param ($x) {$x+$x}.GetNewClosure()} 3.1415

Now evaluate the newly created closed scriptblock:

PS (12) > & $c
6.283

This evaluation returns the value of the parameter added to itself. Because closures are
implemented using dynamic modules, you can use the same mechanisms you saw in
chapter 9 for manipulating a modules state to manipulate the state of a closure. You
can do this by accessing the module object attached to the scriptblock. You’ll use this
object to reset the module variable $x by evaluating sv (Set-Variable) in the clo-
sure’s module context:

PS (13) > & $c.Module Set-Variable x "Abc"

Now evaluate the scriptblock to verify that it’s been changed:

PS (14) > & $c
AbcAbc

Next, create another scriptblock closed over the same module as the first one. You can
do this by using the NewBoundScriptBlock() method on the module to create a
new scriptblock attached to the module associated with the original scriptblock:

PS (15) > $c2 = $c.Module.NewBoundScriptBlock({"x ia $x"})

Execute the new scriptblock to verify that it’s using the same $x:

PS (16) > & $c2
x ia Abc

Now use $c2.module to update the shared variable:

PS (17) > & $c2.module sv x 123
PS (18) > & $c2
x ia 123

And verify that it’s also changed for the original closed scriptblock:

PS (19) > & $c
246
416 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

Finally, create a named function from the scriptblock using the function provider

PS (20) > $function:myfunc = $c

and verify that calling the function by name works:

PS (21) > myfunc
246

Set the closed variable yet again, but use $c2 to access the module this time:

PS (22) > & $c2.Module sv x 3

And verify that it’s changed when you call the named function:

PS (23) > myfunc
6

These examples should give you an idea how all of these pieces—scriptblocks, mod-
ules, closures, and functions—are related. This is how modules work. When a mod-
ule is loaded, the exported functions are closures bound to the module object that
was created. These closures are assigned to the names for the functions to import. A
fairly small set of types and concepts allows you to achieve advanced programming
scenarios. In the next section, we’ll go back to looking at objects and see how
dynamic modules make it easier to create custom object instances.

11.4.3 Creating custom objects from modules

There’s one more thing you can do with dynamic modules: provide a simpler way to
build custom objects. This is a logical step because modules have private data and
public members just like objects. As modules, they’re intended to address a different
type of problem than objects, but given the similarity between objects and modules,
it would make sense to be able to construct an object from a dynamic module. This is
done using the -AsCustomObject parameter on New-Module. You’ll use this mecha-
nism to create a “point” object from a module. Here’s what this looks like:

PS (1) > function New-Point
>> {
>> New-Module -ArgumentList $args -AsCustomObject {
>> param (
>> [int] $x = 0,
>> [int] $y = 0
>>)
>> function ToString()
>> {
>> "($x, $y)"
>> }
>> Export-ModuleMember -Function ToString -Variable x,y
>> }
>> }
>>
DYNAMIC MODULES 417

Now let’s try it. Begin by defining two points, $p1 and $p2:

PS (2) > $p1 = New-Point 1 1
PS (3) > $p2 = New-Point 2 3

You’ll use string expansion to display these objects, which will call the ToString()
method you exported from the module:

PS (4) > "p1 is $p1"
p1 is (1, 1)
PS (5) > "p2 is $p2"
p2 is (2, 3)

Now try to assign a string to the X member on one of the points:

PS (6) > $p1.X = "Hi"
Cannot convert value "Hi" to type "System.Int32". Error: "Input
string was not in a correct format."
At line:1 char:5
+ $p1. <<<< X = "Hi"
 + CategoryInfo : InvalidOperation: (:) [], Runtime
 Exception
 + FullyQualifiedErrorId : PropertyAssignmentException

PS (7) >

This results in an error because the exported variable is a special type of note property
that is backed by the variable. Because it’s backed by the variable, any constraints on
the variable also apply to the note property, allowing you to create strongly typed
members on a synthetic object.

So far we’ve covered scriptblocks, modules, and closures in PowerShell. Although
these features are somewhat exotic, they’re found in most modern (or modernized)
languages, including Java, JavaScript, Visual Basic, C#, Python, and so on. In the
next section, we’re going to cover a related feature that’s unique to PowerShell: step-
pable pipelines. Normally once a pipeline starts, it runs to completion. With a steppa-
ble pipeline, you can cause the pipeline to process one object at a time (with some
limitations.) This is a concrete form of metaprogramming, where one script has pre-
cise control over the sequence of operations in another.

11.5 STEPPABLE PIPELINES

Steppable pipelines existed in PowerShell v1 but were not exposed to the end user. In
v2 this feature was made available to the end user. The core use of this feature is to allow
one command to wrap, or proxy, other commands. In this section, we’ll begin with a
look at how the feature works and then explore a useful example showing its value.

11.5.1 How steppable pipelines work

The central concept in PowerShell programs is the pipeline, which processes a
sequence of objects, one at a time. In chapter 2, we illustrated this with a diagram of
the pipeline processor. Let’s take another look (see figure 11.3).
418 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

Each object is processed completely (ignoring things like sorting) before processing
begins on the next one, but the pipeline itself has to process all objects in one go.
There are times when it’s useful to be able to start a pipeline and then feed it objects
as needed. This is what a steppable pipeline lets you do. You can create a pipeline, start
it (so all the begin clauses are executed), and then pass objects to it for processing one
at a time. Let’s see how to do this.

To get a steppable pipeline object, you need to have some object representation of
a pipeline. The obvious way to do this is with a scriptblock object, and that’s exactly
how it works. First, create a scriptblock with exactly one pipeline in it:

PS (1) > $sb = { Select-Object name, length }

The “one pipeline” part is important—a steppable pipeline maps to a single pipeline,
so the scriptblock used to create it must have only a single pipeline. Now get a steppa-
ble pipeline object:

PS (2) > $sp = $sb.GetSteppablePipeline()

Let’s look at the type of object you got back and see what its members are:

PS (3) > $sp | Get-Member

 TypeName: System.Management.Automation.SteppablePipeline

Name MemberType Definition
---- ---------- ----------
Begin Method System.Void Begin(bool expectInpu...
Dispose Method System.Void Dispose()
End Method array End()
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
Process Method array Process(System.Object input...
ToString Method string ToString()

Figure 11.3 Objects

flow through a pipeline

one at a time. A common

parser constructs each of

the command objects

and then starts the pipe-

line processor, stepping

each object through all

stages of the pipeline.
STEPPABLE PIPELINES 419

In this list of members, you can see that there are methods that correspond to the
clauses in a function: Begin(), Process(), and End(). These do what you’d expect:
Begin() runs all the begin clauses in all of the commands in the pipeline, Pro-
cess() runs all the process clauses, and End() runs all the end clauses. Let’s try
running this pipeline. When you call Begin() you have to pass a Boolean value tell-
ing the runtime whether to expect input. If there’s no input, the pipeline will run to
completion in a single step. You do want to pass input objects to the pipeline, so call
Begin() with $true:

PS (4) > $sp.Begin($true)

You need to get some data objects to pass through the pipeline—you’ll get a list of
DLLs in the PowerShell install directory:

PS (5) > $dlls = dir $pshome -Filter *.dll

Now loop through this list, passing each element to the steppable pipeline:

PS (6) > foreach ($dll in $dlls) { $sp.Process($dll) }

Name Length
---- ------
CompiledComposition.Micros... 126976
PSEvents.dll 20480
pspluginwkr.dll 173056
pwrshmsg.dll 2048
pwrshsip.dll 28672

And you see that each element is processed through the pipeline. Finally, call the
End()and Dispose() methods to clean up the pipeline:

PS (7) > $sp.End()

PS (8) > $sp.Dispose()
PS (9) >

What happens if you don’t call them? If you don’t call End(), you may not get all of the
output from the pipeline. For example, if you’re stepping a pipeline containing the
sort cmdlet, it doesn’t return its output until the end clause. And if you don’t call Dis-
pose(), then any resources held by cmdlets in the pipeline may not be cleaned up in
a timely manner (for example, files may not be closed or other resources not released).

Now that you have an idea of how steppable pipelines work, let’s look at how you
can use them.

11.5.2 Creating a proxy command with steppable pipelines

In chapter 2, we discussed how the result of all of the things we type at the command
line are streamed through Out-Default to display them on the screen. Out-Default
uses steppable pipelines to run the formatter cmdlets to do its rendering and then calls
Out-Host to display the formatted output. Let’s see how you can add a frequently
requested feature to the interactive experience using a proxy for Out-Default.
420 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

A commonly requested feature for interactive use is to capture the result of the last
output object so it can be made available to the next pipeline. First, you enter a com-
mand that displays a result:

PS (1) > 2+2
4

You want to use that result in the next command you type, so it should be available in
a variable called $last. This would let you do subsequent calculations like this:

PS (2) > $last+3
7
PS (3) > $last*7
49

This would be a nice feature, but it didn’t make it into the product. Fortunately, with
steppable pipelines and proxy functions, you can add this feature yourself. The trick
is to wrap the Out-Default cmdlet in a proxy function. As mentioned in section
11.1.3, because functions are resolved before cmdlets, when the PowerShell host calls
Out-Default to display output, it will call your function first. Now you could sim-
ply collect all of the output from the command the user typed and display it all at
once, but that doesn’t provide a good experience. Instead you’ll create a steppable
pipeline that runs the Out-Default cmdlet inside the Out-Default function. Every
time the function receives an object, this object will be passed to the steppable pipe-
line to be rendered immediately. In the process of passing this object along, you can
also assign it to the global $LAST variable. The function to do all of this is shown in
the following listing.

function Out-Default
{
 [CmdletBinding(ConfirmImpact="Medium")]
 param(
 [Parameter(ValueFromPipeline=$true)] `
 [System.Management.Automation.PSObject] $InputObject
)

 begin
 {

 $wrappedCmdlet = $ExecutionContext.InvokeCommand.GetCmdlet(
 "Out-Default")
 $sb = { & $wrappedCmdlet @PSBoundParameters }
 $__sp = $sb.GetSteppablePipeline()
 $__sp.Begin($pscmdlet)

 }
 process
 {
 $do_process = $true
 if ($_ -is [System.Management.Automation.ErrorRecord])
 {

Listing 11.1 Wrapper for the Out-Default cmdlet

Create steppable
pipeline wrapping
Out-Default
STEPPABLE PIPELINES 421

 if ($_.Exception -is
 [System.Management.Automation.CommandNotFoundException])
 {
 $__command = $_.Exception.CommandName
 if (Test-Path -Path $__command -PathType container)
 {
 Set-Location $__command
 $do_process = $false
 }
 elseif ($__command -match
 '^http://|\.(com|org|net|edu)$')
 {
 if ($matches[0] -ne "http://")
 {
 $__command = "HTTP://" + $__command
 }
 [System.Diagnostics.Process]::Start($__command)
 $do_process = $false
 }
 }
 }
 if ($do_process)
 {
 $global:LAST = $_;
 $__sp.Process($_)
 }
 }
 end
 {
 $__sp.End()
 }
}

There are a couple of things to notice in this listing. First, when you start the steppa-
ble pipeline, rather than passing in a Boolean, you pass in the $PSCmdlet object (see
chapter 8) for the function. This allows the steppable pipeline to write directly into
the function’s output and error streams so the function doesn’t have to deal with any
output from the pipeline. The next thing to notice is that this function does a couple
of other useful things besides capturing the last output object. If the last command
typed resulted in a “command not found” exception, then you check to see if the
command was actually a path to a directory. If so, you set the current location to that
directory. This allows you to type

c:\mydir\mysubdir

instead of

cd c:\mydir\mysubdir

The other thing you check is to see if the command looks like a URL. If it does, then
try to open it in the browser. This lets you open a web page simply by typing the
URL. Both of these are minor conveniences, but along with the $LAST variable, they

Check for
command-not-

found exceptions

If directory, cd there;
if URL, open browser

Capture last
output object
422 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

make interactive use of PowerShell a more pleasant experience. This example should
give you a sense of the flexibility that steppable pipelines provide.

We began this chapter with scriptblocks, moved from there to synthetic objects,
then on to dynamic modules and closures, and finally to steppable pipelines. Now
we’re going to circle back to the type system and look at it in a bit more detail. We’ve
covered the “nice” ways to add members to objects and build synthetic objects, so
let’s dig into the actual plumbing of the PowerShell type system. In the next section,
we’ll look at what’s happening under the covers.

11.6 A CLOSER LOOK AT THE TYPE-SYSTEM PLUMBING

Earlier in this chapter, we said that the core of the PowerShell type system was the
PSObject type. This type is used to wrap other objects, providing adaptation and
inspection capabilities as well as a place to attach synthetic members. You’ve used
Get-Member to explore objects and the Add-Member, New-Object, and Select-
Object cmdlets to extend and create objects. In fact, you can do all of this directly by
using the PSObject class itself. There’s one thing you can’t do without understanding
PSObject: wrapping or shadowing an existing property. In this technique, the syn-
thetic property calls the base property that it’s hiding. (Don’t worry; this is less eso-
teric than it sounds. A simple example will clarify what we’re talking about here.)

NOTE If you’ve done much object-oriented programming, this con-
cept is similar to creating an override to a virtual method that calls the
overridden method on the base class. The difference here is that it’s all
instance based; no new type is involved.

Let’s look at PSObject in more detail. First, let’s examine the properties on this object:

PS (1) > [psobject].getproperties() | %{$_.name}
Members
Properties
Methods
ImmediateBaseObject
BaseObject
TypeNames

From the list, you see some obvious candidates of interest. But how do you get at
these members, given that the whole point of PSObject is to be invisible? The answer
is that there’s a special property attached to all objects in PowerShell called (surprise)
PSObject. Let’s look at this. First, you need a test object to work on. Use Get-Item
to retrieve the DirectoryInfo object for the C: drive:

PS (2) > $f = Get-Item c:\
PS (3) > $f

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 5/29/2006 3:11 PM C:\
A CLOSER LOOK AT THE TYPE-SYSTEM PLUMBING 423

Now let’s look at the PSObject member attached to this object:

PS (4) > $f.psobject

Members : {PSPath, PSParentPath, PSChildName, PSDriv
 e...}
Properties : {PSPath, PSParentPath, PSChildName, PSDriv
 e...}
Methods : {get_Name, get_Parent, CreateSubdirectory,
 Create...}
ImmediateBaseObject : C:\
BaseObject : C:\
TypeNames : {System.IO.DirectoryInfo, System.IO.FileSy
 stemInfo, System.MarshalByRefObject, Syste
 m.Object}

Right away you see a wealth of information: all the properties you saw on the PSOb-
ject type, populated with all kinds of interesting data. First, let’s look at the Type-
Names member:

PS (6) > $f.psobject.typenames
System.IO.DirectoryInfo
System.IO.FileSystemInfo
System.MarshalByRefObject
System.Object

This member contains the names of all the types in the inheritance hierarchy for a
DirectoryInfo object. (These types are all documented in the .NET class library
documentation that’s part of the Microsoft Developer Network [MSDN] collection.
See http://msdn.microsoft.com for more information.)

We’ll look at the Properties member next. This collection contains all the prop-
erties defined by this type. Let’s get information about all the properties that contain
the pattern “name”:

PS (7) > $f.psobject.properties | where {$_.name -match "name"}

MemberType : NoteProperty
IsSettable : True
IsGettable : True
Value : C:\
TypeNameOfValue : System.String
Name : PSChildName
IsInstance : True

MemberType : Property
Value : C:\
IsSettable : False
IsGettable : True
TypeNameOfValue : System.String
Name : Name
IsInstance : True

MemberType : Property
Value : C:\
424 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

IsSettable : False
IsGettable : True
TypeNameOfValue : System.String
Name : FullName
IsInstance : True

This returned information on three properties, one NoteProperty PSPath and two
base object properties, Name and FullName. You’ve seen these properties before; this
is the same information that would be returned from Get-Member. This is exactly
what Get-Member does—it uses the PSObject properties to get this information.

11.6.1 Adding a property

Now let’s add a new member to this object. You could use Add-Member (and typically
you would), but we’re talking about the plumbing here, so we’ll do it the hard way.
First, you need to create the NoteProperty object that you want to add. Do this
with the New-Object cmdlet:

PS (8) > $np = New-Object `
>> System.Management.Automation.PSNoteProperty `
>> hi,"Hello there"
>>

Next, add it to the member collection:

PS (9) > $f.PSObject.Members.add($np)

And you’re finished (so it wasn’t really that hard after all). The hi member has been
added to this object, so try it out:

PS (10) > $f.hi
Hello there

All of the normal members are still there:

PS (11) > $f.name
C:\

Now look at the member in the member collection:

PS (12) > $f.PSObject.Members | where {$_.name -match "^hi"}

MemberType : NoteProperty
IsSettable : True
IsGettable : True
Value : Hello there
TypeNameOfValue : System.String
Name : hi
IsInstance : True

Notice the Value member on the object. Because you can get at the member, you can
also set the member

PS (13) > ($f.PSObject.Members | where {
>> $_.name -match "^hi"}).value = "Goodbye!"
A CLOSER LOOK AT THE TYPE-SYSTEM PLUMBING 425

>>
PS (14) > $f.hi
Goodbye!

which is equivalent to setting the property directly on $f:

PS (15) > $f.hi = "Hello again!"
PS (16) > $f.PSObject.Members | where {$_.name -match "^hi"}

MemberType : NoteProperty
IsSettable : True
IsGettable : True
Value : Hello again!
TypeNameOfValue : System.String
Name : hi
IsInstance : True

The Value member on the note property is “Hello again!”
In section 11.4.3 you saw a different type of note property used when construct-

ing objects out of modules. This type of note property is backed by a variable. You
can also create an instance of this type of property. But first you need a variable to use
to back the property value:

PS (15) > [int] $VariableProperty = 0

Now create the PSVariableProperty object, passing in the variable to bind:

PS (16) > $vp = New-Object `
>> System.Management.Automation.PSVariableProperty `
>> (Get-Variable VariableProperty)
>>

Note that the name of the property and the name of the variable will be the same.
Add the property

PS (17) > $f.psobject.members.add($vp)

and verify that it can be read and written:

PS (18) > $f.VariableProperty
0
PS (19) > $f.VariableProperty = 7
PS (20) > $f.VariableProperty
7

So you can read and write integers, but the backing variable was constrained to be an
integer. Let’s verify that the constraint was preserved by trying to assign a string to it:

PS (21) > $f.VariableProperty = "Hi"
Cannot convert value "Hi" to type "System.Int32". Error: "Input
string was not in a correct format."
At line:1 char:4
+ $f. <<<< VariableProperty = "Hi"
 + CategoryInfo : InvalidOperation: (:) [], Runtime
 Exception
 + FullyQualifiedErrorId : PropertyAssignmentException
426 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

You get the error just like you saw in section 11.4.3 when you exported a constrained
variable from a module as a property.

11.6.2 Shadowing an existing property

There’s one last item to cover in our discussion of the plumbing: the mechanism that
allows you to bypass the adapted members and lets you get at the raw object under-
neath. This is accomplished through another special member on PSObject called
PSBase. This member allows you to get at the object directly, bypassing all the syn-
thetic member lookup. It also makes it possible to create a synthetic member to adapt
an existing member. We can clarify this with an example. Say you want to change the
name property on a DirectoryInfo object to always return the name in uppercase.
Here’s what it looks like unadapted:

PS (18) > $f = Get-Item c:\windows
PS (19) > $f.name
windows

To do this, create a new PSProperty object called Name that will “shadow” the exist-
ing property:

PS (20) > $n=New-Object Management.Automation.PSScriptProperty `
>> name,{$this.psbase.name.ToUpper()}
>>

In the body of the scriptblock for this PSProperty, you’ll use $this.psbase to get
at the name property on the base object (if you just accessed the name property
directly, you’d be calling yourself). You apply the ToUpper() method on the string
returned by name to acquire the desired result. Now add the member to the object’s
member collection

PS (21) > $f.psobject.members.add($n)

and try it out:

PS (22) > $f.name
WINDOWS

When you access the name property on this object, the synthetic member you created
gets called instead of the base member, so the name is returned in uppercase. The
base object’s name property is unchanged and can be retrieved through psbase.name:

PS (23) > $f.psbase.name
windows
PS (24) >

Although this isn’t a technique that you’ll typically use on a regular basis, it allows you
to do some pretty sophisticated work. You could use it to add validation logic, for
example, and prevent a property from being set to an undesired value. You could also
use it to log accesses to a property to gather information about how your script or
application is being used.
A CLOSER LOOK AT THE TYPE-SYSTEM PLUMBING 427

With a solid understanding of the plumbing, you’re ready to use everything
you’ve learned and do some applied metaprogramming. In the next section, you’ll
learn how to write a domain-specific extension to PowerShell.

11.7 EXTENDING THE POWERSHELL LANGUAGE

In the previous section, you learned how to add members to existing objects one at a
time, but sometimes you’ll want to construct new types rather than extend the exist-
ing types. In this section, we’ll explain how to do that and also how to use scripting
techniques to “add” the ability to create objects to the PowerShell language.

11.7.1 Little languages

The idea of little languages—small, domain-specific languages—has been around for a
long time. This was one of the powerful ideas that made the UNIX environment so
attractive. Many of the tools that were the roots for today’s dynamic languages came
from this environment.

In effect, all programs are essentially an exercise in building their own languages.
You create the nouns (objects) and verbs (methods or functions) in this language.
These patterns are true for all languages that support data abstraction. Dynamic lan-
guages go further because they allow you to extend how the nouns, verbs, and modi-
fiers are composed in the language. For example, in a language such as C#, it’d be
difficult to add a new looping construct. In PowerShell, this is minor. To illustrate
how easy it is, let’s define a new looping keyword called loop. This construct will
repeat the body of the loop for the number of times the first argument specifies. You
can add this keyword by defining a function that takes a number and scriptblock.
Here’s the definition:

PS (1) > function loop ([int] $i, [scriptblock] $b) {
>> while ($i-- -gt 0) { . $b }
>> }
>>

Try it out:

PS (2) > loop 3 { "Hello world" }
Hello world
Hello world
Hello world
PS (3) >

In a few lines of code, you’ve added a new flow-control statement to the PowerShell
language that looks pretty much like any of the existing flow-control statements.

You can apply this technique to creating language elements that allow you to
define your own custom types. Let’s add some “class” to PowerShell!

11.7.2 Adding a CustomClass keyword to PowerShell

Next you’ll use the technique from the previous section to extend the PowerShell
language to allow you to define your own custom classes. First, let’s gather the
428 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

requirements. You want the syntax for defining a class to look fairly natural (at least
for PowerShell). Here’s what you want a class definition to look like:

CustomClass point {
 note x 0
 note y 0
 method ToString { "($($this.x), $($this.y))"}
 method scale {
 $this.x *= $args[0]
 $this.y *= $args[0]
 }
}

Once you’ve defined this custom class, you want to be able to use it as follows. First,
create a new instance of the point class:

$p = new point

NOTE The new command here is not an alias for the New-Object
cmdlet. The cmdlet creates new instances of .NET or COM objects. It
doesn’t know anything about the “classes” we’re defining here. Instead,
it’s a custom function that we’ll get to in a minute.

Then, set the x and y members on this instance to particular values:

$p.x=2
$p.y=3

Finally, call the ToString() method to display the class:

$p.ToString()

This will give you a natural way to define a class in PowerShell. Now let’s look at
implementing these requirements.

NOTE In section 11.4.3 you saw how you could do this with dynamic
modules. The focus here is to see how you can directly implement this
type of facility. In practical circumstances, this dynamic module
approach is certainly easier.

We’ll put the code for this script in a file called class.ps1. Let’s go over the contents of
that script a piece at a time. (The complete script is included in the book’s source
code.)

First, you need a place to store the types you’re defining. You need to use a global
variable for this, because you want it to persist for the duration of the session. Give it
a name that’s unlikely to collide with other variables (you’ll put two underscores at
each end to help ensure this) and initialize it to an empty hashtable:

$global:__ClassTable__ = @{}

Next, define the function needed to create an instance of one of the classes you’ll cre-
ate. This function will take only one argument: the scriptblock that creates an
EXTENDING THE POWERSHELL LANGUAGE 429

instance of this class. This function will invoke the scriptblock provided to it. This
scriptblock is expected to return a collection of synthetic member objects. The func-
tion will then take these members and attach them to the object being created. This is
a helper function that also has to be global, so again you’ll give it a name that’s
unlikely to collide with other global functions:

function global:__new_instance ([scriptblock] $definition)
{

At this point you define some local functions to use in the body of the __new_
instance function. First, define a helper method for generating error messages:

 function elementSyntax ($msg)
 {
 throw "class element syntax: $msg"
 }

In the example, you had keywords for each of the member types you could add. You’ll
implement this by defining functions that implement these keywords. Because of the
way dynamic scoping works (see chapter 7), these functions will be visible to the script-
block when it’s invoked, because they’re defined in the enclosing dynamic scope.

First, define the function for creating a note element in the class. This implements
the note keyword in the class definition. It takes the name of the note and the value
to assign to it and returns a PSNoteProperty object to the caller:

 function note ([string]$name, $value)
 {
 if (! $name) {
 elementSyntax "note name <value>"
 }
 New-Object Management.Automation.PSNoteProperty `
 $name,$value
 }

Next, define the function that implements the method keyword. This function takes
the method name and scriptblock that will be the body of the method and returns a
PSScriptMethod object:

 function method ([string]$name, [scriptblock] $script)
 {
 if (! $name) {
 elementSyntax "method name <value>"
 }
 New-Object Management.Automation.PSScriptMethod `
 $name,$script
 }

You could continue to define keyword functions for all the other member types, but
to keep it simple, stick with just these two.

Having defined your keyword functions, you can look at the code that actually
builds the object. First, create an empty PSObject with no methods or properties:

 $object = New-Object Management.Automation.PSObject
430 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

Next, execute the scriptblock that defines the body of this class. As mentioned previ-
ously, the result of that execution will be the set of members to attach to the new
object you’re creating:

 $members = &$definition

Finally, attach the members to the object:

 foreach ($member in $members) {
 if (! $member) {
 Write-Error "bad member $member"
 } else {
 $object.psobject.members.Add($member)
 }
 }

The last thing to do is return the constructed object:

 $object
}

As mentioned, the _new_instance function was a worker function; the user never
calls it directly. Now define the function that the user employs to define a new class.
Again, this has to be a global function, but this time, because the user calls it, you’ll
give it a conventional name:

function global:CustomClass
{

This function takes the name of the class and the scriptblock to execute to produce
the members that will be attached to that class:

 param ([string] $type, [scriptblock] $definition)

If there’s already a class defined by the name that the user passed, throw an error:

 if ($global:__ClassTable__[$type]) {
 throw "type $type is already defined"
 }

At this point, you’ll execute the scriptblock to build an instance of the type that will
be discarded. You do this to catch any errors in the definition at the time the class is
defined, instead of the first time the class is used. It’s not strictly necessary to do this,
but it will help you catch any errors sooner rather than later:

 __new_instance $definition > $null

Finally, add the class to the hashtable of class definitions

 $global:__ClassTable__[$type] = $definition
}

and you’re finished implementing the class keyword. Next you have to define the
new keyword. This turns out to be a simple function. The new keyword takes the
EXTENDING THE POWERSHELL LANGUAGE 431

name of the class you want to create an instance of, looks up the scriptblock to exe-
cute, and calls __new_instance to build the object:

function global:new ([string] $type)
{
 $definition = $__ClassTable__[$type]
 if (! $definition) {
 throw "$type is undefined"
 }
 __new_instance $definition
}

Finally, add one last helper function that will allow you to remove a class definition
from the hashtable:

function remove-class ([string] $type)
{
 $__ClassTable__.remove($type)
}

This, then, is the end of the class.ps1 script. You should try it out with the point
example you saw at the beginning of this section. First run the script containing the
code to set up all the definitions. (Because you explicitly defined things to be global
in the script, there’s no need to “dot” this script.)

PS (1) > ./class

Now define the point class:

PS (2) > CustomClass point {
>> note x 0
>> note y 0
>> method ToString { "($($this.x), $($this.y))"}
>> method scale {
>> $this.x *= $args[0]
>> $this.y *= $args[0]
>> }
>> }
>>

Next, create an instance of this class:

PS (3) > $p = new point

Use Get-Member to look at the members on the object that was created:

PS (4) > $p | Get-Member

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
432 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

x NoteProperty System.Int32 x=0
y NoteProperty System.Int32 y=0
scale ScriptMethod System.Object scale();
ToString ScriptMethod System.Object ToString();

You see the actual type of the object is PSCustomType—the type that PowerShell uses
for pure synthetic objects. You can also see the members you defined in the class defi-
nition: the two note properties, x and y, and the two methods, scale() and
ToString(). To try them out, first call ToString():

PS (5) > $p.tostring()
(0, 0)

You see the default values for the note members, formatted as intended. Next, set the
note members to new values:

PS (6) > $p.x=2
PS (7) > $p.y=3

Verify that they’ve been set:

PS (8) > $p.tostring()
(2, 3)

Now call the scale() method to multiply each note member by a scale value:

PS (9) > $p.scale(3)

And again, verify the values of the note members with ToString():

PS (10) > $p.tostring()
(6, 9)

The values have been scaled.
Finally, to see how well this all works, use this object with the format operator,

and you’ll see that your ToString() method is properly called:

PS (11) > "The point p is {0}" -f $p
The point p is (6, 9)

So, in less than 100 lines of PowerShell script, you’ve added a new keyword that lets
you define you own classes in PowerShell. Obviously, this isn’t a full-featured type
definition system; it doesn’t have any form of inheritance, for example. But it does
illustrate how you can use scriptblocks along with dynamic scoping to build new lan-
guage features in PowerShell in a sophisticated way.

Now let’s change gears a bit to talk about types.

11.7.3 Type extension

You might have noticed that all the examples we’ve looked at so far involve adding
members to instances. But what about adding members to types? Having to explicitly
add members to every object you encounter would be pretty tedious, no matter how
clever you are. You need some way to extend types. Of course, PowerShell also lets
EXTENDING THE POWERSHELL LANGUAGE 433

you do this. In this section, we’ll introduce the mechanisms that PowerShell provides
that let you extend types.

Type extension is performed in PowerShell through a set of XML configuration
files. These files are usually loaded at startup time, but they can be extended after the
shell has started. In this section, you’ll learn how to take advantage of these features.

Let’s look at an example. Consider an array of numbers. It’s fairly common to
sum up a collection of numbers; unfortunately, there’s no Sum() method on the
Array class:

PS (1) > (1,2,3,4).sum()
Method invocation failed because [System.Object[]] doesn't conta
in a method named 'sum'.
At line:1 char:14
+ (1,2,3,4).sum(<<<<)

Using the techniques we’ve discussed, you could add such a method to this array:

PS (3) > $a = Add-Member -PassThru -in $a scriptmethod sum {
>> $r=0
>> foreach ($e in $this) {$r += $e}
>> $r
>> }
>>

And finally use it:

PS (4) > $a.sum()
10

But this would be painful to do for every instance of an array. What you need is a way
to attach new members to a type, rather than through an instance. PowerShell does
this through type configuration files. These configuration files are stored in the instal-
lation directory for PowerShell and loaded at startup. The installation directory path
for PowerShell is stored in the $PSHome variable, so it’s easy to find these files. They
have the word type in their names and have an extension of .ps1xml:

PS (5) > dir $pshome/*type*.ps1xml

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Program
 Files\Windows PowerShell\v1.0

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/19/2006 4:12 PM 50998 DotNetTypes.Format.
 ps1xml
-a--- 4/19/2006 4:12 PM 117064 types.ps1xml

You don’t want to update the default installed types files because when you install
updates for PowerShell, they’ll likely be overwritten and your changes will be
lost. Instead, create your own custom types file containing the specification of the
new member for System.Array. Once you’ve created the file, you can use the
434 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

Update-TypeData cmdlet to load it. Here’s the definition for the Sum() method
extension you want to add to System.Array:

<Types>
 <Type>
 <Name>System.Array</Name>
 <Members>
 <ScriptMethod>
 <Name>Sum</Name>
 <Script>
 $r=$null
 foreach ($e in $this) {$r += $e}
 $r
 </Script>
 </ScriptMethod>
 </Members>
 </Type>
</Types>

This definition is saved to a file called SumMethod.ps1xml. Now load the file and
update the type system definitions:

PS (9) > Update-TypeData SumMethod.ps1xml

If the file loads successfully, you won’t see any output. You can now try out the sum()
function:

PS (10) > (1,2,3,4,5).sum()
15

It worked. And, because of the way the script was written, it will work on any type
that can be added. So let’s add some strings:

PS (11) > ("abc","def","ghi").Sum()
abcdefghi

You can even use it to add hashtables:

PS (12) > (@{a=1},@{b=2},@{c=3}).sum()

Name Value
---- -----
a 1
b 2
c 3

You can see that the result is the composition of all three of the original hashtables.
You can even use it to put a string back together. Here’s the “hal” to “ibm” example
from chapter 3, this time using the Sum() method:

PS (13) > ([char[]] "hal" | %{[char]([int]$_+1)}).sum()
ibm

Here you break the original string into an array of characters, add 1 to each character,
and then use the Sum() method to add them all back into a string.
EXTENDING THE POWERSHELL LANGUAGE 435

You should take some time to examine the set of type configuration files that are
part of the default PowerShell installation. Examining these files is a good way to see
what you can accomplish using these tools.

We’ve covered an enormous amount of material so far in this chapter, introducing
ideas that are pretty new to a lot of users. If you’ve hung on to this point, congratula-
tions! There are only a few more topics to complete your knowledge of metaprogram-
ming with PowerShell. Scriptblocks, dynamic modules, and closures can be passed
around, invoked, and assigned at runtime, but the body of these blocks is still defined
at compile time. In the next section we’ll expand our repertoire of techniques by
looking at ways to dynamically create code.

11.8 BUILDING SCRIPT CODE AT RUNTIME

This final section presents the mechanisms that PowerShell provides for compiling
script code and creating new scriptblocks at runtime. To saying that you’re “compil-
ing” when PowerShell is an interpreted language may sound a odd, but that’s essen-
tially what creating a scriptblock is: a piece of script text is compiled into an
executable object. In addition, PowerShell provides mechanisms for directly executing
a string, bypassing the need to first build a scriptblock. In the next few sections we’ll
look at how each of these features works.

11.8.1 The Invoke-Expression cmdlet

The Invoke-Expression cmdlet is a way to execute an arbitrary string as a piece of
code. It takes the string, compiles it, and then immediately executes it in the current
scope. Here’s an example:

PS (1) > Invoke-Expression '$a=2+2; $a'
4

In this example, the script passed to the cmdlet assigned the result of 2+2 to $a and
wrote $a to the output stream. Because this expression was evaluated in the current
context, it should also have affected the value of $a in the global scope:

PS (2) > $a
4

You see that it did. Now invoke another expression:

PS (3) > Invoke-Expression '$a++'
PS (4) > $a
5

Evaluating this expression changes the value of $a to 5.
There are no limits on what you can evaluate with Invoke-Expression. It can

take any arbitrary piece of script code. Here’s an example where you build a string
with several statements in it and execute it:

PS (5) > $expr = '$a=10;'
PS (6) > $expr += 'while ($a--) { $a }'
436 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

PS (7) > $expr += '"A is now $a"'
PS (8) > [string](Invoke-Expression $expr)
9 8 7 6 5 4 3 2 1 0 A is now -1

The first three commands in this example build a string to execute. The first line ini-
tializes the variable $a, the second adds a while loop that decrements and outputs
$a, and the third line outputs a string telling you the final value of $a. Note the dou-
ble quoting in the last script fragment. Without the nested double quotes, it would
try to execute the first word in the string instead of emitting the whole string.

11.8.2 The ExecutionContext variable

One of the predefined variables (also called automatic variables) provided by the Pow-
erShell engine is $ExecutionContext. This variable is another way to get at various
facilities provided by the PowerShell engine. It’s intended to mimic the interfaces
available to the cmdlet author. The services that matter most to us in this chapter are
those provided through the InvokeCommand member. Let’s look at the methods this
member provides:

PS (1) > $ExecutionContext.InvokeCommand | Get-Member

 TypeName: System.Management.Automation.CommandInvocationIntri
nsics

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
ExpandString Method System.String ExpandString(String s...
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
InvokeScript Method System.Collections.ObjectModel.Coll...
NewScriptBlock Method System.Management.Automation.Script...
ToString Method System.String ToString()

The interesting methods in this list are ExpandString(), InvokeScript(), and
NewScriptBlock(). These methods are covered in the next few sections.

11.8.3 The ExpandString() method

The ExpandString() method lets you perform the same kind of variable interpola-
tion that the PowerShell runtime does in scripts. Here’s an example. First, set $a to a
known quantity:

PS (2) > $a = 13

Next, create a variable $str that will display the value of $a:

PS (3) > $str='a is $a'

Because the variable was assigned using single quotes, no string expansion took place.
You can verify this by displaying the string:

PS (4) > $str
a is $a
BUILDING SCRIPT CODE AT RUNTIME 437

Now call the ExpandString() method, passing in $str:

PS (5) > $ExecutionContext.InvokeCommand.ExpandString($str)
a is 13

It returns the string with the variable expanded into its value.

11.8.4 The InvokeScript() method

The next method to look at is InvokeScript(). This method does the same thing
that the Invoke-Expression cmdlet does (in fact, the cmdlet just calls the method).
It takes its argument and evaluates it like a script. Call this method passing in the
string “2+2”

PS (7) > $ExecutionContext.InvokeCommand.InvokeScript("2+2")
4

and it will return 4.

11.8.5 Mechanisms for creating scriptblocks

The final method is the NewScriptBlock() method. Like InvokeScript(), this
method takes a string, but instead of executing it, it returns a scriptblock object that
represents the compiled script. Let’s use this method to turn the string '1..4 |
foreach {$_ * 2}' into a scriptblock:

PS (8) > $sb = $ExecutionContext.InvokeCommand.NewScriptBlock(
>> '1..4 | foreach {$_ * 2}')
>>

You saved this scriptblock into a variable, so let’s look at it. Because the ToString()
on a scriptblock is the code of the scriptblock, you just see the code that makes up the
body of the scriptblock:

PS (9) > $sb
1..4 | foreach {$_ * 2}

Now execute the scriptblock using the & call operator:

PS (10) > & $sb
2
4
6
8

The scriptblock executed, printing out the even numbers from 2 to 8.
PowerShell v2 introduced a simpler way of doing this by using a static method on

the ScriptBlock class. Here’s how to use this static factory class:

PS (11) > $sb = [scriptblock]::Create('1..4 | foreach {$_ * 2}')
PS (12) > & $sb
2
4
6

438 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

8
PS (13) >

Using the [scriptblock] type accelerator, the newer mechanism is significantly
simpler than the rather long expression in the earlier example.

NOTE Many people have asked why we (the PowerShell team) don’t
allow you to cast a string to a scriptblock. The reason is that we want to
make the system resilient against code injection attacks. We want to
minimize the number of places where executable code can be injected
into the system, and we particularly want code creation to be an
explicit act. Casts are more easily hidden, leading to accidental code
injections, especially when the system may prompt for a string. We
don’t want those user-provided strings to be converted into code with-
out some kind of check. See chapter 18 for more extensive discussions
about security.

11.8.6 Creating functions using the function: drive

The final way to create a scriptblock is a side effect of creating elements in the func-
tion: drive. Earlier you saw that it’s possible to create a named function by assigning a
scriptblock to a name in the function: drive:

PS (1) > $function:foo = {"Hello there"}
PS (2) > foo
Hello there

You could also use the Set-Item or New-Item cmdlet to do this. For example:

PS (3) > New-Item function:foo -value {"Hi!"}
New-Item : The item at path 'foo' already exists.
At line:1 char:9
+ New-Item <<<< function:foo -value {"Hi!"}

You received an error because the function already exists, so use the -Force parame-
ter to overwrite the existing definition:

PS (4) > New-Item function:foo -value {"Hi!"} -Force

CommandType Name Definition
----------- ---- ----------
Function foo "Hi!"

New-Item returns the item created, so you can see that the function has been
changed. But that’s using scriptblocks. What happens if you pass in strings? The
interpreter will compile these strings into scriptblocks and then assign the scriptblock
to the name. Here’s an example where the body of the function is determined by the
expanded string:

PS (5) > $x=5
PS (6) > $y=6
PS (7) > $function:foo = "$x*$y"
BUILDING SCRIPT CODE AT RUNTIME 439

PS (8) > foo
30
PS (9) > $function:foo
5*6

The variables $x and $y expanded into the numbers 5 and 6 in the string, so the
resulting scriptblock was

{5*6}

Now define another function using foo, but add some more text to the function:

PS (10) > New-Item function:bar -Value "$function:foo*3"

CommandType Name Definition
----------- ---- ----------
Function bar 5*6*3

PS (11) > bar
90

In the expanded string, $function:foo expanded into “5*6”, so the new function
bar was assigned a scriptblock {5*6*3}.

This finishes our discussion of the techniques PowerShell provides for compiling
script code at runtime. In the next section we’ll look at how to embed static languages
like C# and Visual Basic in your scripts. This ability to embed fragments of C# or
Visual Basic vastly increases what can be done directly with scripts but at the cost of
some increase in complexity.

11.9 COMPILING CODE WITH ADD-TYPE
In the previous section, we covered techniques for compiling script code at runtime.
In this section, you’ll learn how to inline code written in static languages into your
scripts. The key to doing this is the Add-Type cmdlet, introduced in PowerShell v2.

With the Add-Type cmdlet, you can embed code fragments written in compiled
languages like C# or Visual Basic in your scripts and then compile that code when the
scripts are loaded. A particularly interesting application of this technique is that you
can create dynamic binary modules. This combines some of the best aspects of script
modules with binary modules.

Add-Type fills in another other hole in the PowerShell v1 functionality: you can
use it to dynamically load existing assemblies at runtime. Finally, this cmdlet can be
used to simplify writing scripts that compile static language code into libraries or
executables.

11.9.1 Defining a new .NET class: C#

Let’s jump into an example where you’ll dynamically add a new .NET class at runtime.
You’ll write the code for this class using C#. It’s a simple class, so even if you aren’t a C#
programmer, you should be able to follow along. The fragment looks like this:
440 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

Add-Type @'
using System;

public static class Example1
{
 public static string Reverse(string s)
 {
 Char[] sc = s.ToCharArray();
 Array.Reverse(sc);
 return new string(sc);
 }
}
'@

Now run this code:

PS (7) > Add-Type @'
>> using System;
>>
>> public static class Example1
>> {
>> public static string Reverse(string s)
>> {
>> Char[] sc = s.ToCharArray();
>> Array.Reverse(sc);
>> return new string(sc);
>> }
>> }
>> '@
>>

This command should have run with no errors. Once it’s run, use the new type that
you’ve added:

PS(8) > [example1]::Reverse("hello there")
ereht olleh
PS (STA) (9) >

And there you go. You now have a new method for reversing strings. You could also
have saved the file externally and then loaded it at runtime. Put the C# code into a
file example1.cs, which looks like this:

PS (9) > Get-Content example1.cs
using System;

public static class Example1
{
 public static string Reverse(string s)
 {
 Char[] sc = s.ToCharArray();
 Array.Reverse(sc);
 return new string(sc);
 }
}

COMPILING CODE WITH ADD-TYPE 441

And now you can add this to your session:

PS (MTA) (15) > Add-Type -Path example1.cs

11.9.2 Defining a new enum at runtime

An enum type in .NET is a way of creating a fixed set of name-value constants. The
ability to define these types is missing from PowerShell, but you can work around this
by using Add-Type. You’ll define an enum that can be used to specify a coffee order.
You’ll constrain the types of coffee orders you’ll allow to Latte, Mocha, Americano,
Cappuccino, or Espresso. First, set a variable to the list of drink types:

PS (1) > $beverages = "Latte, Mocha, Americano, Cappuccino, Espresso"

Pass a string to Add-Type that contains the fragment of C# needed to define an
enum type:

PS (2) > Add-Type "public enum BeverageType { $beverages }"

It should be easy to see what’s going on. You’re defining a public type called Bever-
ageType using the list of drinks in $beverages. Now that you have the type defined,
you can use it in a function to create new drink orders:

PS (3) > function New-DrinkOrder ([BeverageType] $beverage)
>> {
>> "A $beverage was ordered"
>> }
>>

This function uses the enum to constrain the type of the argument to the function
and then return a string showing what was ordered. Use the function to order a latte:

PS (4) > New-DrinkOrder latte
A Latte was ordered

And the order goes through. Notice that casing of the drink name matches what was
in the DrinkOrder enum definition, not what was in the argument. This is because
the argument contains an instance of the DrinkOrder type and not the original
string. Let’s try to order something other than a coffee and see what happens:

PS (5) > New-DrinkOrder coke
New-DrinkOrder : Cannot process argument transformation on parameter
'beverage'. Cannot convert value "coke" to type "BeverageType" due to
invalid enumeration values. Specify one of the following enumeration
values and try again. The possible enumeration values are "Latte, Mocha,
Americano, Cappuccino, Espresso".
At line:1 char:10
+ New-DrinkOrder <<<< coke
 + CategoryInfo : InvalidData: (:) [New-Order],
 ParameterBindin...mationException
 + FullyQualifiedErrorId : ParameterArgumentTransformationError,
 New-Order
442 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

This results in a somewhat verbose but helpful error message telling you why the
order failed and what the valid drink types are. That’s all well and good, but the cus-
tomer really wants a Coke. So modify the enum definition to include Coke in the list
of beverages:

PS (6) > $beverages += ", Coke"

And call Add-Type again:

PS (7) > Add-Type "public enum BeverageType { $beverages }"
Add-Type : Cannot add type. The type name 'BeverageType' already exis
ts.
At line:1 char:9
+ Add-Type <<<< "public enum BeverageType { $beverages }"
 + CategoryInfo : InvalidOperation: (BeverageType:String
) [Add-Type], Exception
 + FullyQualifiedErrorId : TYPE_ALREADY_EXISTS,Microsoft.PowerShe
 ll.Commands.AddTypeCommand

This time it fails. Remember what we said about static types: once they’re defined,
they can’t be changed. This is something to consider when using Add-Type to inline
static code in a script. Static type definitions mean that the script isn’t as easy to
update as a normal PowerShell-only script. Now let’s look at how Add-Type can be
combined with dynamic modules.

11.9.3 Dynamic binary modules

Like dynamic script modules, a dynamic binary module is constructed in memory
rather than loaded from disk. This is where Add-Type comes in. The content of a
binary module is defined by a compiled assembly, not script text, and Add-Type lets
you build these in-memory assemblies. Look at the following example script that
constructs a binary module. This script packages the C# code for a cmdlet into a
here-string. It then uses Add-Type to produce the required in-memory assembly,
which it passes to Import-Module.

$code = @'
using System.Management.Automation;

[Cmdlet("Write", "InputObject")]
public class MyWriteInputObjectCmdlet : Cmdlet
{
 [Parameter]
 public string Parameter1;

 [Parameter(Mandatory = true, ValueFromPipeline=true)]
 public string InputObject;

 protected override void ProcessRecord()
 {

Listing 11.2 The ExampleModuleScript

Contains cmdlet
code
COMPILING CODE WITH ADD-TYPE 443

 if (Parameter1 != null)
 WriteObject(Parameter1 + ":" + InputObject);
 else
 WriteObject(InputObject);
 }
}
'@
$bin = Add-Type $code -PassThru
$bin.Assembly | Import-Module

The one wrinkle in this approach is the fact that Add-Type returns type objects, not
assemblies. Fortunately, this is easy to work around: the type object makes its con-
taining assembly available through the Assembly property. Let’s try out the script.
First load it:

PS (2) > ./ExampleModuleScript

Then check to see if the module has been created:

PS (3) > Get-Module

ModuleType Name ExportedCommands
---------- ---- ----------------
Binary dynamic_code_module_1t... Write-InputObject

And there it is. Next, get the CommandInfo object for the new cmdlet:

PS (4) > $cmd = Get-Command Write-InputObject
PS (5) > $cmd | fl

Name : Write-InputObject
CommandType : Cmdlet
Definition : Write-InputObject [-Parameter1 <String>] -Inp
 utObject <String> [-Verbose] [-Debug] [-Error
 Action <ActionPreference>] [-WarningAction <A
 ctionPreference>] [-ErrorVariable <String>] [
 -WarningVariable <String>] [-OutVariable <Str
 ing>] [-OutBuffer <Int32>]

Path :
AssemblyInfo :
DLL :
HelpFile : -Help.xml
ParameterSets : {[-Parameter1 <String>] -InputObject <String>
 [-Verbose] [-Debug] [-ErrorAction <ActionPre
 ference>] [-WarningAction <ActionPreference>]
 [-ErrorVariable <String>] [-WarningVariable
 <String>] [-OutVariable <String>] [-OutBuffer
 <Int32>]}
ImplementingType : MyWriteInputObjectCmdlet
Verb : Write
Noun : InputObject

Compile code
in memory Get assembly

ref from type
444 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

Notice that the Path, DLL, and AssemblyInfo fields for this command are empty.
Because the assembly for a dynamic binary module is in-memory only, these items are
empty. They need an assembly that was loaded from disk in order to be defined.

Dynamic binary modules make it possible to get the advantages of a script module
(being able to read the script) along with the advantages of compiled code (speed and
static type checking). The only disadvantage to the user compared with regular
binary modules is that the load time may be a bit longer.

11.10 SUMMARY

In this chapter, we covered advanced topics in programming and metaprogramming
with PowerShell. Although many of the techniques covered in the chapter are quite
advanced, used appropriately they can significantly improve your productivity as a
scripter. You’ll also see in later chapters how language elements such as scriptblocks
make graphical programming in PowerShell easy and elegant. In this chapter we cov-
ered the following topics:

• Metaprogramming is a set of powerful techniques that essentially “crack open”
the PowerShell runtime. They allow you to extend the runtime with new key-
words and control structures. You can directly add properties and methods to
objects in PowerShell; this is useful because it lets you adapt or extend objects
logically in specific problem domains.

• The fundamental unit of PowerShell code, including the content of all func-
tions, scripts, and modules, is actually scriptblocks. Scriptblocks also let you
define methods that can be added to objects as script methods. Scriptblocks
don’t necessarily need to be named, and they can be used in many situations,
including as the content of variables. Although scriptblocks are the key to all of
the metaprogramming features in PowerShell, they’re also an “everyday” feature
that users work with all the time when they use the ForEach-Object and
Where-Object cmdlets.

• The call operator & allows you to invoke commands indirectly, that is, by refer-
ence rather than by name (a scriptblock is just a reference). This also works with
the CommandInfo objects returned from Get-Command.

• When using the Update-TypeData cmdlet, you can load type configuration
files that allow you to extend a type instead of a single instance of that type.

• PowerShell supports the use of “little language,” or domain-specific language
techniques, to extend the core language. This allows you to more naturally spec-
ify solutions for problems in a particular domain.

• There are a variety of techniques for compiling and executing code at runtime.
You can use the Invoke-Expression cmdlet, engine invocation intrinsics on
SUMMARY 445

the $ExecutionContext variable, or the CreateScriptBlock() static
method on the [scriptblock] type.

• Dynamic modules allow you to do local isolation in a script. They also underlie
the implementation of closures in PowerShell and provide a simpler way to cre-
ate custom objects.

• The Add-Type cmdlet lets you work with compiled languages from within
PowerShell. It also provides a means to embed code in these languages directly
in your scripts. This ability adds significant power to the environment at some
cost in complexity.

• Add-Type also makes it possible to create dynamic binary modules, allowing
you to combine some of the benefits of both static and dynamic coding
techniques.
446 CHAPTER 11 METAPROGRAMMING WITH SCRIPTBLOCKS AND DYNAMIC CODE

C H A P T E R 1 2

Remoting and
background jobs

12.1 Getting started with remoting 448
12.2 Applying PowerShell remoting 454
12.3 Sessions and persistent

connections 462
12.4 Implicit remoting 473

12.5 Background jobs in PowerShell 481
12.6 Considerations when running

commands remotely 493
12.7 Summary 500
In a day when you don’t come across any problems, you can be sure that
you are traveling in the wrong path.

 —Swami Vivekananda

A tool intended for enterprise management that can’t actually manage distributed sys-
tems isn’t useful. Unfortunately, in PowerShell v1 very little support for remote man-
agement was built into PowerShell. This issue was fixed in PowerShell v2 by adding a
comprehensive built-in remoting subsystem. This facility allows you to handle most
remoting tasks in any kind of remoting configuration you might encounter.

Another related feature that v2 introduced was built-in support for background
jobs. Background jobs allow multiple tasks to be executed within a single session,
including mechanisms for starting, stopping, and querying these tasks. Again, this is
an important feature in the enterprise environment, where you frequently have to
deal with more than one task at a time.
447

In this chapter we’re going to cover the various features of remoting and how you
can apply them. We’ll use an extended example showing how to combine the various
features to solve a nontrivial problem. Then we’ll look at background jobs and how to
apply them to create concurrent solutions. We’ll end the chapter by looking at some
of the configuration considerations you need to be aware of when using PowerShell
remoting.

12.1 GETTING STARTED WITH REMOTING

In this section, we’ll go through the basic concepts and terminology used by PowerShell
remoting. The ultimate goal for remoting is to be able to execute a command on a
remote computer. There are two ways to approach this. First, you could have each com-
mand do its own remoting. In this scenario, the command is still executed locally but
uses some system-level networking capabilities like DCOM to perform remote opera-
tions. There are a number of commands that do this, which we’ll cover in the next sec-
tion. The negative aspect of this approach is that each command has to implement and
manage its own remoting mechanisms. As a result, PowerShell includes a more general
solution, allowing you to send the command (or pipeline of commands or even a script)
to the target machine for execution and then retrieve the results. With this approach,
you only have to implement the remoting mechanism once and then it can be used with
any command. This second solution is the one we’ll spend most of our time discussing.
But first, let’s look at the commands that do implement their own remoting.

12.1.1 Commands with built-in remoting

A number of commands in PowerShell v2 have a -ComputerName parameter, which
allows you to specify the target machine to access. This list is shown in table 12.1.

Table 12.1 The PowerShell v2 commands with built-in remoting

Name Synopsis

Clear-EventLog Deletes all entries from specified event logs on the local or remote
computers

Get-Counter Gets performance counter data from a group of computers

Get-EventLog Gets the events in an event log, or a list of the event logs, on the local or
remote computers

Get-HotFix Gets the hotfixes that have been applied to a computer

Get-Process Gets the processes that are running on a computer

Get-Service Gets information about the services configured on one or more computers

Get-WinEvent Gets event information from either the traditional event logs or the Event
Tracing for Windows (ETW) trace log facility introduced with Windows Vista

Limit-EventLog Sets the event log properties that limit the size of the event log and the age
of its entries

New-EventLog Creates a new event log and a new event source on a local or remote
computer
448 CHAPTER 12 REMOTING AND BACKGROUND JOBS

These commands do their own remoting either because the underlying infrastructure
already supports remoting or they address scenarios that are of particular importance
to system management.

There are also two sets of “self-remoting” commands that weren’t mentioned in
this table. These are the WMI and WSMan commands. These commands allow you to
access a wide range of management information using standards-based techniques
and are important enough to get their own chapter (chapter 19).

Obviously, the set of commands that do self-remoting is quite small, so the
remaining commands must rely on the PowerShell remoting subsystem to access
remote computers. This is what we’ll start looking at in the next section.

12.1.2 The PowerShell remoting subsystem

Way back in chapter 1, you saw a few brief examples of how remoting works. You
may remember that all those examples used the same basic cmdlet: Invoke-Command.
This cmdlet allows you to remotely invoke a scriptblock on another computer and is
the building block for most of the features in remoting. The syntax for this command
is shown in figure 12.1.

Remove-EventLog Deletes an event log or unregisters an event source

Restart-Computer Restarts (“reboots”) the operating system on local and remote computers

Set-Service Starts, stops, and suspends a service, and changes its properties

Show-EventLog Displays the event logs of the local or a remote computer in Event Viewer

Stop-Computer Stops (shuts down) local and remote computers

Test-Connection Sends ICMP echo request packets (“pings”) to one or more computers

Write-EventLog Writes an event to an event log

Table 12.1 The PowerShell v2 commands with built-in remoting (continued)

Name Synopsis

Invoke-Command
[[-ComputerName] <string[]>] [-JobName <string>]
[-ScriptBlock] <scriptblock>
[-Credential <PSCredential>]
[-ArgumentList <Object[]>] [-InputObject <psobject>]
[-ThrottleLimit <int>] [-AsJob]
[-Port <int>] [-UseSSL] [-CertificateThumbprint <string>]
[-ApplicationName <string>]
[-Authentication <authenticationMethod>]
[-ConfigurationName <string>]
[-HideComputerName]
[-SessionOption <PSSessionOption>]

Figure 12.1 The syntax for the Invoke-Command cmdlet, which is the core of Power-

Shell’s remoting capabilities. This cmdlet is used to execute commands and scripts on

one or more computers. It can be used synchronously or asynchronously as a job.
GETTING STARTED WITH REMOTING 449

The Invoke-Command cmdlet is used to invoke a scriptblock on one or more com-
puters. You do so by specifying a computer name (or list of names) for the machines
on which you want to execute the command. For each name in the list, the remoting
subsystem will take care of all the details needed to open the connection to that com-
puter, execute the command, retrieve the results, and then shut down the connection.
If you’re going to run the command on a large set of computers, Invoke-Command
will also take care of all resource management details, such as limiting the number of
concurrent remote connections.

This is a simple but powerful model if you only need to execute a single command
or script on the target machine. But if you want to execute a series of commands on
the target, the overhead of setting up and taking down a connection for each com-
mand becomes expensive. PowerShell remoting addresses this situation by allowing
you to create a persistent connection to the remote computer called a session. You do
so by using the New-PSSession cmdlet.

Both of the scenarios we’ve discussed so far involve what is called noninteractive
remoting because you’re just sending commands to the remote machines and then
waiting for the results. You don’t interact with the remote commands while they’re
executing.

Another standard pattern in remoting occurs when you want to set up an interac-
tive session where every command you type is sent transparently to the remote com-
puter. This is the style of remoting implemented by tools like Remote Desktop, telnet,
or ssh (Secure Shell). PowerShell allows you to start an interactive session using the
Enter-PSSession cmdlet. Once you’ve entered a remote session, you can suspend
the session without closing the remote connection by using Exit-PSSession.
Because the connection isn’t closed, you can later reenter the session with all session
data preserved by using Enter-PSSession again.

These cmdlets—Invoke-Command, New-PSSession, and Enter-PSSession—
are the basic remoting tools you’ll be using. But before you can use them, you need to
make sure remoting is enabled, so we’ll look at that next.

12.1.3 Enabling remoting

To satisfy the “secure by default” principle, before you can use PowerShell remoting
to access a remote computer, the remoting service on that computer has to be explic-
itly enabled. You do so using the Enable-PSRemoting cmdlet. To run this com-
mand, you have to have Administrator privileges on the machine you’re going to
enable. From a PowerShell session that’s running with Administrator privileges, when
you run the Enable-PSRemoting command, the resulting sequence of interactions
will look something like this:

PS C:\Windows\system32> Enable-PSRemoting
WinRM Quick Configuration
450 CHAPTER 12 REMOTING AND BACKGROUND JOBS

Running command "Set-WSManQuickConfig" to enable this machine
for remote management through WinRM service.
 This includes:
 1. Starting or restarting (if already started) the WinRM service
 2. Setting the WinRM service type to auto start
 3. Creating a listener to accept requests on any IP address
 4. Enabling firewall exception for WS-Management traffic
 (for http only).
Do you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help (default is "Y"): y
WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.
Configured LocalAccountTokenFilterPolicy to grant administrative
rights remotely to local users.
WinRM has been updated for remote management.
Created a WinRM listener on HTTP://* to accept WS-Man requests to
any IP on this machine.
WinRM firewall exception enabled.
PS C:\Windows\system32>

At various points in the process, you’ll be prompted to confirm each step. It’s worth
spending a few minutes understanding what each step is doing because these opera-
tions have security implications for that computer. Click y (yes) to all these steps to
make sure everything is enabled properly. (Once you’re comfortable with what’s being
done, you can use the -Force parameter to skip all the questions and just get it
done.) The Enable-PSRemoting command performs all the configuration steps
needed to allow users with local Administrator privileges to remote to this computer
in a domain environment. In a nondomain or workgroup environment, as well as for
nonadmin users, some additional steps are required for remoting to work.

12.1.4 Additional setup steps for workgroup environments

If you’re working in a workgroup environment (e.g., at home), you must take a few
additional steps before you can connect to a remote machine. With no domain con-
troller available to handle the various aspects of security and identity, you have to
manually configure the names of the computers you trust. For example, if you want
to connect to the computer computerItrust, then you have to add it to the list of
trusted computers (or trusted hosts list). You can do this via the WSMan: drive, as
shown in table 12.2. Note that you need to be running as administrator to be able to
use the WSMan: provider.

Once you’ve completed these steps, you’re ready to start playing with some
examples.
GETTING STARTED WITH REMOTING 451

12.1.5 Enabling remoting in the enterprise

As you saw in the previous section, you enable PowerShell remoting on a single com-
puter using the Enable-PSRemoting cmdlet. In the enterprise scenario, enabling
machines one by one isn’t a great solution because you may be dealing with tens, hun-
dreds, or thousands of machines. Obviously, you can’t use PowerShell remoting to turn
on remoting, so you need another way to push configuration out to a collection of
machines. This is exactly what Group Policy is designed for. You can use Group Policy
to enable and configure remoting as part of the machine policy that gets pushed out.

PowerShell depends on the WinRM (Windows Remote Management) service for
its operation. To enable the WinRM listener on all computers in a domain, enable

Table 12.2 Additional steps needed to enable remote access to a computer in a workgroup

 environment

Step Command Description

1 cd wsman:\localhost
\client

Cd’ing into the client configuration node in the WSMan:
drive allows you to access the WSMan configuration for
this computer using the provider cmdlets.

2 $old = (Get-Item
.\TrustedHosts).Value

You want to update the current value of the
TrustedHosts item, so you get it and save the value
in a variable.

3 $old += ',computerItrust' The value of TrustedHosts is a string containing a
comma-separated list of the computers considered
trustworthy. You add the new computer name to the
end of this list, prefixed with a comma. (If you’re com-
fortable with implicitly trusting any host, then set this
string to *, which matches any hostname.)

4 Set-Item
.\TrustedHosts $old

Once you’ve verified that the updated contents of the
variable are correct, you assign it back to the
TrustedHosts item, which updates the configuration.

A note on security

The computers in the TrustedHosts list are implicitly trusted by adding their
names to this list. The identity of these computers won’t be authenticated when you
connect to them. Because the connection process requires sending credential infor-
mation to these machines, you need to be sure that you can trust these computers.
Also be aware that the TrustedHosts list on a machine applies to everyone who
uses that computer, not just the user who changed the setting.
That said, unless you allow random people to install computers on your internal net-
work, this shouldn’t introduce substantial risk most of the time. If you’re comfortable
with knowing which machines you’ll be connecting to, you can put * in the
TrustedHosts list, indicating that you’re implicitly trusting any computer you might
be connecting to. As always, security is a principle tempered with pragmatics.
452 CHAPTER 12 REMOTING AND BACKGROUND JOBS

the Allow Automatic Configuration of Listeners policy in the following Group
Policy path:

Computer Configuration\Administrative Templates\Windows Components\
Windows Remote Management (WinRM)\WinRM service

This policy allows WinRM to accept remoting requests. To enable a firewall exception
for all computers in a domain, enable the Windows Firewall: Allow Local Port Excep-
tions policy in the following Group Policy path:

Computer Configuration\Administrative Templates\Network\
Network Connections\Windows Firewall\Domain Profile

This policy allows members of the Administrators group on the computer to use Win-
dows Firewall in Control Panel to create a firewall exception for the WinRM service.

You also need to ensure that the WinRM service is running on all machines you
want to access. On server operating systems like Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2, the startup type of the WinRM service is
set to Automatic by default, so nothing needs to be done for these environments. (This
makes sense because the whole point of PowerShell is server management.) But on cli-
ent operating systems (Windows XP, Windows Vista, and Windows 7), the WinRM
service startup type is Disabled by default, so you need to start the service or change the
startup type to Automatic before remote commands can be sent to these machines.

NOTE Even if WinRM isn’t started, you can still remote from the
machine—outbound connections don’t go through the WinRM service.
If you’re using a client machine and only want to connect from the client
to the server, it makes sense to leave WinRM disabled on this machine.

To change the startup type of a service on a remote computer, you can use the Set-
Service cmdlet. This cmdlet can change the state of a service on a remote machine
and doesn’t depend on the WinRM service so it can be used to “bootstrap” remoting.
Here’s an example showing how you’d do this for a set of computers. First, you need a
list of the names of the computers on which to change the state. In this example,
you’ll get the names from a text file:

PS (1) > $names = Get-Content MachineNames.txt

Now you can pass this list of names to the Set-Service cmdlet to change the
startup type of the WinRM to Automatic:

PS (2) > Set-Service -Name WinRM -ComputerName $names `
>>> -Startuptype Automatic

To confirm the change, use the following command to display the StartMode for the
service (see section 19.2.2 for information on the Get-WmiObject cmdlet):

PS (1) > Get-WmiObject Win32_Service |
>> where { $_.name -match "winrm" } |
GETTING STARTED WITH REMOTING 453

>> Format-List displayname, startmode
>>

displayname : Windows Remote Management (WS-Management)
startmode : Auto

At this point, you’ve done everything necessary to enable remoting on the target
machines, and you can get on with using the remoting feature to solve your remote
management problems.

12.2 APPLYING POWERSHELL REMOTING

With remoting services enabled, you can start to use them to get your work done. In
this section, we’re going to look at some of the ways you can apply remoting to solve
management problems. We’ll start with some simple remoting examples. Next, we’ll
work with some more complex examples where we introduce concurrent operations.
Then you’ll apply the principles you’ve learned to solve a specific problem: how to
implement a multimachine configuration monitor. You’ll work through this problem
in a series of steps, adding more capabilities to your solution and resulting in a simple
but fairly complete configuration monitor. Let’s start with the most basic examples.

12.2.1 Basic remoting examples

In chapter 1, you saw the most basic examples of remoting:

Invoke-Command Servername {"hello world"}

The first thing to notice is that Invoke-Command takes a scriptblock to specify the
actions. This pattern should be familiar by now—you’ve seen it with ForEach-
Object and Where-Object many times. The Invoke-Command does operate a bit
differently, though. It’s designed to make remote execution as transparent as possible.
For example, if you want to sort objects, the local command looks like this:

PS (1) > 1..3 | Sort -Descending
3
2
1

Now if you want to do the sorting on the remote machine, you’d do this:

PS (2) > 1..3 | Invoke-Command localhost { Sort -Descending }
3
2
1

You’re essentially splitting the pipeline across local and remote parts, and the script-
block is used to demarcate which part of the pipeline should be executed remotely.
This works the other way as well:

PS (3) > Invoke-Command localhost { 1..3 } | sort -Descending
3
2
1

454 CHAPTER 12 REMOTING AND BACKGROUND JOBS

Here you’re generating the numbers on the remote computer and sorting them
locally. Of course, scriptblocks can contain more than one statement. This implies
that the semantics need to change a bit. Whereas in the simple pipeline case, stream-
ing input into the remote command was transparent, when the remote command
contains more than one statement, you have to be explicit and use the $input vari-
able to indicate where you want the input to go. This looks like the following:

PS (4) > 1..3 | Invoke-Command localhost {
>> "First"
>> $input | sort -Descending
>> "Last"
>> }
>>
First
3
2
1
Last

The scriptblock argument to Invoke-Command in this case contains three statements.
The first statement emits the string "First", the second statement does the sort on the
input, and the third statement emits the string "Last". What happens if you don’t
specify input? Let’s take a look:

PS (5) > 1..3 | Invoke-Command localhost {
>> "First"
>> Sort -Descending
>> "Last"
>> }
>>
First
Last

Nothing was emitted between "First" and "Last". Because $input wasn’t specified,
the input objects were never processed. You’ll need to keep this in mind when you
start to build a monitoring solution. Now let’s look at how concurrency—multiple
operations occurring at the same time—impacts your scripts.

12.2.2 Adding concurrency to the examples

In chapter 2, we talked about how each object passed completely through all states of
a pipeline, one by one. This behavior changes with remoting because the local and
remote commands run in separate processes that are executing concurrently. This
means that you now have two threads of execution—local and remote—and this can
have an effect on the order in which things are executed. Consider the following
statement:

PS (12) > 1..3 | foreach { Write-Host $_; $_; Start-Sleep 5 } |
>> Write-Host
>>
1

APPLYING POWERSHELL REMOTING 455

1
2
2
3
3

This statement sends a series of numbers down the pipeline. In the body of the
foreach scriptblock, the value of the current pipeline object is written to the screen
and then passed to the next state in the pipeline. This last stage also writes the object
to the screen. Given that you know each object is processed completely by all stages of
the pipeline, the order of the output is as expected. The first number is passed to the
foreach, where it’s displayed and then passed to Write-Output, where it’s displayed
again, so you see the sequence 1, 1, 2, 2, 3, 3. Now let’s run this command again
using Invoke-Command in the final stage:

PS (10) > 1..3 | foreach {
>> Write-Host -ForegroundColor cyan $_
>> $_; Start-Sleep 5 } |
>> Invoke-Command localhost { Write-Host }
>>
1
2
1
3
2
3

Now the order has changed—you see 1 and 2 from the local process in cyan on a
color display, then you see 1 from the remote process, and so on. The local and
remote pipelines are executing at the same time, which is what’s causing the changes
to the ordering. Predicting the order of the output is made more complicated by the
use of buffering and timeouts in the remoting protocol, the details of which we’ll
cover in chapter 13.

You used the Start-Sleep command in these examples to force these visible dif-
ferences. If you take out this command, you get a different pattern:

PS (13) > 1..3 | foreach { Write-Host $_; $_ } |
>> Invoke-Command localhost { Write-Host }
>>
1
2
3
1
2
3

This time, all the local objects are displayed and then passed to the remoting layer,
where they’re buffered until they can be delivered to the remote connection. This
way, the local side can process all objects before the remote side starts to operate.
Concurrent operation and buffering make it appear a bit unpredictable, but if you
didn’t have the Write-Hosts in place, it’d be essentially unnoticeable. The important
456 CHAPTER 12 REMOTING AND BACKGROUND JOBS

thing to understand is that objects being sent to the remote end will be processed
concurrently with the local execution. This means that the remoting infrastructure
doesn’t have to buffer everything sent from the local end before starting execution.

Up to now, you’ve only been passing simple commands to the remote end. But
because Invoke-Command takes a scriptblock, you can, in practice, send pretty much
any valid PowerShell script. You’ll take advantage of this fact in the next section
when you start to build your multimachine monitor.

NOTE So why does remoting require scriptblocks? There are a couple
of reasons. First, scriptblocks are always compiled locally so you’ll catch
syntax errors as soon as the script is loaded. Second, using scriptblocks
limits vulnerability to code injection attacks by validating the script
before sending it.

12.2.3 Solving a real problem: multimachine monitoring

In this section, you’re going to build a solution for a real management problem: mul-
timachine monitoring. With this solution, you’re going to gather some basic health
information from the remote host. The goal is to use this information to determine
when a server may have problems such as out of memory, out of disk, or reduced per-
formance due to a high faulting rate. You’ll gather the data on the remote host and
return it as a hashtable so you can look at it locally.

Monitoring a single machine

To simplify things, you’ll start by writing a script that can work against a single host.
The following listing shows this script.

$gatherInformation ={
 @{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | sort CPU -desc | select -First 5
 TopWS = Get-Process | sort -desc WS | select -First 5
 }
}
Invoke-Command servername $gatherInformation

This script uses a number of mechanisms to get the required data and returns the
result as a hashtable. This hashtable contains the following pieces of performance-
related information:

• The amount of free space on the C: drive from the Get-PSDrive command

• The page fault rate retrieved using WMI (see chapter 19)

Listing 12.1 Defining the data acquisition scriptblock
APPLYING POWERSHELL REMOTING 457

• The processes consuming the most CPU from Get-Process with a pipeline
• The processes that have the largest working set, also from Get-Process

You write the information-gathering scriptblock in exactly the same way you’d write
it for the local host—the fact that it’s being executed on another computer is entirely
transparent. All you had to do was wrap the code in an extra set of braces and pass it
to Invoke-Command.

Monitoring multiple machines

Working against one machine was simple, but your goal was multimachine monitor-
ing. So you need to change the script to run against a list of computers. You don’t
want to hardcode the list of computers in the script—that interferes with reuse—so
you’ll design it to get the data from a file called servers.txt. The content of this file is a
list of hostnames, one per line, which might look like this:

Server-sql-01
Server-sql-02
Server-sql-03
Server-Exchange-01
Server-SharePoint-Markerting-01
Server-Sharepoint-Development-01

Adding this functionality requires only a small, one-line change to the call to
Invoke-Command. This revised command looks like this:

Invoke-Command (Get-Content servers.txt) $gatherInformation

You could make this more complex—say you only wanted to scan certain computers
on certain days. You’ll update the servers.txt file to be a CSV file:

Name, Day
Server-sql-01,Monday
Server-sql-02,Tuesday
Server-sql-03,Wednesday
Server-Exchange-01, Monday
Server-SharePoint-Markerting-01, Wednesday
Server-Sharepoint-Development-01, Friday

Now when you load the servers, you’ll do some processing on this list, which looks
like this:

$servers = Import-CSV servers.csv |
 where { $_.Day -eq (Get-Date).DayOfWeek } |
 foreach { $_.Name }
Invoke-Command $servers $gatherInformation

There are still no changes required in the actual data-gathering code. Let’s move on to
the next refinement.

Resource management using throttling

In a larger organization, this list of servers is likely to be quite large, perhaps hun-
dreds or even thousands of servers. Obviously it isn’t possible to establish this many
458 CHAPTER 12 REMOTING AND BACKGROUND JOBS

concurrent connections—doing so would exhaust the system resources. To manage
the amount of resources consumed, you can use throttling. In general, throttling
allows you to limit the amount of resources that an activity can consume at one
time. In this case, you’re limiting the number of connections that command makes
at one time. There’s a built-in throttle limit to prevent accidental resource exhaus-
tion. By default, Invoke-Command will limit the number of concurrent connections
to 32. To override this, use the -ThrottleLimit parameter on Invoke-Command to
limit the number of connections. In this example you’re going to limit the number
of concurrent connections to 10:

$servers = Import-CSV –Path servers.csv |
 where { $_.Day -eq (Get-Date).DayOfWeek } |
 foreach { $_.Name }
Invoke-Command -ThrottleLimit 10 –ComputerName $servers `
 -ScriptBlock $gatherInformation

At this point, you’ll consolidate the incremental changes you’ve made and look at the
updated script as a whole, as shown in the next listing.

$gatherInformation ={
 @{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | sort CPU -desc | select -First 5
 TopWS = Get-Process | sort -desc WS | select -First 5
 }
}
$servers = Import-CSV –Path servers.csv |
 where { $_.Day -eq (Get-Date).DayOfWeek } |
 foreach { $_.Name }
Invoke-Command -Throttle 10 –ComputerName $servers `
 -ScriptBlock $gatherInformation

This has become a pretty capable script: it gathers a useful set of information from a
network of servers in a manageable, scalable way. It’d be nice if you could generalize it
a bit more so you could use different lists of servers or change the throttle limits.

Parameterizing the solution

You can increase the flexibility of this tool by adding some parameters to it. Here are
the parameters you want to add:

param (
 [Parameter()]
 [string] $ServerList = "servers.txt",
 [Parameter()]
 [int] $ThrottleLimit = 10,
 [Parameter()]

Listing 12.2 Data acquisition script using servers.csv file
APPLYING POWERSHELL REMOTING 459

 [int] $NumProcesses = 5
)

The first two are obvious: $ServerList is the name of the file containing the list of
servers to check, and $ThrottleLimit is the the throttle limit. Both of these param-
eters have reasonable defaults. The third one, $NumProcesses, is less obvious. This
parameter controls the number of process objects to include in the TopCPU and TopWS
entries in the table returned from the remote host. Although you could, in theory,
trim the list that gets returned locally, you can’t add to it, so you need to evaluate this
parameter on the remote end to get full control. That means it has to be a parameter
to the remote command. This is another reason scriptblocks are useful. You can add
parameters to the scriptblock that’s executed on the remote end. You’re finally modi-
fying the data collection scriptblock; the modified scriptblock looks like this:

$gatherInformation ={
 param ($procLimit = 5)
 @{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | sort CPU -desc | select -First $procLimit
 TopWS = Get-Process | sort -desc WS | select -First $procLimit
 }
}

And the updated call to Invoke-Command looks like this:

Invoke-Command -Throttle 10 -ComputerName $servers `
 -ScriptBlock $gatherInformation `
 -ArgumentList $numProcesses

Once again, let’s look at the complete updated script, shown in the following listing.

param (
 [parameter]
 [string] $serverFile = "servers.txt",
 [parameter]
 [int] $throttleLimit = 10,
 [parameter]
 [int] $numProcesses = 5
)

$gatherInformation ={
 param ([int] $procLimit = 5)
 @{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | sort CPU -desc | select -First $procLimit

Listing 12.3 Parameterized data acquisition script
460 CHAPTER 12 REMOTING AND BACKGROUND JOBS

 TopWS = Get-Process | sort -desc WS | select -First $procLimit
 }
}

$servers = Import-CSV servers.csv |
 where { $_.Day -eq (Get-Date).DayOfWeek } |
 foreach { $_.Name }

Invoke-Command -Throttle 10 -ComputerName $servers `
 -ScriptBlock $gatherInformation `
 -ArgumentList $numProcesses

This script is starting to become a bit complex. At this point, it’s a good idea to sepa-
rate the script code in $gatherInformation that gathers the remote information
from the “infrastructure” script that orchestrates the information gathering. You’ll put
this information-gathering part into its own script. Call this new script BasicHealth-
Model.ps1 (shown in the following listing) because it gathers some basic information
about the state of a machine.

param ($procLimit = 5)
@{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | sort CPU -desc | select -First $procLimit
 TopWS = Get-Process | sort -desc WS | select -First $procLimit
}

The orchestration code has to be changed to invoke this script. This step turns out to
be easy—you can just use the -FilePath option on Invoke-Command:

Invoke-Command -Throttle 10 -ComputerName $servers `
 -FilePath BasicHealthModel.ps1 `
 -ArgumentList $numProcesses

You’ll put the final revised orchestration script into a file called Get-HealthData.ps1,
shown in the next listing.

param (
 [parameter]
 [string] $serverFile = "servers.txt",
 [parameter]
 [int] $throttleLimit = 10,
 [parameter]
 [int] $numProcesses = 5
 [parameter]
 [string] $model = "BasicHealthModel.ps1"
)

Listing 12.4 Basic Health Model script

Listing 12.5 Data acquisition driver script
APPLYING POWERSHELL REMOTING 461

$servers = Import-CSV servers.csv |
 where { $_.Day -eq (Get-Date).DayOfWeek } |
 foreach { $_.Name }

Invoke-Command -Throttle 10 -ComputerName $servers `
 -FilePath $model `
 -ArgumentList $numProcesses

This separation of concerns allows you to add a parameter for specifying alternative
health models.

The result is that, with a small amount of code, you’ve created a flexible frame-
work for an “agentless” distributed health monitoring system. With this system, you
can run this health model on any machine without having to worry about whether
the script is installed on that machine or whether the machine has the correct version
of the script. It’s always “available” and always the right version because the infra-
structure is pushing it out to the target machines.

NOTE What we’re doing here isn’t what most people would call mon-
itoring. Monitoring usually implies a continual semi-real-time mecha-
nism for noticing a problem and then generating an alert. This system
is certainly not real-time and it’s a pull model, not a push. This solu-
tion is more appropriate for configuration analysis. The Microsoft
Baseline Configuration Analyzer has a similar (though much more
sophisticated) architecture.

You now have an idea of how to use remoting to execute a command on a remote
server. This is a powerful mechanism, but sometimes you need to send more than one
command to a server—for example, you might want to run multiple data-gathering
scripts, one after the other on the same machine. Because there’s a significant over-
head in setting up each remote connection, you don’t want to create a new connec-
tion for every script you execute. Instead, you want to be able to establish a persistent
connection to a machine, run all the scripts, and then shut down the connection. In
the next section you’ll learn how this is accomplished with sessions.

12.3 SESSIONS AND PERSISTENT CONNECTIONS

In the previous section, you learned how to run individual scriptblocks on remote
machines. For each scriptblock you sent, a new connection was set up that involved
authentication and version checks, an instance of PowerShell was created, the script-
block was executed, the results were serialized and returned to the caller, and finally,
the PowerShell instance was discarded and the connection was torn down. From the
user’s point of view, the Invoke-Command operation is simple, but under the covers a
lot of work has to be done by the system, which makes creating a new connection
each time a costly proposition. A new connection for each operation also means that
you can’t maintain any state on the remote host—things like variable settings or
462 CHAPTER 12 REMOTING AND BACKGROUND JOBS

function definitions. To address these issues, in this section we’ll show you how to
create persistent connections called sessions that will give you much better perfor-
mance when you want to perform a series of interactions with the remote host as
well as allow you to maintain remote state.

In simplest terms, a session is the environment where PowerShell commands are
executed. This is true even when you run the console host: PowerShell.exe. The
console host program creates a local session that it uses to execute the commands you
type. This session remains alive until you exit the program.

When you use remoting to connect to another computer, you’re also creating one
remote session for every local session you remote from, as shown in figure 12.2.

As mentioned earlier, each session contains all the things you work with in Power-
Shell—all the variables, all the functions that are defined, and the history of the com-
mands you typed—and each session is independent of any other session. If you want
to work with these sessions, then you need a way to manipulate them. You do this in
the “usual way”: through objects and cmdlets. PowerShell represents sessions as
objects that are of type PSSession.

These PSSession objects play an important role in remote computing: they hold
the state on the remote computer. By default, every time you connect to a remote
computer by name with Invoke-Command, a new PSSession object is created to
represent the connection to that remote machine. For example, when you run the
command

Invoke-Command mycomputer { "hello world" }

PowerShell connects to the remote machine, creates a PSSession on that computer,
executes the command, and then discards the session. This process is inefficient and
will be quite slow because setting up a connection and then creating and configuring
a session object is a lot of work. This pattern of operations is shown in figure 12.3.

Local machine 1 Remote machine

Remote session

for user 1

Local session for

user 1

Local machine 2

Local session for

user 2

Remote session

for user 2

User 1

User 2

Figure 12.2 Each local session that connects to a remote target requires a corresponding

session on the target machine. This session may be transient and go away at the end of the

command, or it may remain open until explicitly closed.
SESSIONS AND PERSISTENT CONNECTIONS 463

In this figure, you see the local machine setting up and then tearing down a session
for each call to Invoke-Command. If you’re going to run more than one command on
a computer, you need a way to create persistent connections to that computer. You
can do this with New-PSSession; the syntax for this cmdlet is shown in figure 12.4.

Invoke-Command creates connection 1

Session created

Scriptblock 1 sent for processing

Return results

Close connection 1

Destroy session

Session created

Scriptblock 2 sent for processing

Return results

Close connection 2

Session destroyed

Invoke-Command creates connection 2

S
e

s
s
io

n
 1

life
tim

e

S
e

s
s
io

n
 2

life
tim

e

Local machine Remote machine

Figure 12.3 The sequences of operations between the local and remote machines

when the name of the computer is specified for each command instead of using a

PSSession object. Each command sent from the local machine to the remote

machine results in a new session being created on the remote machine. Solid lines

show messages from the local machine to the remote machine, and dashed lines

are responses sent from the remote machine.

New-PSSession
[[-ComputerName] <String[]>] [-Port <Int32>]
[-Credential <PSCredential>] [-UseSSL]
[-Authentication <AuthenticationMechanism>]
[-CertificateThumbprint <String>]
[-Name <String[]>]
[-ConfigurationName <String>] [-ApplicationName <String>]
[-ThrottleLimit <Int32>]
[-SessionOption <PSSessionOption>]

Figure 12.4 The syntax for the New-PSSession cmdlet. This cmdlet

is used to create persistent connections to a remote computer.
464 CHAPTER 12 REMOTING AND BACKGROUND JOBS

This command has many of the same parameters that you saw in Invoke-Command.
The difference is that, for New-PSSession, these parameters are used to configure
the persistent session instead of the transient sessions you saw being created by
Invoke-Command. The PSSession object returned from New-PSSession can then
be used to specify the destination for the remote command instead of the computer
name. When you use a PSSession object with Invoke-Command, you see the pattern
of operations shown in figure 12.5.

In contrast to the pattern shown in figure 12.3, in this figure the lifetime of the
session begins with the call to New-PSSession and persists until it’s explicitly
destroyed by the call to Remove-PSSession. Let’s look at an example that illustrates
just how much of a performance difference sessions can make. You’ll run Get-Date
five times using Invoke-Command and see how long it takes using Measure-Command
(which measures command execution time). First, execute the test without sessions:

PS (1) > Measure-Command { 1..5 |
>> foreach { Invoke-Command brucepayx61 {Get-Date} } } |
>> Format-Table -AutoSize TotalSeconds
>>

TotalSeconds

 5.5867397

Remote machine

New-PSSession creates connection

PSSession created

Invoke-Command sends scriptblock 1 for processing

Return results

PSSession destroyed

S
e

s
s
io

n
 life

tim
e

Remove-PSSession closes connection

Invoke-Command sends scriptblock 2 for processing

Return results

Return results

Invoke-Command sends scriptblock 3 for processing

Local machine

Figure 12.5 The sequence of operations between the local and remote

machines when a New-PSSession is used to create a persistent session.

When New-PSSession is used, multiple commands are processed before

the session is removed with Remove-PSSession.
SESSIONS AND PERSISTENT CONNECTIONS 465

The result from Measure-Command shows that each operation appears to be taking
about 1 second. Modify the example to create a session at the beginning, and then
reuse it in each call to Invoke-Command:

PS (2) > Measure-Command {
>> $s = New-PSSession brucepayx61
>> 1..5 |
>> foreach { Invoke-Command $s {Get-Date} }
>> Remove-PSSession $s
>> } |
>> Format-Table -AutoSize TotalSeconds
>>

TotalSeconds

 1.138609

This output shows that it’s taking about one-fifth the time as the first command. As a
further experiment, you’ll change the number of remote invocations from 5 to 50:

PS (3) > Measure-Command {
>> $s = New-PSSession brucepayx61
>> 1..50 |
>> foreach { Invoke-Command $s {Get-Date} }
>> Remove-PSSession $s
>> } |
>> Format-Table -AutoSize TotalSeconds
>>

TotalSeconds

 1.608232

The result shows that there’s barely any increase in execution time. Clearly, for this
simple example the time to set up and break down the connection totally dominates
the execution time. Other factors affect real scenarios, such as network performance,
the size of the script, and the amount of information being transmitted. Still, it’s
quite obvious that in a situation where multiple interactions are required, using a ses-
sion will result in substantially better performance.

As you’ve seen in this section, the basic patterns of operation with PSSessions are
straightforward and can have substantial performance benefits. There are still a few
additional details to explore, as you’ll see in the next section.

12.3.1 Additional session attributes

This section describes some PSSession attributes that you should be aware of. These
attributes can have an impact on the way you write your scripts.

Technically, a session is an environment or execution context where PowerShell
executes commands. Each PowerShell session includes an instance of the PowerShell
engine and is associated with a host program, which manages the interactions between
PowerShell and the end user. These interactions include how text is displayed, how
466 CHAPTER 12 REMOTING AND BACKGROUND JOBS

prompting is done, and so on. The host services are made available to scripts through
the $host variable, which also has a Name property used to determine what host the
script is running under. Two client host applications are included with PowerShell
v2—the PowerShell console host

PS (1) > $host.Name
ConsoleHost

and the PowerShell ISE:

PS (1) > $host.Name
Windows PowerShell ISE Host

Also included is a server host used by the remoting layer:

PS (2) > Invoke-Command localhost { $host.Name }
ServerRemoteHost

NOTE An impressive number of third-party client hosts are also avail-
able. As of this writing, these third-party hosts include PowerShell Plus
from Idera Software, PowerGUI from Quest Software, PowerWF from
Devfarm Software Corporation, and Citrix Workflow Studio from Cit-
rix. In addition, Sapien Technologies offers the PrimalScript IDE for
doing script development in PowerShell. These products present a
wide variety of approaches to hosting the PowerShell engine. In addi-
tion, a number of open source PowerShell host projects are available on
www.codeplex.com that you may choose to explore.

Sessions and hosts

The host application running your scripts can impact the portability of your scripts if
you become dependent on specific features of that host. (This is why PowerShell
module manifests include the PowerShellHostName and PowerShellHostVersion
elements.) Dependency on specific host functionality is a consideration with remote
execution because the remote host implementation is used instead of the normal
interactive host. This is necessary to manage the extra characteristics of the remote or
job environments. This host shows up as a process named wsmprovhost correspond-
ing to the executable wsmprovhost.exe. This host only supports a subset of the fea-
tures available in the normal interactive PowerShell hosts.

Session isolation

Another point is the fact that each session is configured independently when it’s cre-
ated, and once it’s constructed, it has its own copy of the engine properties, execution
policy, function definitions, and so on. This independent session environment exists
for the duration of the session and isn’t affected by changes made in other sessions.
This principle is called isolation—each session is isolated from, and therefore not
affected by, any other session.
SESSIONS AND PERSISTENT CONNECTIONS 467

Only one command runs at a time

A final characteristic of a session instance is that you can run only one command (or
command pipeline) in a session at one time. If you try to run more than one com-
mand at a time, a “session busy” error will be raised. But there’s some limited com-
mand queuing: if there’s a request to run a second command synchronously (one at a
time), the command will wait up to 4 minutes for the first command to be completed
before generating the “session busy” error. But if a second command is requested to
run asynchronously—that is, without waiting—the busy error will be generated
immediately.

With some knowledge of the characteristics and limitations of PowerShell ses-
sions, you can start to look at how to use them.

12.3.2 Using the New-PSSession cmdlet

In this section, you’ll learn how to use the New-PSSession cmdlet. Let’s start with an
example. First, you’ll create a PSSession on the local machine by specifying local-
host as the target computer:

PS (1) > $s = New-PSSession localhost

NOTE By default on Windows Vista, Windows Server 2008 R2, and
above, a user must be running with elevated privileges to create a ses-
sion on the local machine. Section 13.1.4 explains why this is the case
and describes how to change the default setting. (Earlier platforms like
XP don’t require the user to be elevated.)

You now have a PSSession object in the $s variable that you can use to execute
“remote” commands. Earlier we said each session runs in its own process. You can
confirm this by using the $PID session variable to see what the process ID of the ses-
sion process is. First, run this code in the remote session:

PS (2) > Invoke-Command $s { $PID }
7352

And you see that the process ID is 7352. When you get the value in the local session
by typing $PID at the command line, as shown here

PS (3) > $PID
5076

you see that the local process ID is 5076. Now define a variable in the remote session:

PS (4) > Invoke-Command $s {$x=1234}

With this command, you’ve set the variable $x in the remote session to 1234. Now
invoke another command to retrieve the value:

PS (5) > Invoke-Command $s { $x }
1234
468 CHAPTER 12 REMOTING AND BACKGROUND JOBS

You get the expected value back. If you had done this without using the session, you
wouldn’t have gotten the correct value back because the value of $x would have been
lost when the remote session was closed down. Next, define a function hi:

PS (6) > Invoke-Command $s { function hi { "Hello there" } }

And then use Invoke-Command to call it:

PS (7) > Invoke-Command $s { hi }
Hello there

This works in much the same way as it does in the local case—changes to the remote
environment are persisted across the invocations. You can redefine the function and
make it reference the $x variable you defined earlier:

PS (8) > Invoke-Command $s { function hi { "Hello there, x is $x" } }
PS (9) > Invoke-Command $s { hi }
Hello there, x is 1234

You get the preserved value.

NOTE We’ve had people ask if other users on the computer can see
the sessions we’re creating. As mentioned earlier, this isn’t the case.
Users have access only to the remote sessions they create and only from
the sessions they were created from. In other words, there’s no way for
one session to connect to another session that it didn’t itself create. The
only aspect of a session that may be visible to another user is the exis-
tence of the wsmprovhost process hosting the session.

As you’ve seen, remote execution is just like the local case…well, almost. You have to
type Invoke-Command every time. If you’re executing a lot of interactive commands
on a specific machine, this task becomes annoying quickly. PowerShell provides a
much better way to accomplish this type of task, as you’ll see in the next section.

12.3.3 Interactive sessions

In the previous sections, you learned how to issue commands to remote machines
using Invoke-Command. This approach is effective but gets annoying for more inter-
active types of work. To make this scenario easier, you can start an interactive session
using the Enter-PSSession cmdlet. Once you’re in an interactive session, the com-
mands that you type are automatically passed to the remote computer and executed
without having to use Invoke-Command. Let’s try this out. You’ll reuse the session
you created in the previous section. In that session, you defined the variable $x and
the function hi. To enter interactive mode during this session, you’ll call Enter-
PSSession, passing in the session object:

PS (10) > Enter-PSSession $s
[localhost]: PS C:\Users\brucepay\Documents>
SESSIONS AND PERSISTENT CONNECTIONS 469

As soon as you enter interactive mode, you see that the prompt changes: it now
displays the name of the machine you’re connected to and the current directory.

NOTE The default prompt can be changed in the remote session in
the same way it can be changed in the local session. If you have a
prompt definition in your profile, you may be wondering why that
wasn’t used. We’ll get to that later in section 12.6.2, when we look at
some of the things you need to keep in mind when using remoting.

Now let’s check out the value of $x:

[localhost]: PS C:\Users\brucepay\Documents> $x
1234

It’s 1234, which is the last value you set it to using Invoke-Command in the previous
section. The remote session state has been preserved and is now available to you inter-
actively. Let’s try running the hi function you defined:

[localhost]: PS C:\Users\brucepay\Documents> hi
Hello there, x is 1234

It also works. In addition to examining the state of things, you can change them.
Change the value of $x, and then rerun the hi function, which uses $x in its output:

[localhost]: PS C:\Users\brucepay\Documents> $x=6
[localhost]: PS C:\Users\brucepay\Documents> hi
Hello there, x is 6

The changed value is displayed in the output. You can exit an interactive remote ses-
sion either by using the exit keyword or by using the Exit-PSSession cmdlet (sec-
tion 13.2.6 explains why there are two ways to do this):

[localhost]: PS C:\Users\brucepay\Documents> exit

You see that the prompt changed back, and when you try to run the hi function

PS (11) > hi
The term 'hi' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check the spelling of the name,
or if a path was included, verify that the path is correct
and try again.
At line:1 char:3
+ hi <<<<
 + CategoryInfo : ObjectNotFound: (hi:String) [],
CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

you get an error because the function was only defined in the remote environment.
Now try to reenter the session:

PS (12) > Enter-PSSession $s
[localhost]: PS C:\Users\brucepay\Documents> $x
6

470 CHAPTER 12 REMOTING AND BACKGROUND JOBS

When you reenter the session, the environment is exactly as you left it. You can run
the hi function

[localhost]: PS C:\Users\brucepay\Documents> hi
Hello there, x is 6

and it works. Now you can exit it again

[localhost]: PS C:\Users\brucepay\Documents> exit
PS (13) >

and you’re back in your local environment. You can enter and exit a session as often as
you need to as long as it’s not removed in the interim.

Another useful feature to consider is the fact that you can have more than one ses-
sion open at a time. This means that you can pop back and forth between multiple
computers as needed. In chapter 15, you’ll see how the PowerShell ISE takes advan-
tage of this capability, allowing you to have different sessions open in different tabs.
The ability to have multiple concurrent sessions makes dealing with multiple
machines very convenient.

Additional differences exist between the pattern where you used Invoke-
Command for each command and the interactive mode. In the noninteractive
Invoke-Command case, the remote commands send objects back, where they’re for-
matted on the local machine. In the interactive remoting case, the objects are format-
ted on the remote machine and simple strings are sent to the local machine to be
displayed. This process is illustrated in figure 12.6.

Remote machineLocal machine

Explicit remoting

Pipeline

processor
Formatter

User sends commands to remote host for execution

Formatted strings

Interactive remoting

Remote machineLocal machine

Pipeline

processor
Formatteroutput objectsFormatted strings Output objects

Output objects

User

User User sends commands to remote host for execution

Figure 12.6 When using explicit remoting (top), objects are returned from the remote host

and formatted locally. With interactive remoting (bottom), the objects are formatted on the

remote machine and the formatted strings are sent back to the local machine.
SESSIONS AND PERSISTENT CONNECTIONS 471

The differences in behavior this process may cause are somewhat subtle. Most of the
time the process is invisible. Situations where you might experience some conse-
quences are when the local session and the remote session are in different locales—that
is, the sessions have different language and cultural settings. In this case, things like
dates will be displayed differently in the local and remote cases. The other scenario
where there could be a visible difference is when there’s formatting information for the
objects you’re working with that’s different (or missing) on one end or the other.

Finally, as with the noninteractive remoting case, you can run an interactive ses-
sion in a temporary session by passing the name of the computer instead of an exist-
ing PSSession. Using the PSSession has the advantage that you can enter and exit
the remote session and have the remote state preserved between activities. If the name
of the computer is passed in, the connection will be torn down when you exit the ses-
sion. Because a remote session involved creating a remote host process, forgetting to
close your sessions can lead to wasting resources. At any point, you can use the Get-
PSSession to get a list of the open sessions you currently have and use Remove-
PSSession to close them as appropriate.

By now, you should be comfortable with creating and using persistent remote ses-
sions. What we haven’t spent much time on is how to manage all these connections
you’re creating. We’ll expand our discussion to include these topics in the next section.

12.3.4 Managing PowerShell sessions

Each PSSession is associated with an underlying Windows process. As such, it con-
sumes significant resources even when no commands are being executed in it. To
limit the load on the remote system, you should delete PSSessions that are no longer
needed and maintain only the ones currently in use. This step reduces the memory
usage and similar drains on the remote system. At the same time, creating new
PSSessions also puts a load on the system, consuming additional CPU resources to
create each new process. When managing your resource consumption, you need to
balance the cost of creating new sessions against the overhead of maintaining multiple
sessions. There’s no hard-and-fast rule for deciding what this balance should be. In
the end, you should decide on an application-by-application basis. Let’s review the
tools you have for session management.

To get a list of the existing PSSessions, you use the Get-PSSession command,
and to remove sessions that are no longer needed, you use the Remove-PSSession
cmdlet. The Remove-PSSession cmdlet closes the PSSession, which causes the
remote process to exit and frees up all the resources it held. Removing the session
also frees up local resources like the network connection used to connect to the
remote session.

So far, the focus of our resource management discussion has been on managing
connections from the client end. On the client end, if you don’t explicitly remove the
sessions or set timeouts, local sessions will remain open until you end your Power-
Shell session. But what happens if the client fails for some reason without closing its
472 CHAPTER 12 REMOTING AND BACKGROUND JOBS

sessions? If these sessions are allowed to persist without some mechanism for closing
them, eventually the remote server’s resources could become exhausted. In this sce-
nario you can’t rely on being able to reconnect to the remote machine, which means
you need a mechanism to allow it to do its own cleanup.

To address this problem, the PowerShell remoting infrastructure uses a “heart-
beat” pulse sent between the local and remote machines to make sure that the con-
nection between the machines is still valid. The heartbeat pulse is sent every 3
minutes to validate the connection. If the client computer doesn’t respond to the
pulse within 4 minutes, the PSSession associated with that connection will be closed
automatically. This allows the remote machine to prevent “orphaned” processes that
are no longer being used by the client from eventually exhausting its resource.

At this point, let’s review what we’ve covered. We’ve looked at the basic remoting
concepts. We’ve examined the use of transient and persistent sessions in noninterac-
tive and interactive scenarios. In the next section, we’ll explore another feature that
lets you merge local and remote operations in an almost seamless way.

12.4 IMPLICIT REMOTING

When doing noninteractive remoting, you have to call Invoke-Command every time
you want to execute a remote operation. You can avoid this task by using Enter-
PSSession to set up a remote interactive session. This approach makes remote exe-
cution easy but at the cost of making local operations difficult. In this section, we’ll
look at a mechanism that makes both local and remote command execution easy.
This mechanism is called implicit remoting.

NOTE For implicit remoting to work, the execution policy on the cli-
ent machine has to be configured to allow scripts to run, typically by
setting it to RemoteSigned. This is necessary because implicit remot-
ing generates a temporary module, and PowerShell must be allowed to
execute scripts in order to load this module. If execution policy is set to
Restricted or AllSigned, it won’t be able to do this. This require-
ment only applies to the local client machine. A remote server can still
use a more restrictive policy. See section 21.3.2 for more information
about execution policy.

The goal of implicit remoting is to make the fact that remote operations are occur-
ring invisible to the user and to have all operations look as much like local opera-
tions as possible. You can accomplish this goal by generating local proxy functions
that run the remote commands under the covers. The user calls the local proxy,
which takes care of the details involved in making the remote command invoca-
tion, as shown in figure 12.7.

The net effect is that everything looks like a local operation because everything is a
local operation. In the next section, you’ll see how to use this facility.
IMPLICIT REMOTING 473

12.4.1 Using implicit remoting

To set up the remote proxy functions mentioned in the previous section, use the
Import-PSSession cmdlet. The syntax for this cmdlet is shown in figure 12.8.

Let’s explore how this cmdlet works by walking through an example. You’ll create
a PSSession and then define a function in that session. The goal is to be able to exe-
cute this remote function as though it was defined locally. In other words, you want
to implicitly remote the function. To accomplish this, you call Import-PSSession,
which generates a function that you can call locally. This local function does the
remote call on your behalf—it acts as your proxy. The steps in this process are shown
in figure 12.9.

You’ll begin by creating the connection to a remote machine. To do this, you may
need to get credentials for the remote host.

Remote machineLocal machine

Actual

remote

command

User executes local command

Remote invocation request

Local

proxy

function

Local request

Local output

User

Output objects returned from remote cmd

Figure 12.7 With implicit remoting, the user calls a local proxy command. This command

takes care of making the remote invocation. The user need not be concerned with the details

of the remote invocation.

Import-PSSession
[-Session] <PSSession>
[[-CommandName] <String[]>]
[[-FormatTypeName] <String[]>]
[-Prefix <String>]
[-DisableNameChecking]
[-AllowClobber] [-ArgumentList <Object[]>]
[-CommandType <CommandTypes>]
[-Module <String[]>]

Figure 12.8 The syntax for the Import-PSSession cmdlet. This cmdlet

is used to create local proxy commands that invoke the corresponding

remote command on the target computer.
474 CHAPTER 12 REMOTING AND BACKGROUND JOBS

NOTE In a domain environment, this step is unnecessary as long as your
user account has sufficient privileges to access the remote end point. But
if you want to log on as a different used, credentials will be required.

The Get-Credential cmdlet will prompt you for your username and password:

PS (1) > $cred = Get-Credential

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential

Now that you have the credential object in $cred, you can establish a session on the
remote machine:

PS (2) > $s = New-PSSession brucepay64h -Credential $cred

Next, you’ll use Invoke-Command to define a new function on the remote machine.
This is the command you’ll import:

PS (3) > Invoke-Command $s {
>> function Get-Bios { Get-WmiObject Win32_Bios }

Remote machine

New-PSSession creates connection

PSSession created

Use Invoke-Command to define Get-Bios on remote machine

Remote Get-Bios function created

R
e

m
o

te
 s

e
s
s
io

n
 life

tim
e

Call local Get-Bios

Use Import-PSSession to import Get-Bios

Metadata for Get-Bios returned from remote machine

Local Get-Bios proxy function
created using metadata

Local function calls remote Get-Bios

Remote data returned to
local functionLocal data returned

Local Get-Bios
function created

Local machine

Figure 12.9 The sequence of steps needed to create a session, define a new

remote command in that session, use Import-PSSession to import that

command, and finally call the imported command. When you use Import-
PSSession to import a command, metadata describing the remote command

is retrieved from the target machine and used to create a local proxy command.

When this proxy command is called, it implicitly calls the remote command to

perform the operation on the remote machine.
IMPLICIT REMOTING 475

>> }
>>

The new remote function is called Get-Bios and uses WMI (chapter 19) to retrieve
information about the BIOS on the remote machine. Invoke this function through
explicit remoting using Invoke-Command so you can see what it does:

PS (4) > Invoke-Command $s {Get-Bios}

SMBIOSBIOSVersion : 3.34
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - Award BIOS v6.00PG
SerialNumber : MXK5380BK3 NA580
Version : HP-CPC - 42302e31
PSComputerName : brucepay64h

It returns a set of information about the BIOS on the remote machine. Now you’re set
up to use Import-PSSession to create a local proxy for this command:

PS (5) > Import-PSSession -Session $s -CommandName Get-Bios

ModuleType Name ExportedCommands
---------- ---- ----------------
Script tmp_00288002-bcec-43fd... Get-Bios

You might recognize the output from this command—it’s the same thing you see
when you do Import-Module. We’ll discuss what that means in a minute, but first
let’s see if you now have a local Get-Bios command by running it:

PS (6) > Get-Bios

SMBIOSBIOSVersion : 3.34
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - Award BIOS v6.00PG
SerialNumber : MXK5380BK3 NA580
Version : HP-CPC - 42302e31

You get the same result you saw when you did the explicit remote invocation, but
without having to do any extra work to access the remote machine. The proxy com-
mand did that for you. This is the goal of implicit remoting: to make the fact that the
command is being executed remotely invisible. In the next section, you’ll learn how it
all works.

12.4.2 How implicit remoting works

Now that you’ve seen implicit remoting in action, let’s look at how it’s implemented.
The sequence of operations performed by the implicit remoting mechanism is shown
in figure 12.10.

When the user requests that a command be imported, a message is sent to the remote
computer for processing. The import request processor looks up the command and
retrieves the metadata (i.e., the CommandInfo object) for that command. That metadata
is processed to simplify it, removing things like complex type attributes. Only the core
476 CHAPTER 12 REMOTING AND BACKGROUND JOBS

remoting types are passed along. This metadata is received by the local machine’s proxy
function generator. It uses this metadata to generate a function that will implicitly call
the remote command. Let’s take closer look at what the generated proxy looks like. You
can look at the imported Get-Bios command using Get-Command:

PS (7) > Get-Command Get-Bios

CommandType Name Definition
----------- ---- ----------
Function Get-Bios ...

The output shows that you have a local function called Get-Bios. You can look at
the definition of that function by using the Definition property on the Command-
Info object returned by Get-Command:

PS (8) > Get-Command Get-Bios | % { $_.Definition }
 param(
 [Switch]
 ${AsJob})
begin {
 try {
 $positionalArguments = & $script:NewObject collections.arraylist
 foreach ($parameterName in $PSBoundParameters.BoundPositionally)
 {
 $null = $positionalArguments.Add(
 $PSBoundParameters[$parameterName])
 $null = $PSBoundParameters.Remove($parameterName)
 }
 $positionalArguments.AddRange($args)
 $clientSideParameters = Get-PSImplicitRemotingClientSideParameters `
 $PSBoundParameters $False
 $scriptCmd = { & $script:InvokeCommand `

Remote machineLocal machine

Command

table on

remote

machine

User calls Import-Session $s -Command c

Proxy

function

generator

Request to import c is sent to remote machine

Processed c metadata

Import

request

processor

Look up c

Raw c metadata

Local

command

table Add c

User

Figure 12.10 How remote commands are imported by the implicit remoting mechanism.

Import-PSSession works by sending a message to the remote computer to retrieve the

metadata for the requested command. This metadata is processed and returned to the local

machine, where a proxy advanced function is generated.
IMPLICIT REMOTING 477

 @clientSideParameters `
 -HideComputerName `
 -Session (Get-PSImplicitRemotingSession `
 -CommandName 'Get-Bios') `
 -Arg ('Get-Bios', $PSBoundParameters,
 $positionalArguments) `
 -Script { param($name, $boundParams,
 $unboundParams)
 & $name @boundParams @unboundParams}}

 $steppablePipeline = $scriptCmd.GetSteppablePipeline(
 $myInvocation.CommandOrigin)
 $steppablePipeline.Begin($myInvocation.ExpectingInput,
 $ExecutionContext)
 } catch {
 throw
 }
}
process {
 try {
 $steppablePipeline.Process($_)
 } catch {
 throw
 }
}
end {
 try {
 $steppablePipeline.End()
 } catch {
 throw
 }
}

Even though this output has been reformatted a bit to make it more readable, it’s a
pretty complex function and uses many of the more sophisticated features we’ve cov-
ered in previous chapters. It uses advanced functions, splatting, scriptblocks, and
steppable pipelines. Fortunately, you never have to write these functions yourself.

NOTE You don’t have to create proxy functions for this particular sce-
nario, but back in section 11.5.2 you saw how this technique can be
very powerful in extending the PowerShell environment.

The Import-PSSession cmdlet does this for you. It will create a proxy function for
each command it’s importing, which could lead to a lot of commands. Managing a
lot of new commands in your environment could be a problem, so let’s go back to
looking at exactly what the output from Import-PSSession was. We commented at
the time that it looked like the output from Import-Module, and this is exactly what
it is. As well as generating proxy functions on your behalf, Import-PSSession
478 CHAPTER 12 REMOTING AND BACKGROUND JOBS

creates a module to contain these functions. You’ll use Get-Module to verify this and
format the output as a list to see all the details:

PS (9) > Get-Module | Format-List *

ExportedCommands : {Get-Bios}
Name : tmp_00288002-bcec-43fd-853f-8059edfd2430_y
 hv1i4f4.ogw
Path : C:\Users\brucepay\AppData\Local\Temp\tmp_0
 0288002-bcec-43fd-853f-8059edfd2430_yhv1i4
 f4.ogw\tmp_00288002-bcec-43fd-853f-8059edf
 d2430_yhv1i4f4.ogw.psm1
Description : Implicit remoting for http://brucepay64h/w
 sman
Guid : 00288002-bcec-43fd-853f-8059edfd2430
ModuleBase : C:\Users\brucepay\AppData\Local\Temp\tmp_0
 0288002-bcec-43fd-853f-8059edfd2430_yhv1i4
 f4.ogw
PrivateData : {ImplicitRemoting}
Version : 1.0
ModuleType : Script
AccessMode : ReadWrite
ExportedFunctions : {[Get-Bios, Get-Bios]}
ExportedCmdlets : {}
NestedModules : {}
RequiredModules : {}
ExportedVariables : {}
ExportedAliases : {}
SessionState : System.Management.Automation.SessionState
OnRemove :
 $sourceIdentifier =
 [system.management.automation.wildcardpattern]::
 Escape(
 $eventSubscriber.SourceIdentifier)
 Unregister-Event -SourceIdentifier `
 $sourceIdentifier -Force -ErrorAction `
 SilentlyContinue

 if ($previousScript -ne $null)
 {
 & $previousScript $args
 }

ExportedFormatFiles : {C:\Users\brucepay\AppData\Local\Temp\tmp_
 00288002-bcec-43fd-853f-8059edfd2430_yhv1i
 4f4.ogw\tmp_00288002-bcec-43fd-853f-8059ed
 fd2430_yhv1i4f4.ogw.format.ps1xml}
ExportedTypeFiles : {}

PS (10) >
IMPLICIT REMOTING 479

Things to notice in this output (again reformatted for readability) include the fact
that the module name and path are temporary generated names. This module also
defines an OnRemove handler (see chapter 10) to clean up when the module is
removed. To see the contents of the module, you can look at the temporary file that
was created by opening it in an editor using the module’s Path property. For exam-
ple, to open the module file in PowerShell ISE, use this code:

PS (14) > powershell_ise (Get-Command Get-Bios).Module.Path

Alternatively, you can save the session to an explicitly named module for reuse with
Export-PSSession. You’ll save this session as a module called bios:

PS (15) > Export-PSSession -OutputModule bios -Session $s `
>> -type function -CommandName Get-Bios -AllowClobber
>>

 Directory: C:\Users\brucepay\Documents\WindowsPowerShell\Mod
 ules\bios

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/29/2009 1:05 PM 10359 bios.psm1
-a--- 11/29/2009 1:05 PM 99 bios.format.ps1xml
-a--- 11/29/2009 1:05 PM 532 bios.psd1

Executing this command created a new module in your user module directory. It cre-
ated the script module file (.psm1), the module manifest (.psd1), and a file containing
formatting information for the command. You used the -AllowClobber parameter
because the export is using the remote session to gather the data. If it finds a command
being exported that already exists in the caller’s environment, this would be an error.
Because Get-Bios already exists, you had to use -AllowClobber. Now you’ll try out
the new module. First, you need to clean the existing module and session:

PS (32) > Get-Module | Remove-Module
PS (33) > Remove-PSSession $s

Import the module

PS (34) > Import-Module bios

and it returns right away. It can do this because it hasn’t actually set up the remote
connection yet. This will happen the first time you access one of the functions in the
module. Run Get-Bios:

PS (35) > Get-Bios
Creating a new session for implicit remoting of "Get-Bios"
command...
The term 'Get-Bios' is not recognized as the name of a cmdlet,
function, script file, or operable program. Check the spelling of
 the name, or if a path was included, verify that the path is
480 CHAPTER 12 REMOTING AND BACKGROUND JOBS

correct and try again.
 + CategoryInfo : ObjectNotFound: (Get-Bios:String)
 [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

When you ran this command, you saw a message indicating that a new connection
was being created, and then the credential prompt popped up. This is pretty much as
expected. But then you got an error saying the command Get-Bios wasn’t found.
This is because you dynamically added the function to the remote session. When you
established a new session, because you didn’t add the function, it wasn’t there. In the
next section, we’ll describe how to create remote endpoints that always contain your
custom functions.

Let’s briefly review where we are. You’ve seen how PowerShell remoting allows
you to execute commands on a remote machine. You know how to use explicit
remoting to send scriptblocks to the remote computer to be executed. We explored
interactive remoting where every command is sent to the remote machine, making it
look as if you’re working directly on that machine. Finally, we looked at implicit
remoting, which makes it appear that all your commands are being run locally. This
greatly simplifies remoting for the casual user. It allows you to do things like manage
an Exchange mail server without having to install any code locally: you can use
implicit remoting to generate a proxy module for the Exchange management module
residing on another.

One thing that’s been constant across all of these remoting experiences is that you
always had to wait for the remote commands to complete before issuing the next
command. But early on in our discussion of remoting, we noted that because there
are two (or more) processes involved, things actually do happen concurrently. In the
next section, you’ll see how this characteristic is used to implement background jobs
in PowerShell.

12.5 BACKGROUND JOBS IN POWERSHELL

In the previous section, you saw that although remote PowerShell sessions run in sep-
arate processes, the user is still prevented from running new commands until the
remote command completes. If you change things so that the caller doesn’t block,
then other commands can run in parallel. This is how PowerShell background jobs
work. With background jobs, the arrangement of executing commands and processes
is shown in figure 12.11.

NOTE In section 12.1.1, you saw that some commands have built-in
remoting capabilities. In a similar fashion, there are also commands that
have built-in job support. For example, the WMI commands have an
-AsJob parameter that allows one or more WMI operations to execute
in the background. This type of job doesn’t rely on the background
BACKGROUND JOBS IN POWERSHELL 481

execution mechanism we’re describing in this section. Instead, they use
their own implementation of background execution. In the case of
WMI jobs, they run in process but on a separate thread. The PowerShell
job infrastructure was explicitly designed to support this kind of exten-
sion. If third parties expose their job abstractions as subclasses of the
PowerShell Job type, these extension jobs can be managed using the
built-in job cmdlets just like native PowerShell jobs.

There’s more to background jobs than simply executing multiple things at the same
time. Background jobs are designed to be commands that run asynchronously while
you continue to do other things at the console. This means that there needs to be a
way to manage these background jobs—starting and stopping them as well as retriev-
ing the output in a controlled way.

NOTE Background jobs are implemented using processes that are
children of your interactive PowerShell process. This means that if you
end your PowerShell session, causing the process to exit, this will also
cause all the background jobs to be terminated, because child processes
are terminated when the parent process exits.

In this section we’ll cover the cmdlets that are used to accomplish these tasks. We’ll
look at starting, stopping, and waiting for jobs. We’ll explore the Job objects used to
represent a running job. Finally, you’ll learn how to combine remoting with jobs to
run jobs on remote machines.

PowerShell process #1

User
Foreground

command

PowerShell process #2

PowerShell process #3

Interactive cmds

PowerShell process #4

Background

command #1

Background

command #2

Background

command #3

Figure 12.11 The user sends interactive

commands to be executed by the foreground

loop. Background commands are executed in

separate processes; each process has its own

command loop. For each background job the user

creates, a new instance of PowerShell.exe

is run to host the command loop for that job.

This means that, if there are three background

jobs as shown, then four processes are

running—three for the background jobs and

one for the interactive foreground job.
482 CHAPTER 12 REMOTING AND BACKGROUND JOBS

12.5.1 The job commands

As with remoting, jobs are managed with a set of cmdlets. These cmdlets are shown
in table 12.3.

A background job runs commands asynchronously. They’re used to execute long-
running commands in a way that the interactive session isn’t blocked until that com-
mand completes.

When a synchronous command runs, PowerShell waits until that command has
completed before accepting any new commands. When a command is run in the
background, instead of blocking, the command returns immediately, emitting an
object that represents the new background job.

Although you get back control immediately (a new prompt) with the Job object,
you obviously won’t get the results of that job even if the job runs quickly. Instead,
you use a separate command to get the job’s results. You also have commands to stop
the job, to wait for the job to be completed, and finally to delete the job. Let’s see
how these commands are used.

12.5.2 Working with the job cmdlets

You use the Start-Job command to start a background job on a local computer.
Let’s try this with a simple example. You’ll start a job and then pipe the resulting Job
object through Format-List so you can see of the members on the object:

PS (1) > Start-Job { "Hi" } | Format-List

HasMoreData : True
StatusMessage :
Location : localhost
Command : "Hi"
JobStateInfo : Running
Finished : System.Threading.ManualResetEvent
InstanceId : fefc87f6-b5a7-4319-9145-616317ac8fcb
Id : 1
Name : Job1
ChildJobs : {Job2}

Table 12.3 The cmdlets for working with PowerShell jobs

Cmdlet Description

Start-Job Used to start background jobs. It takes a scriptblock as the argument
representing the job to execute.

Stop-Job Stops a job based on the JobID.

Get-Job Returns a list of currently executing jobs associated with the current
session.

Wait-Job Waits for one or more jobs to complete.

Receive-Job Gets the results for a specific job.

Remove-Job Removes a job from the job table so the resources can be released.
BACKGROUND JOBS IN POWERSHELL 483

Output : {}
Error : {}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}
State : Running

As with the remoting cmdlets, the command to execute is specified by a scriptblock.
When the command runs, you see that an object is returned, containing a wealth of
information about the job. We’ll look at this object in a detail later on. For now, we’ll
keep looking at the cmdlets. Now that you’ve started a job, you can use the Get-Job
cmdlet to get information about that job:

PS (3) > Get-Job | fl

HasMoreData : True
StatusMessage :
Location : localhost
Command : "Hi"
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : fefc87f6-b5a7-4319-9145-616317ac8fcb
Id : 1
Name : Job1
ChildJobs : {Job2}
Output : {}
Error : {}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}
State : Completed

This cmdlet returned the same Job object that you saw returned from Start-Job.
(You can tell it’s the same object by looking at the InstanceId, which is a GUID and
is guaranteed to be unique for each job.) There’s one significant different in this out-
put: if you look at the State property, you see that it has changed from Running to
Completed. So the first thing to note is that a job remains in the job table even after
it has completed and will remain there until it’s explicitly removed using the Remove-
Job cmdlet. To get the results of the job, you can use another cmdlet: Receive-Job.
This cmdlet will return the results of the command that was executed:

PS (5) > Receive-Job 1
Hi

This returns the string that was emitted by the scriptblock passed to Start-Job. This
isn’t a very interesting example. Let’s try something that will take a bit longer to run.
First, define the scriptblock you want to run in the $jsb variable:

PS (9) > $jsb = {
>> foreach ($i in 1..10) { Start-Sleep 1; "i is $i" }
484 CHAPTER 12 REMOTING AND BACKGROUND JOBS

>> }
>>

Now start the job running. Let the Job object that was returned use the default for-
matting, which complains if the screen is too narrow for all the columns to be dis-
played. The compressed output doesn’t matter because the only thing you want at
this point is the job’s ID:

PS (10) > Start-Job $jsb

WARNING: column "Command" does not fit into the display and was
removed.

Id Name State HasMoreData Locat
 ion
-- ---- ----- ----------- -----
5 Job5 Running True lo...

Start calling Receive-Job with the job’s ID:

PS (11) > Receive-Job 5
i is 1
i is 2

The first call returned the first two items out of the 10 you’re expecting. Call it again

PS (12) > Receive-Job 5
i is 3
i is 4

and you get another two items. Call it again quickly

PS (13) > Receive-Job 5
i is 5

and you get one additional item. Keep calling it until you get all the items:

PS (14) > Receive-Job 5
i is 6
i is 7
PS (15) > Receive-Job 5
i is 8
PS (16) > Receive-Job 5
i is 9
PS (17) > Receive-Job 5
i is 10
PS (18) > Receive-Job 5

This last call didn’t return anything because the job has completed and all items have
already been returned. You can verify this by calling Get-Job

PS (19) > Get-Job 5

WARNING: column "Command" does not fit into the display and was
removed.
BACKGROUND JOBS IN POWERSHELL 485

Id Name State HasMoreData Locat
 ion
-- ---- ----- ----------- -----
5 Job5 Completed False lo...

and you see that its state is Completed. Because the job is running asynchronously,
the number of items that are returned depends on when you call Receive-Job.

Waiting for jobs to complete

So how do you wait until the job has completed? You could write a loop to keep
checking the State property, but that would be annoying and inefficient. Instead,
you can use the Wait-Job cmdlet:

PS (21) > $jb = Start-Job $jsb; Wait-Job $jb ; Receive-Job $jb

Id Name State HasMoreData Locat
 ion
-- ---- ----- ----------- -----
9 Job9 Completed True lo...
i is 1
i is 2
i is 3
i is 4
i is 5
i is 6
i is 7
i is 8
i is 9
i is 10

In this example, you’re capturing the job object emitted by Start-Job in the $jb
variable so you can use it in the subsequent Wait-Job and Receive-Job commands.
Because of the Wait-Job, when you call Receive-Job you get all the input.

Notice that Wait-Job returns the object representing the job that has finished.
You can use this to simplify the example a bit:

PS (22) > Start-Job $jsb | Wait-Job | Receive-Job
i is 1
i is 2
i is 3
i is 4
i is 5
i is 6
i is 7
i is 8
i is 9
i is 10

In this example, Start-Job passes the Job object to Wait-Job. When the job com-
pletes, Wait-Job passes the Job object to Receive-Job to get the results. This elim-
inates the need for an intermediate variable.
486 CHAPTER 12 REMOTING AND BACKGROUND JOBS

Removing jobs

So far, you’ve been creating jobs but haven’t removed any. This means that when you
call Get-Job, you’ll see that there are a number of jobs still in the job table:

PS (23) > Get-Job

WARNING: column "Command" does not fit into the display and was
removed.

Id Name State HasMoreData Locat
 ion
-- ---- ----- ----------- -----
1 Job1 Completed False lo...
3 Job3 Completed False lo...
5 Job5 Completed False lo...
7 Job7 Completed True lo...
9 Job9 Completed False lo...

Each time you start a job, it gets added to the job table. You can clean things up using
the Remove-Job cmdlet. To empty the table, use Remove-Job with a wildcard:

PS (24) > Remove-Job *

Now when you call Get-Job, nothing is returned:

PS (25) > Get-Job
PS (26) >

This is probably not the best way to clean things up. A better solution would be to
look for jobs that have completed and have no more data. This would look like the
following:

function Clear-CompletedJobs {
 Get-Job | where { $_.State -eq "Completed" -and
 -not $_.HasMoreData } | Remove-Job
}

This function calls Get-Job to get the list of all jobs, filters that list based on the
State and HasMoreData properties, and then pipes the filtered list into Remove-
Job. By doing this, only completed jobs for which all data has been received will be
removed. This allows you to clean up the job table without worrying about losing
information or getting errors. If you do want to kill all of the jobs immediately, you
can use the -Force parameter on Remove-Job.

In the next section, we’ll look at ways you can apply concurrent jobs to solve
problems.

12.5.3 Working with multiple jobs

So far we’ve looked at simple patterns working with one job at a time, but you can
run a number of jobs at the same time. Doing so complicates things—you have to be
BACKGROUND JOBS IN POWERSHELL 487

able to handle the output from multiple jobs. Let’s look at how to do this. The fol-
lowing listing shows how to wait for a set of jobs and then receive the results.

1..5| foreach {
 Start-Job -name "job$_" -ScriptBlock {
 param($number)
 $waitTime = Get-Random -min 4 -max 10
 Start-Sleep -Seconds $waitTime
 "Job $number is complete; waited $waitTime"
 } -ArgumentList $_ > $null }

Wait-Job job* | Receive-Job

This example starts a number of jobs that will run concurrently, waits for all of them
to complete, and then gets all the results. Run this code and see what happens:

PS (1) > 1..5| foreach {
>> Start-Job -name "job$_" -ScriptBlock {
>> param($number)
>> $waitTime = Get-Random -min 4 -max 10
>> Start-Sleep -Seconds $waitTime
>> "Job $number is complete; waited $waitTime"
>> } -ArgumentList $_ > $null }
>>
PS (2) > wait-Job job* | Receive-Job
Job 1 is complete; waited 4
Job 2 is complete; waited 4
Job 3 is complete; waited 8
Job 4 is complete; waited 5
Job 5 is complete; waited 7

As you can see, all the results are captured, ordered by the job name. Now let’s look at
a more useful application of this pattern. The following listing shows a function that
searches multiple directories in parallel looking for a specific pattern.

function Search-FilesInParallel
{
 param (
 [parameter(mandatory=$true, position=0)]
 $Pattern,
 [parameter(mandatory=$true, position=1)]
 [string[]]
 $Path,
 [parameter(mandatory=$false)]
 $Filter = "*.txt",
 [parameter(mandatory=$false)]
 [switch]
 $Any
)

Listing 12.6 Example of running multiple jobs

Listing 12.7 A function that searches a collection of folders in parallel
488 CHAPTER 12 REMOTING AND BACKGROUND JOBS

 $jobid = [guid]::NewGuid().ToString()
 $jobs = foreach ($element in $path)
 {
 Start-Job -name "$Srch{jobid}" -scriptblock {
 param($pattern, $path, $filter, $any)
 Get-ChildItem -Path $path -Recurse -Filter $filter
 Select-String -list:$any $pattern
 } -ArgumentList $pattern,$element,$filter,$any
 }

 Wait-Job -any:$any $jobs | Receive-Job
 Remove-Job -force $jobs
}

This function takes a list of folder paths to search, along with a pattern to search for.
By default, the function will only search TXT files. It also has a switch, -any, that
controls how the search is performed. If the switch isn’t specified, all matches from all
folders will be returned. If it’s specified, only the first match will be returned and the
remaining incomplete jobs will be canceled.

This function seems like a useful tool. Unfortunately, jobs are implemented by
creating new processes for each job, and this is an expensive operation—so expensive,
in fact, that generally it’s much slower than simply searching all the files serially. In
practice, PowerShell jobs are a way of dealing with latency (the time it takes for an
operation to return a result) and not throughput (the amount of data that gets pro-
cessed). This is a good trade-off for remote management tasks when you’re talking to
many machines more or less at once. The amount of data, as you saw in the monitor-
ing example in section 12.2, is frequently not large, and the overall execution time is
dominated by the time it takes to connect to a remote machine. With that in mind,
let’s look at how remoting and jobs work together.

12.5.4 Starting jobs on remote computers

Because the job infrastructure is based on the remoting framework, it follows that we
can also create and manage jobs on remote computers.

NOTE To work with remote jobs, remoting must be enabled on the
remote machine. For local jobs, remoting doesn’t have to be enabled
because a different communication channel (anonymous pipes) is used
between the parent session and the child jobs.

The easiest way to do this is to use the -AsJob parameter on Invoke-Command.
Alternatively, the scriptblock passed to Invoke-Command can call Start-Job explic-
itly. Let’s see how this works.

Child jobs and nesting

So far we’ve talked about Job objects as atomic—one Job object per job. In practice
it’s a bit more sophisticated than that. There are scenarios when you need to be able

Generate GUID to
use for job ID Start search job

for each path

Pass -any switch
to Select-String

Wait for any
or all jobs
BACKGROUND JOBS IN POWERSHELL 489

to aggregate collections of jobs under a single master, or executive, job. We’ll get to
those situations in a minute. For now, just know that background jobs always consist
of a parent job and one or more child jobs.

For jobs started using Start-Job or the -AsJob parameter on Invoke-Command,
the parent job is the executive. It doesn’t run any commands or return any results.

NOTE The executive does no actual work—it just supervises. All the
work is done by the subordinates. That sounds familiar somehow….

This collection of child jobs is stored in the ChildJobs property of the parent Job
object. The child Job objects have a name, ID, and instance ID that differ from the
parent job so that you can manage the parent and each child job individually or as a
single unit.

To see the parent and all the children in a Job, use the Get-Job cmdlet to get the
parent Job object, and then pipe it to Format-List, which displays the Name and
ChildJobs as properties of the objects. Here’s what this looks like:

PS (1) > Get-Job | Format-List -Property Name, ChildJobs
Name : Job1
ChildJobs : {Job2}

You can also use a Get-Job command on the child job, as shown in the following
command

PS (2) > Get-Job job2

Id Name State HasMoreData Location Command
-- ---- ----- ----------- -------- -------
2 Job2 Completed True localhost Get-Process

and so on until you get to a Job that has no children.

Child jobs with Invoke-Command

Let’s look at the scenario where you need to have more than one child job. When
Start-Job is used to start a job on a local computer, the job always consists of the
executive parent job and a single child job that runs the command. When you use the
-AsJob parameter on Invoke-Command to start a job on multiple computers, you
have the situation where the job consists of an executive parent job and one child job
for each command running on a remote server, as shown in figure 12.12.

When you use Invoke-Command to explicitly run Start-Job on the remote
machines, the result is the same as a local command run on each remote computer.
The command returns a job object for each computer. The Job object consists of an
executive parent job and one child job that runs the command.

The parent job represents all the child jobs. When you manage a parent job, you
also manage the associated child jobs. For example, if you stop a parent job, all child
490 CHAPTER 12 REMOTING AND BACKGROUND JOBS

jobs are also stopped. Similarly, when you get the results of a parent job, you’re also
getting the results of all child jobs.

Most of the time, you don’t need to be concerned with the fact that there are par-
ent and child jobs; but it’s possible to manage the child jobs individually. This
approach is typically only used when you want to investigate a problem with a job or
get the results of only one of a number of child jobs started by using the -AsJob
parameter of Invoke-Command.

The following command uses Invoke-Command with -AsJob to start background
jobs on the local computer and two remote computers. The command saves the job
in the $j variable:

PS (1) > $j = Invoke-Command -ComputerName localhost, Server01, Server02 `
 -Command {Get-Date} -AsJob

When you display the Name and ChildJob properties of the object in $j, it shows
that the command returned a Job object with three child jobs, one for each
computer:

PS (2) > $j | Format-List name, childjobs

Name : Job3
ChildJobs : {Job4, Job5, Job6}

When you display the parent job, it shows that the overall job was considered to
have failed:

PS (3) > $j

Id Name State HasMoreData Location Command
-- ---- ----- ----------- -------- -------
 1 Job3 Failed True localhost,server... Get-Date

Child job #3 Child job #4

Parent job

(executive)

Child job #2

Invoke-Command -Computer $list { Get-Date } -AsJobUser

Child job #1

Get-Date Get-DateGet-DateGet-Date

Figure 12.12 The relationship between the executive job and the nested jobs created

when Invoke-Command -AsJob is used to run commands on multiple remote

computers. The user calls Invoke-Command to start a job with multiple nested jobs,

one for each target node in $list.
BACKGROUND JOBS IN POWERSHELL 491

But on further investigation, when you run Get-Job on each of the child jobs, you
find that only one of them has failed:

PS (4) > Get-Job job4, job5, job6

Id Name State HasMoreData Location Command
-- ---- ----- ----------- -------- -------
4 Job4 Completed True localhost get-date
5 Job5 Failed False Server01 get-date
6 Job6 Completed True Server02 get-date

To get the results of all child jobs, use the Receive-Job cmdlet to obtain the results
of the parent job. But you can also get the results of a particular child job, as shown in
the following command:

PS (5) > Receive-Job -Job 6 -Keep |
>> Format-Table ComputerName,DateTime -AutoSize

ComputerName DateTime
 ------------ --------
Server02 Thursday, March 13, 2008 4:16:03 PM

In this example, you’re using the -Keep parameter, which allows you to read, but not
remove, output from a job. When you use -Keep, the output from the job is retained
in the output buffer for that job. You’re using it here so that when you do a Receive-
Job on the executive job, you’ll get the output of all jobs in a single collection. In
effect, this is a way of “peeking” at the output of one of the child jobs. By using child
jobs, you have much more granular control over the set of activities you have running.

The way you’ve been working with jobs so far has been much like when you were
using Invoke-Command and specifying the name of a computer. Each time you con-
tacted the computer, Invoke-Command created a new session. You’re doing much the
same thing when you use Start-Job. With Invoke-Command, you were able to
improve your efficiency by creating sessions. In the next section you’ll see how ses-
sions work with jobs.

12.5.5 Running jobs in existing sessions

Each background job runs in its own PowerShell session, paralleling the way each
remote command is also executed in its own session. As was the case with remoting,
this session can be a temporary one that exists only for the duration of the back-
ground job, or it can be run in an existing PSSession. But the way to do this isn’t
obvious because the Start-Job cmdlet doesn’t have a -Session parameter. Instead
you have to use Invoke-Command with the -Session and -AsJob parameters. Here’s
what that looks like. First, create a PSSession object:

PS (1) > $s = New-PSSession

Now pass that session object to Invoke-Command with -AsJob specified:

PS (2) > $j = Invoke-Command -Session $s -AsJob {$PID}
492 CHAPTER 12 REMOTING AND BACKGROUND JOBS

The scriptblock that you’re passing in returns the process ID of the session. Use
Receive-Job to retrieve it:

PS (3) > Receive-Job $j
10808

You can call Invoke-Command without -AsJob with the same session object and
scriptblock:

PS (4) > Invoke-Command -Session $s {$PID}
10808

You get the same process ID back, which is expected because the session is persistently
associated with the same process.

Keep in mind that when a job is run in an existing PSSession, that session can’t be
used to run additional tasks until the job has completed. This means that you have to
create multiple PSSession objects if you need to run multiple background tasks but
want to avoid the overhead of creating new processes for each job. As always, it’s up to
the script author to decide how best to manage resources for their script.

12.6 CONSIDERATIONS WHEN RUNNING COMMANDS REMOTELY

When you run commands on multiple computers, you need to be aware, at least to
some extent, of how the execution environment can differ on the target machines.
For example, the target machine may be running a different version of the operating
system, or it may have a different processor. There may also be differences in which
applications are installed, how files are arranged, or where things are placed in the
Registry. In this section, we’ll look at a number of these issues.

Start-Job and sessions

So why is there no -Session parameter on Start-Job? This parameter did exist
at one point in the development of PowerShell v2. At that time, jobs and remoting
used the same message transport, not just the same basic infrastructure. Using the
same transport was found to be problematic for a number of reasons:

• It was inefficient for communication with local jobs.
• It required that the remoting service be enabled on the local machine, which

has security implications.
• It required users to be running with admin privileges to be able to use the job

feature.

To resolve these issues, the existing WSMan-based transport used by jobs was
replaced with anonymous pipes. This change solved these problems, but it had the
unfortunate side effect that jobs could no longer be directly run with in PSSession
instances because the PSSession object was tied to WSMan remoting.
CONSIDERATIONS WHEN RUNNING COMMANDS REMOTELY 493

12.6.1 Remote session startup directory

When a user connects to a remote computer, the system sets the startup directory for
the remote session to a specific value. This value will change depending on the ver-
sion of the operating system on the target machine:

• If the machine is running Windows Vista, Windows Server 2003 R2, or later,
the default starting location for the session is the user’s home directory, which is
typically C:\Users\<UserName>.

• On Windows Server 2003, the user’s home directory is also used but resolves to
a slightly different path: C:\Documents and Settings\<UserName>.

• On Windows XP, the default user’s home directory is used instead of the connect-
ing user’s. This typically resolves to C:\Documents and Settings\Default User.

The default starting location can be obtained from either the $ENV:HOMEPATH envi-
ronment or the PowerShell $HOME variable. By using these variables instead of hard-
coded paths in your scripts, you can avoid problems related to these differences. Next,
we’ll examine issues related to startup and profiles.

12.6.2 Profiles and remoting

Most PowerShell users eventually create a custom startup script or profile that they use
to customize their environment. These customizations typically include defining con-
venience functions and aliases. Although profiles are a great feature for customizing
local interactive sessions, if the convenience commands they define are used in scripts
that you want to run remotely, you’ll encounter problems. This is because your profiles
aren’t run automatically in remote sessions, and that means the convenience com-
mands defined in the profile aren’t available in the remote session. In fact, the $PRO-
FILE variable, which points to the profile file, isn’t even populated for remote sessions.

As a best practice, for production scripting you should make sure your scripts
never become contaminated with elements defined by your profiles. One way to test
this is to run the script from PowerShell.exe with the -NoProfile option, which
looks like this:

powershell -NoProfile -File myscript.ps1

This command will run the script without loading your profile. If the script depends
on anything defined in the profile, it will generate errors.

But for remote interactive sessions, it’d be nice to have the same environment
everywhere. You can accomplish this by using Invoke-Command with the -FilePath
parameter to send your profile file to the remote machine and execute it there. The
set of commands you need to accomplish this are as follows:

$c = Get-Credential
$s = New-PSSession -Credential $ -ComputerName targetComputer
Invoke-Command -Session $s -FilePath $PROFILE
Enter-PSSession $s
494 CHAPTER 12 REMOTING AND BACKGROUND JOBS

First, you get the credential for the target machine (this typically won’t be needed in
the domain environment). Next, you create a persistent session to the remote com-
puter. Then you use -FilePath on Invoke-Command to execute the profile file in
the remote session. Finally, with the session properly configured, you can call
Enter-PSSession to start your remote interactive session with all of your normal
customizations.

Alternatively, sometimes you may want to run a profile on the remote machine
instead of your local profile. Because $PROFILE isn’t populated in your remote ses-
sion, you’ll need to be clever to make this work. The key is that, although $PROFILE
isn’t set, $HOME is. You can use this to compose a path to your profile on the remote
computer. The revised list of commands looks like this:

$c = Get-Credential
$s = New-PSSession -Credential $ -ComputerName targetComputer

Invoke-Command -Session $s {
 . "$home\Documents\WindowsPowerShell\profile.ps1" }
Enter-PSSession $s

This command dot-sources (see section 8.1.4) the profile file in the user’s directory
on the remote machine into the session. Note that this script won’t work on XP or
Windows Server 2003 because the document directory on those versions of Windows
is Documents and Settings instead of Documents. For those operating systems, the
set of steps would look like this:

$c = Get-Credential
$s = New-PSSession -Credential $ -ComputerName targetComputer

Invoke-Command -Session $s {
 . "$home\Documents and Setting\WindowsPowerShell\profile.ps1" }
Enter-PSSession $s

In this section you learned how to cause your profile to be used to configure the
remote session environment. At the end of the section, we revisited the idea that some
system paths will vary depending on the operating system version. In the next sec-
tion, we’ll examine another area where these variations can cause problems.

12.6.3 Issues running executables remotely

PowerShell remoting allows you to execute the same types of commands remotely as
you can locally, including external applications or executables. The ability to remotely
execute commands like shutdown to restart a remote host or ipconfig to get net-
work settings is critical for system management.

For the most part, console-based commands will work properly because they read
and write only to the standard input, output, and error pipes. Commands that won’t
work are ones that directly call the Windows Console APIs, like console-based editors
or text-based menu programs. The reason is that no console object is available in the
remote session. Because these applications are rarely used anymore, this fact typically
CONSIDERATIONS WHEN RUNNING COMMANDS REMOTELY 495

won’t have a big impact. But there are some surprises. For example, the net com-
mand will work fine most of the time, but if you do something like this (which
prompts for a password)

PS (1) > net use p: '\\machine1\c$' /user:machine1\user1 *
Type the password for \\machine1\c$:

in a remote session you’ll get an error:

[machine1]: > net use p: '\\machine1\c$' /user:machine1\user1 *
net.exe : System error 86 has occurred.
 + CategoryInfo : NotSpecified: (System error 86 has
 occurred.:String) [], RemoteException
 + FullyQualifiedErrorId : NativeCommandError

The specified network password is not correct.
Type the password for \\machine1\c$:
[machine1]: >

This command prompted for a password and returned an empty string.
The other kind of program that won’t work properly are commands that try to

open a user interface (also known as “try to pop GUI”) on the remote computer.
If the remote command starts a program that has a GUI interface, the program

starts but no window will appear. If the command eventually completes, control will
be returned to the caller and things will be more or less fine. But if the process is
blocked waiting for the user to provide some input to the invisible GUI, the com-
mand will hang and you must stop it manually by pressing Ctrl-C. If the keypress
doesn’t work, you’ll have to use some other mechanism to terminate the process.

For example, if you use Invoke-Command to start Notepad on a remote machine,
the process will start on the remote computer but the Notepad window will never
appear. At this point, the command will appear to be “hung” and you’ll have to press
Ctrl-C to stop the command and regain control.

Now let’s look at more areas where accessing the console can cause problems and
how to avoid these problems.

12.6.4 Reading and writing to the console

As you saw in the previous section, executables that read and write directly to the
console won’t work properly. The same considerations apply to scripts that do things
like call the System.Console APIs directly themselves. For example, call the [Con-
sole]::WriteLine() and [Console]::ReadLine() APIs in a remote session:

[machine1]: > [Console]::WriteLine("hi")
[machine1]: >
[machine1]: > [Console]::ReadLine()
[machine1]: >

Neither of these calls worked properly. When you called the [Console]::Write-
Line() API, nothing was displayed, and when you called the [Console]::Read-
Line() API, it returned immediately instead of waiting for input.
496 CHAPTER 12 REMOTING AND BACKGROUND JOBS

It’s still possible to write interactive scripts, but you have to use the PowerShell
host cmdlets and APIs:

[machine1]: > Write-Host Hi
Hi
[machine1]: >
[machine1]: > Read-Host "Input"
Input: some input
some input

If you use these cmdlets as shown in the example, you can read and write to and from
the host, and the remoting subsystem will take care of making everything work.

TIP To ensure that scripts will work in remote environments, don’t
call the console APIs directly. Use the PowerShell host APIs and cmd-
lets instead.

With console and GUI issues out of the way, let’s explore how remoting affects the
objects you’re passing back and forth.

12.6.5 Remote output vs. local output

Much of the power in PowerShell comes from the fact that it passes objects around
instead of strings. In this section you’ll learn how remoting affects these objects.

When PowerShell commands are run locally, you’re working directly with the
“live” .NET objects, which means that you can use the properties and methods on these
objects to manipulate the underlying system state. The same isn’t true when you’re
working with remote objects. Remote objects are serialized—converted into a form
that can be passed over the remote connection—when they’re transmitted between the
client and the server. Although a small number of types are transmitted in such a way
that they can be fully re-created by the receiving end, the majority of the types of
objects you work with aren’t. Instead, when they’re deserialized, they’re turned into
property bags—collections of data properties with the same names as the original prop-
erties. This property bag has a special property, TypeNames, which records the name
of the original type. This difference in operation is illustrated in figure 12.13.

Typically, you can use deserialized objects just as you’d use live objects, but you
must be aware of their limitations. Another thing to be aware of is that the objects
that are returned through remoting will have had properties added that allow you to
determine the origin of the command.

PowerShell serialization

Because you can’t guarantee that every computer has the same set of types, the Power-
Shell team chose to limit the number of types that serialize with fidelity, where the
remote type is the same type as the local type. To address the restrictions of a
bounded set of types, types that aren’t serialized with fidelity are serialized as collec-
tions of properties, also called property bags. The serialization code takes each object
CONSIDERATIONS WHEN RUNNING COMMANDS REMOTELY 497

and adds all its properties to the property bag. Recursively, it looks at values of each
the members. If the member value isn’t one of the ones supported with fidelity, a new
property bag is created, and the members of the member’s values are added to the
new property bag, and so on. This approach preserves structure if not the actual type
and allows remoting to work uniformly everywhere.

Default serialization depth

The approach we just described allows any object to be encoded and transferred to
another system. But there’s another thing to consider: objects have members that con-
tain objects that contain members, and so on. The full tree of objects and members
can be complex. Transferring all the data makes the system unmanageably slow. This
is addressed by introducing the idea of serialization depth. The recursive encoding of
members stops when this serialization depth is reached. The default for objects is 1.

The final source of issues when writing portable, remotable scripts has to do with
processor architectures and the operating system differences they entail. We’ll work
through this final set of issues in the next (and last) section of this chapter.

12.6.6 Processor architecture issues

We’ve looked at a number of aspects of the remote execution environment that may
cause problems: operating system differences and issues with session initialization,
GUIs, and console interactions. The last potential source of problems that we’ll
explore is the fact that the target machine may be running on a different processor
architecture (i.e., 64-bit vs. 32-bit) than the local machine. If the remote computer is
running a 64-bit version of Windows and the remote command is targeting a 32-bit

Remote machine

Local machine

Pipeline

processorRemoting

serializer

Invoke-Command machine { Get-Process }

ProcessInfo .NET objectsPSObject property bags

Pipeline

processor

User runs local Get-Process

Get-Process

ProcessInfo .NET objects

User runs remote Get-Process

User

User

Remoting

deserializer
Serialized objects

Figure 12.13 The differences in the way objects

that are returned for the local and remote invoca-

tion cases. In the local case, live .NET objects are

returned. When a remote command is invoked,

the objects returned by the remote command are

serialized on the remote machine and returned to

the invoker as property bags: collections of

properties attached to PSObject instances.
498 CHAPTER 12 REMOTING AND BACKGROUND JOBS

session configuration, such as Microsoft.PowerShell32, the remoting infrastructure
loads a Windows 32-bit on a Windows 64-bit (WOW64) process, and Windows auto-
matically redirects all references to the $ENV:Windir\System32 directory to the
$ENV:WINDIR\SysWOW64 directory. For the most part, everything will still work
(that’s the point of the redirection), unless you try to invoke an executable in the
System32 directory that doesn’t have a corresponding equivalent in the SysWOW64
directory. Let’s see what this looks like. First, run defrag on a 64-bit OS targeting the
32-bit configuration. This results in the following output:

PS (1) > Invoke-Command -ConfigurationName Microsoft.PowerShell32 `
>> -ComputerName localhost -command { defrag.exe /? }
>>
The term 'defrag.exe' is not recognized as the name of a cmdlet,
 function, script file, or operable program. Check the spelling
of the name, or if a path was included, verify that the path is
correct and try again.
 + CategoryInfo : ObjectNotFound: (defrag.exe:Strin
 g) [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

Because there was no corresponding defrag.exe in the SysWoW64 directory, the
command wasn’t found. Now target the 32-bit configuration:

PS (2) > Invoke-Command -ConfigurationName microsoft.powershell `
>> -ComputerName localhost -command { defrag.exe /? }
>>
Description: Locates and consolidates fragmented files on local
 volumes to improve system performance.

Syntax: Defrag.exe <volume> -a [-v]
 Defrag.exe <volume> [{-r | -w}] [-f] [-v]
 Defrag.exe -c [{-r | -w}] [-f] [-v]
:
:

And everything works properly.

NOTE Depending on how your system is configured and the version/
SKU of Windows you’re using (e.g., Vista vs. Windows 7, Enterprise
vs. Ultimate), this technique may work in both cases.

To find the processor architecture for the session, you can check the value of the
$ENV:PROCESSOR_ARCHITECTURE variable. The following command finds the pro-
cessor architecture of the session in the $s variable. Try this, first with the 32-bit con-
figuration:

PS (10) > Invoke-Command -ConfigurationName microsoft.powershell32 `
>> -ComputerName localhost { $ENV:PROCESSOR_ARCHITECTURE }
>>
x86
CONSIDERATIONS WHEN RUNNING COMMANDS REMOTELY 499

You get the expected x86 result, indicating a 32-bit session, and on the 64-bit config-
uration

PS (11) > Invoke-Command -ConfigurationName microsoft.powershell `
>> -ComputerName localhost { $ENV:PROCESSOR_ARCHITECTURE }
>>
AMD64

you get AMD64, indicating a 64-bit configuration.
This is the last remoting consideration we’re going to look at in this chapter.

Don’t let these issues scare you—they’re mostly edge cases. With some attention to
detail, the typical script should have no problems working as well remotely as it does
locally. The PowerShell remoting system goes to great lengths to facilitate a seamless
remote execution experience. But it’s always better to have a heads up on some of the
issues so you’ll know where to start looking if you run into a problem. In chapters 14
and 15, we’ll dig further into the whole PowerShell diagnostic and debugging story.

12.7 SUMMARY

In this chapter we introduced PowerShell remoting and the kinds of things you can
do with it. We covered these topics:

• The basic concepts and terminology used in PowerShell remoting

• How to enable remoting in both domain-joined and private workgroup envi-
ronments using the Enable-PSRemoting cmdlet

• How to apply remoting to build a multimachine monitoring solution

• How to create and manage persistent connections to remote machines using the
New-PSSession cmdlet

• How to establish an interactive session using Enter-PSSession

Then we moved on to look at PowerShell jobs, which allow you to run tasks in the
background. In this part of the chapter, we explored the following:

• The basic concepts behind jobs and the commands that you can use to create
and manage jobs using the Start-Job, Stop-Job, Receive-Job, and Remove-
Job cmdlets

• How to create jobs on remote machines

• How to apply the job concept to implement concurrent solutions for problems
you might encounter

We closed this chapter by looking into some of the issues you might encounter when
using remoting to solve management problems:

• Differences in startup directories

• The fact that user profiles aren’t run by default in a remote session

• Some issues using external applications or executables in a remote session
500 CHAPTER 12 REMOTING AND BACKGROUND JOBS

• Differences in behavior due to the fact that remote objects are always serialized
before returning them to the caller

• Differences that occur due to different processor architectures being used on the
remote end

The information we covered in this chapter is sufficient to apply PowerShell remoting
effectively for most distributed management tasks. That said, our focus in the chapter
has been confined to the “remoting client” user perspective. There are some additional
advanced application and service scenarios that we didn’t cover here. In chapter 13,
we’ll introduce a new role where you switch from being the user of existing remoting
configurations to authoring your own custom applications and services. We’ll show
you how to create custom configurations and how to use these configurations to build
solutions for delegated administration tasks.
SUMMARY 501

C H A P T E R 1 3

Remoting: configuring
applications and services

13.1 Remoting infrastructure in depth 503
13.2 Building custom remoting

 services 527

13.3 Summary 551
He who is outside his door already has a hard part of his journey
behind him.

 —Dutch proverb

In chapter 12, we explained how you can use PowerShell’s remoting capabilities to
monitor and manage remote computers. Now we’re going to switch from service con-
sumer to remote service/application creator. Our goal is that, by the end of this chap-
ter, you’ll be able to build your own custom remoting services with PowerShell. But
before you can start building those services, we need to look at some additional back-
ground material.

Our first topic is how PowerShell remoting works. We’ll pay special attention to
Web Services for Management (WSMan) and see how it fits into this infrastructure.
You’ll learn how to manage the Windows WSMan implementation using cmdlets
and the WSMan provider. This material will help you to understand and debug issues
in the infrastructure.
502

If you want your services to be usable, among other aspects you need to be sure
that they’re secure and reliable. Among the factors related to security that you must
take into account are authentication (who’s connecting to the service) and authoriza-
tion (what they’re allowed to do).

The other aspect—reliability—entails managing and controlling resource con-
sumption. We looked at resource consumption from the user perspective when we
discussed command-level throttling in chapter 12. In this chapter, we’ll look at how
to control resource consumption from the application end.

Once we’re done with the background material, we’ll show you how to construct
services by building custom named remoting configurations that users can connect
to. We’ll explain how to create these configurations and how to define the set of com-
mands these configurations expose. We’ll look at configurations with extended com-
mand sets where commands are added to the default set PowerShell that exposes and,
more important, how to restrict the set of commands that can be accessed through an
endpoint configuration. This second scenario is important because it allows you to
securely create applications like self-service kiosks. Let’s start with the infrastructure
investigation and see how you can achieve these goals.

13.1 REMOTING INFRASTRUCTURE IN DEPTH

Before you start building services and applications with PowerShell remoting, you
must develop a good understanding for how everything works. Understanding how
things work will help you design and deploy your services more effectively. You’ll have
the knowledge to make sure your services are available to the service consumer, and
you’ll be able to effectively debug what’s gone wrong when something doesn’t work
the way it’s expected.

We’ll begin our infrastructure exploration by looking at the protocol stack—the
layers of networking technology used to enable PowerShell remoting. Because basic
connectivity for PowerShell remoting is provided by the WSMan layer, the next thing
we’ll explore are the cmdlets that you can use to configure and manage WSMan.

Then we’ll describe how authentication is handled, both from the client and from
the servers’ perspective. We’ll look at how targets are addressed and the concerns that
you need to be aware of in this area. Finally, we’ll end this section by looking at man-
aging connection-related issues such as resource consumption. These topics will help
you build your services in such a way that your end user can depend on them. Let’s
begin by looking at the protocol stack.

13.1.1 The PowerShell remoting protocol stack

Most networked applications are built on top of multiple layers of software, and Pow-
erShell remoting is no different. In this section, we’ll describe the various components
used by PowerShell remoting.

For remoting to work, there must be layers of software to provide the transport
mechanism for sending messages between the client and the server. These layers are
REMOTING INFRASTRUCTURE IN DEPTH 503

called the protocol layers, which are organized in a protocol stack. Within this stack,
higher layers build on the services provided by the lower layers. For PowerShell
remoting, there are five layers to the stack. The top layer is MS-PSRP, the PowerShell
Remoting Protocol. MS-PSRP is built on top of WSMan. WSMan is, in turn, built on
top of the Simple Object Access Protocol (SOAP). SOAP is built on top of the Hyper-
text Transport Protocol (HTTP), or more precisely, Secure HTTP (HTTPS), and
finally the hypertext transfer protocols are in turn based on TCP/IP. The complete
stack of protocols is shown in figure 13.1.

The PowerShell Remoting Protocol uses Microsoft’s implementation of the
WSMan protocol, designated Web Services Management Protocol Extensions for Win-
dows Vista (MS-WSMV) to establish a connection and transfer data between the client
and the server. MS-WSMV is built on top of the standard protocols shown in table 13.1.

Table 13.1 The standard protocols used by PowerShell remoting

Protocol Standards body Specification

SOAP (Version 1.2) World Wide Web Consortium (W3C) SOAP 1.2/1

Hypertext Transfer Protocol (HTTP/1.1) Internet Engineering Task Force (IETF) RFC 2616

HTTP over TLS IETF RFC 2818

Transmission Control Protocol IETF RFC 793

Internet Protocol IETF RFC 791

PowerShell Remoting Protocol

(MS-PSRP)

Web Services for Management

(MS-WSMV)

Simple Object Access Protocol

(SOAP)

PowerShell client

(Secure) Hypertext Transport

Protocol (HTTP/HTTPS)

Transmission Control Protocol/

Internet Protocol (TCP/IP)

Encoded client request

Encoded server response

PowerShell server

PowerShell Remoting Protocol

(MS-PSRP)

Web Services for Management

(MS-WSMV)

Simple Object Access Protocol

(SOAP)

(Secure) Hypertext Transport

Protocol (HTTP/HTTPS)

Transmission Control Protocol/

Internet Protocol (TCP/IP)

Figure 13.1 The PowerShell remoting protocol stack. The PowerShell Re-

moting Protocol (MS-PSRP) is based on industry-standard “firewall friend-

ly” protocols simplifying deployment in an enterprise environment.
504 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

\\brucepayx61\c_drive\wpia_v2\text\chapter11\[MS-WSMV].pdf

Although MS-PSRP is a proprietary protocol, it’s fully documented and this docu-
mentation is freely available. The complete specification for the PowerShell remoting-
protocol is available at http://mng.bz/b4eo.

Likewise, the complete documentation for the specific implementation of the
WSMan protocol that PowerShell uses for MS-WSMV is available at http://mng.bz/
92fo.

NOTE These protocols are made available under the Microsoft Com-
munications Protocol Program. The goal of this program is to facilitate
to interoperation and communications natively with Windows Server
operating systems.

Protocol operation

When the user passes a PowerShell scriptblock to the remoting cmdlets for execution,
the scriptblock will first be encoded by the remoting layers as structured XML text.
(The structure, or schema, for this XML is documented in MS-PSRP.) The encoded
text is then sent to the target computer where it’s decoded or rehydrated into a pipe-
line that can be executed on the remote machine.

Along with the commands in the pipeline, the encoded pipeline needs to include
any arguments to the commands. Although encoding the commands is relatively
easy, encoding the arguments is more difficult because they can be any arbitrary type.
Here’s the issue you’ll run into: as mentioned in chapter 12, serializing an object so
you can get the same type of object at the destination requires that the type metadata
for that object be present on both ends of the connection. If the original type descrip-
tion doesn’t exist at the receiver, then the object can’t be completely rehydrated
because there’s no concrete type definition to rehydrate to. In the systems manage-
ment world, this situation is quite common because servers tend to be assigned to dif-
ferent roles. For example, an Exchange server will have a different set of types than a
database server, and the client that’s managing both of these servers may not have any
of these types. To mitigate this problem, PowerShell takes a different approach to
sharing objects among different computers.

NOTE We say mitigate here because there really isn’t a perfect solu-
tion with an unbounded set of types. If you restrict the types, you lose
functionality, and if you require all types everywhere, systems become
unmanageably complex. By the way, you’ll see the term mitigate again
in chapter 21 when we discuss another problem that can’t be com-
pletely resolved: security.

Representing objects and types in the protocol

Instead of trying to accommodate all possible types, PowerShell defines a core set of
types that are required to be on both ends of the connection. Any object that’s one of
REMOTING INFRASTRUCTURE IN DEPTH 505

http://mng.bz/92fo
http://mng.bz/92fo

these types will be rehydrated into the correct type. For any types that aren’t in this
core set, a different approach is used. These objects are “shredded” into property bags
of type PSObject. (We discussed PSObject at length in chapter 11.) The algorithm
for doing this is described in detail in section 2.2.5 of MS-PSRP. The types that are
serialized with fidelity are shown in table 13.2.

There are also some types of collections that are serialized with some level of fidelity.
These types are listed in table 13.3.

Table 13.2 The types that are serialized with fidelity by the PowerShell remoting protocol

MS-PSRP Protocol element Corresponding PowerShell/.NET type

2.2.5.1.1 String [string]

2.2.5.1.2 Character [char]

2.2.5.1.3 Boolean [bool]

2.2.5.1.4 Date/Time [DateTime]

2.2.5.1.5 Duration [TimeSpan]

2.2.5.1.6 Unsigned Byte [byte]

2.2.5.1.7 Signed Byte [sbyte]

2.2.5.1.8 Unsigned Short [uint16]

2.2.5.1.9 Signed Short [int16]

2.2.5.1.10 Unsigned Int [uint32]

2.2.5.1.11 Signed Int [int32]

2.2.5.1.12 Unsigned Long [int64]

2.2.5.1.13 Signed Long [uint64]

2.2.5.1.14 Float [float] or [single]

2.2.5.1.15 Double [double]

2.2.5.1.16 Decimal [decimal]

2.2.5.1.17 Array of Bytes [byte[]]

2.2.5.1.18 GUID [Guid]

2.2.5.1.19 URI [Uri]

2.2.5.1.20 Null Value $null

2.2.5.1.21 Version [Version]

2.2.5.1.22 XML Document [xml]

2.2.5.1.23 ScriptBlock [ScriptBlock]

2.2.5.1.24 Secure String [System.Security.SecureString]

2.2.5.1.25 Progress Record [System.Management.Automation.ProgressRecord]

2.2.5.2.7 Enums [int32]
506 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

Note that table 13.3 lists different types for encoding and decoding in two cases: List
and Dictionary. In case you’re wondering what that means, here’s an explanation. On
the sender’s side, any object that implements the IList interface will be encoded as
List when serialized. On the receiver’s side, PowerShell will always decode the collec-
tion into an instance of type System.Collections.ArrayList. For example:

PS (1) > $r = Invoke-Command localhost {
>> ,(1,2,3)
>> }
>>

In this example, you’re sending a collection of integers through the remoting layer.

NOTE The leading comma in this example is not a typo. The unary
comma operator (see section 5.2) wraps its argument in a one-element
array. This is necessary to make sure the array is passed as a single array
object instead of as a sequence of numbers.

Let’s look at the type of object the receiver actually gets:

PS (2) > $r.GetType().FullName
System.Collections.ArrayList

Even though you send a simple array of numbers, the remoting layer decoded it into
an ArrayList. This behavior applies to more complex list types as well. In the next
example, you’re sending a generic collection of integers. This collection also comes
back as System.Collections.ArrayList on the receiving end:

PS (3) > $r = Invoke-Command localhost {
>> $l = New-Object System.Collections.Generic.List[int]
>> 1..10 | %{ $l.Add($_) }
>> ,$l
>> }
>>
PS (4) > $r.GetType().FullName
System.Collections.ArrayList

Similarly, any .NET type that implements the interface System.Collections
.IDictionary will be encoded as Dictionary and decoded into [hashtable].

Table 13.3 Collection types handled by the serializer

Protocol

type
Encoded type Decoded type

Stack [System.Collections.Stack] [System.Collections.Stack]

Queue [System.Collections.Queue] [System.Collections.Queue]

List [System.Collections.IList] [System.Collections.ArrayList]

Dictionaries [System.Collections.IDictionary] [hashtable]
REMOTING INFRASTRUCTURE IN DEPTH 507

When you’re sending an object that isn’t in the known type pool, you get a prop-
erty bag back instead of an instance of the original type. For example, let’s return a
Process object through the remoting channel:

PS (1) > $r = Invoke-Command localhost { (Get-Process csrss)[0] }

Now look at the output:

PS (2) > $r | fl

Id : 568
Handles : 956
CPU : 39.0626504
Name : csrss
PSComputerName : localhost

It appears to return the same set of members as a real Process object would, but
there are some differences. For example, look at the VM property:

PS (3) > $r | Get-Member vm

 TypeName: Deserialized.System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
VM NoteProperty System.Int32 VM=77340672

Now compare this output to a real Process object:

PS (4) > Get-Process | Get-Member vm

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
VM AliasProperty VM = VirtualMemorySize

In the deserialized case, the type of the object is shown prefixed with Deserialized
and the VM property is a NoteProperty containing a fixed integer value. On the live
Process object, you see that the VM property is an alias that points to the Virtual-
MemorySize property on the object. Another difference is that the deserialized object
has fewer members on it:

PS (5) > ($r | Get-Member).count
66
PS (6) > (Get-Process csrss | Get-Member).count
90

In particular, the deserialized object has only one method in it, ToString()

PS (7) > @($r | Get-Member -type method).count
1

as opposed to the live object, which has the full set of methods defined for the type:

PS (8) > @(Get-Process csrss | Get-Member -type method).count
19
508 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

Because the object isn’t live (meaning that there’s no connection to the Process
object, it was derived from on the remote machine), propagating the methods makes
no sense. And, for performance reasons, not all the properties are included and, if an
included property is itself a complex type, the deserialized version may only contain
the ToString() of the value of the live property. This compression of properties is
done to reduce the amount of information transmitted, thereby improving perfor-
mance in the remoting layer.

This approach works well in that it allows for easy operation between the various
clients and servers but with the downside that a certain amount of information is lost.
But because of the way PowerShell parameter binding works, this “lossy serialization”
isn’t usually a problem. PowerShell functions and cmdlets don’t care what type the
object is as long as the required properties are there.

Now that you have a good grasp of how the PowerShell protocol layer works, let’s
move down the protocol stack to the WSMan layer. We won’t be digging into the
details of the protocol itself—that’s beyond the scope of this chapter. What you really
need to know is how the WSMan layer is managed, so that’s what we’ll focus on.

13.1.2 Using the WSMan cmdlets and providers

Because PowerShell remoting is built on top of Microsoft’s implementation of
WSMan, in this section we’ll look at configuring and managing the WSMan service
on a computer. The management interface for WSMan is exposed through cmdlets
and through the WSMan provider, which implements the WSMan: drive. The
WSMan cmdlets are listed in table 13.4.

Table 13.4 Cmdlets for working with WSMan

Cmdlet name Description

Test-WSMan Submits an identification request that determines whether the WinRM
service is running on a local or remote computer. If the tested com-
puter is running the service, the cmdlet displays the WSMan identity
schema, protocol version, product vendor, and the product version of
the tested service.

Connect-WSMan
Disconnect-WSMan

The Connect-WSMan cmdlet establishes a persistent connection to
the WinRM service on a remote computer. Once the connection is
established, the remote computer will appear as a subdirectory of the
root directory of the WSMan: drive. Use the Disconnect-WSMan
cmdlet to terminate the connection to the remote computer.

Get-WSManCredSSP
Enable-WSManCredSSP
Disable-WSManCredSSP

The Get-WSManCredSPP cmdlet gets the Credential Security Service
Provider (CredSSP) status for the machine on which it is run. The out-
put shows the machines status for both the client role (will or won’t
forward credentials) and the server role (will or won’t accept for-
warded credentials). Use the Enable-WSManCredSSP cmdlet to
enable the CredSSP delegation on either the client or server. Use the
Disable-WSManCredSSP to disable CredSSP on a server.

New-WSManSession-
Option

Creates a WSMan session option hashtable, which can be passed into
WSMan cmdlets, including Connect-WSMan.
REMOTING INFRASTRUCTURE IN DEPTH 509

You’ll how to use these cmdlets in the next few sections.

Testing WSMan connections

You can use the Test-WSMan cmdlet to see if the WSMan connection to your target
host is working:

PS (1) > Test-WSMan brucepay64h

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/
 wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 2.0

In the output of the command, you see that the WSMan service is running and avail-
able on the target machine.

Establishing a remote WSMan connection

Once you’ve verified that the service is available, you can use the Connect-WSMan
cmdlet to connect to the target service. Run the following:

PS (2) > Connect-WSMan brucepay64h

The prompt returns immediately without displaying any information. So how can
you check to see if the connection was created? This is where the WSMan: drive comes
into the picture. This drive lets you examine and manipulate the WSMan service using
the normal provider cmdlets. Start by looking at the contents of that drive using the
dir command:

PS (3) > dir wsman:\

 WSManConfig:

ComputerName Type
------------ ----
brucepay64h Container
localhost Container

Here you see the connection you just created. Now get more details about the con-
nected computer:

PS (5) > dir wsman:\brucepay64h | ft -auto

 WSManConfig: Microsoft.WSMan.Management\WSMan::brucepay64h

Name Value Type
---- ----- ----
MaxEnvelopeSizekb 150 System.String
MaxTimeoutms 60000 System.String
MaxBatchItems 32000 System.String
MaxProviderRequests 4294967295 System.String
Client Container
510 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

Service Container
Shell Container
Listener Container
Plugin Container
ClientCertificate Container

Digging further, you can obtain information about the Shell container:

PS (6) > dir wsman:\brucepay64h\shell | ft -auto

 WSManConfig: Microsoft.WSMan.Management\WSMan::brucepay64h\Shell

Name Value Type
---- ----- ----
AllowRemoteShellAccess true System.String
IdleTimeout 180000 System.String
MaxConcurrentUsers 5 System.String
MaxShellRunTime 2147483647 System.String
MaxProcessesPerShell 15 System.String
MaxMemoryPerShellMB 150 System.String
MaxShellsPerUser 5 System.String

A WSMan shell, though not identical to a PowerShell session, encapsulates each
PowerShell session when a user connects—one shell per connection, so MaxShells-
PerUser controls how many remote connects a user may have to a machine. It’s
worth spending some time exploring the WSMan: drive as we’ll be returning to it a
number of times throughout the rest of this section. Our next topic is authentication;
you’ll see how both the target computer and connecting user are verified.

13.1.3 Authenticating the target computer

When you’re performing remote operations on a machine, these operations may
involve transmitting sensitive information to the target computer. As a consequence,
you need to ensure that the machine you’re connecting to is the one you think it is. In
this section, we’ll show you how to manage verifying server identity when working in
a nondomain environment.

In a domain environment, you’ve already established a trust relationship with the
domain controller you’re connected to. If the target computer is also connected to
the same domain controller (that is, it has verified its identity to the domain control-
ler), then you can rely on the domain controller to ensure that you’re connecting to
the correct machine. But if you’re either not working in a domain environment or
the target computer isn’t connected to the same domain controller, then you need an
alternate mechanism for establishing trust. We’ll look at two mechanisms for address-
ing this problem: using HTTPS and using the TrustedHosts WSMan configuration
item. First, though, you need to make sure that passwords are set up on the machines
you’re connecting to. The system won’t allow you to connect to an account without a
password.

Once you have the account password, authenticating to the server is easy—you
just use the -Credential parameter and send your credentials to the target server. In
REMOTING INFRASTRUCTURE IN DEPTH 511

this case, it’s extremely important to know what system you’re connecting to as you
certainly don’t want to send passwords to the wrong machine. The first mechanism
we’ll look at involves using HTTPS and certificates.

Using HTTPS to establish server identity

One way of validating the identity of the target computer is to use HTTPS when con-
necting to that computer. This works because, in order to establish an HTTPS con-
nection, the target server must have a valid certificate installed where the name in the
certificate matches the server name. As long as the certificate is signed by a trusted
certificate authority, you know that the server is the one it claims to be. Unfortu-
nately, this process does require that you have a valid certificate, issued either by a
commercial or local certificate authority. This is an entirely reasonable requirement in
an enterprise environment but may not always be practical in smaller or informal
environments.

If you aren’t able to obtain a valid certificate, then you’ll have to use a different
mechanism for letting the remoting service know that you trust the target computer.
This involves manually adding the target computer to the TrustedHosts list on the
client. We’ll review how to do that in the next section.

Using the TrustedHosts list

The TrustedHosts list is a WSMan configuration item that lists the names of target
computers you trust. We looked at TrustedHosts briefly in chapter 12 (section
12.1.4). To review, the TrustedHosts list is a string containing a comma-separated
list of computer names, IP addresses, and fully qualified domain names. Wildcards
are permitted to make it easy to specify groups of computers you want to trust.

We’ll repeat the steps used in chapter 12, but this time we’ll explain things in
more detail. The easiest way to view or change the TrustedHosts list is to use the
WSMan: drive. The TrustedHosts configuration item for a machine is in the
WSMan:\<machine name>\Client node. For the local machine this is WSMan:\local-
host\Client. To view the current TrustedHosts list, use the Get-Item cmdlet:

PS (1) > Get-Item wsman:\localhost\Client\TrustedHosts | Format-Table -auto

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client

Name Value Type
---- ----- ----
TrustedHosts brucepayx61,brucepay64h System.String

To set this item to a new value, use the Set-Item cmdlet:

PS (2) > Set-Item wsman:localhost\client\trustedhosts brucepay64h

WinRM Security Configuration.
This command modifies the TrustedHosts list for the WinRM
client. The computers in the TrustedHosts list might not be
512 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

authenticated. The client might send credential information to
these computers. Are you sure that you want to modify this list?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

Because this operation affects the state of the system in a significant way (it has secu-
rity implications), you’re prompted to confirm this action. If you didn’t want this
prompt, you’d use the -Force parameter. Now use Get-Item to confirm the change:

PS (3) > Get-Item wsman:\localhost\Client\TrustedHosts | Format-Table -auto

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client

Name Value Type
---- ----- ----
TrustedHosts brucepay64h System.String

The old list was completely replaced by the new one. This may not be what you
want—you may want to just edit or append to the list. To do this, first retrieve the
current value:

PS (5) > $cv = Get-Item wsman:\localhost\Client\TrustedHosts
PS (6) > $cv.Value
brucepay64h

It’s what you set it to previously. Now add some additional hostnames to the list in
the Value key:

PS (7) > $cv.Value = $cv.Value + ', brucepayx61 , 192.168.1.13,bp3'
PS (8) > $cv.Value
brucepay64h,brucepayx61, 192.168.1.13,bp3

As mentioned earlier, both machine names and IP addresses are allowed in the list.
Now use Set-Item to assign the updated value:

PS (9) > Set-Item wsman:localhost\client\trustedhosts $cv.value `
>> -Force

Finally, verify the result:

>> Get-Item wsman:\localhost\Client\TrustedHosts | ft -auto
>>

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client

Name Value Type
---- ----- ----
TrustedHosts brucepay64h,brucepayx61,192.168.1.13,bp3 System.String

NOTE There’s a somewhat easier way to add items to the Trusted-
Hosts list. The WSMan provider implements a -Concatenate dyna-
mic parameter on the Set-Item cmdlet that allows you to add a new
host by using Set-Item -Concatenate.\TrustedHosts newHost.
Although this technique works, it’s unique to the WSMan provider and
inconsistent with the normal PowerShell command pattern, so it
REMOTING INFRASTRUCTURE IN DEPTH 513

doesn’t get mentioned very often. Supporting Set-Content and Add-
Content for this property would’ve been a better, more consistent
approach.

If you want to add all the computers in a particular domain, you can specify a wild-
card (*) in the name you’re adding to the list. For example, the following command
sets the configuration element to a value that will trust all servers in the yourdo-
main.com domain:

Set-Item wsman:localhost\client\trustedhosts *.yourdomain.com -WhatIf

If you want to trust all computers, set the TrustedHosts configuration element to *,
which matches all computers in all domains. This approach isn’t generally recom-
mended for security reasons.

You can also use this technique to add a computer to the TrustedHosts list on a
remote computer. You can use the Connect-WSMan cmdlet to add a node for the
remote computer to the WSMan: drive on the local computer. Then use a Set-Item
command to update that machine’s TrustedHosts configuration element.

Now you know how you should set things up so that your users can be confident
that they’re connecting to the correct service provider. The service provider is also
extremely interested in verifying the identity of the connecting users before allowing
them to access any services. That’s the topic of the next section.

13.1.4 Authenticating the connecting user

In the previous section, you saw how the client verifies the identity of the target com-
puter. Now we’ll explore the converse of this—how the target computer verifies the
identity of the connecting user. PowerShell remoting supports a wide variety of ways
of authenticating a user, including NTLM and Kerberos. Each of these mechanisms
has its advantages and disadvantages. The authentication mechanism also has an
important impact on how data is transmitted between the client and the server.
Depending on how you authenticate to the server, the data passed between the client
and server may or may not be encrypted. Encryption is extremely important in that it
protects the contents of your communications with the server against tampering and
preserves privacy. If encryption isn’t being used, you need to ensure the physical secu-
rity of your network. No untrusted access to the network can be permitted in this sce-
nario. The possible types of authentication are shown in table 13.5.

Table 13.5 The possible types of authentication available for PowerShell remoting

Auth type Description Encrypted payload

Default Use the authentication method specified by the
WS-Management protocol.

Depends on what
was specified.

Basic Use Basic Authentication, part of HTTP, where the username and
password are sent unencrypted to the target server or proxy.

No, use HTTPS to
encrypt the
connection.
514 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

For all of the authentication types except Basic, the payload of the messages you send
is encrypted directly by the remoting protocol. If Basic authentication is chosen, you
have to use encryption at a lower layer, for example by using HTTPS instead of HTTP.

In simple network configurations, you only have to worry about connecting
directly to the target machine and authenticating to that computer. There’s a fairly
common configuration where things are more complicated and you have to go
through an intermediate machine before you can connect to the final target. This
configuration is the so-called “second-hop” scenario. We’ll look at how authentica-
tion is handled in this configuration next.

Forwarding credentials in multihop environments

In a domain environment, when a user connects from one computer to another, iden-
tity is validated by the domain controller. If the validation process completes success-
fully, a network token is created for those users, allowing them to operate as themselves
on the target machine.

This arrangement works perfectly when the user can connect directly to the target
computer, but that’s not always the case in an enterprise environment. Sometimes,
for security or performance reasons, you have to go through a gateway or bastion
server to get to your final target. In this scenario, you run into a problem with the
normal remote-access authentication mechanism. Because you only have a network
token on the second computer, you can’t directly connect to another computer. This
is a deliberate restriction in the domain architecture designed to limit the amount of
damage an attacker can inflict on the enterprise. An interactive token—what you get
when you sit down in front of a PC and log on “on the glass”—is required to auto-
matically connect to another computer, and to create an interactive token, the user’s
credentials are needed. This means that you have to get the user’s credentials to the
second computer, a process that’s called credential forwarding.

Digest Use Digest Authentication, which is also part of HTTP. This
mechanism supersedes Basic authentication and encrypts
the credentials.

Yes.

Kerberos The client computer and the server mutually authenticate using
the Kerberos network authentication protocol.

Yes.

Negotiate Negotiate is a challenge-response scheme that negotiates with
the server or proxy to determine the scheme to use for authenti-
cation. For example, negotiation is used to determine whether
the Kerberos protocol or NTLM is used.

Yes.

CredSSP Use Credential Security Service Provider (CredSSP) authentica-
tion, which allows the user to delegate credentials. This mecha-
nism, introduced with Windows Vista, is designed to support the
second-hop scenario, where commands that run on one remote
computer need to hop to another computer to do something.

Yes.

Table 13.5 The possible types of authentication available for PowerShell remoting (continued)

Auth type Description Encrypted payload
REMOTING INFRASTRUCTURE IN DEPTH 515

To accomplish this credential forwarding magic, PowerShell uses a mechanism
introduced with Windows Vista called CredSSP (Credential Security Service Pro-
vider). This mechanism was originally designed for Windows Terminal Server to
facilitate single sign-on. Since then, it has been expanded to work with web services as
well, so PowerShell, through WSMan, can take advantage of it. The CredSSP mecha-
nism enables you to securely pass your credentials to a target machine via a trusted
intermediary. This process is shown in figure 13.2.

NOTE CredSSP is another of the protocols that are publicly docu-
mented through the Microsoft Communications Protocol Program.
The specification for CredSSP, designated MS-CSSP, is available at
http://mng.bz/q6Qo.

In the upper part of the figure, you see what happens when a user remotely connects
to the first-hop computer. A network token is created for the user, allowing local
access; but when they try to connect to the second machine, the connection fails. In
the lower sequence, CredSSP is enabled and the user has provided credentials to the
first-hop computer, allowing it to create an interactive token. With an interactive
token, the user can successfully connect to the second-hop computer.

For this delegation process to work, both the client and the server have to be
enabled to allow it. To do so, use the Enable-WSManCredSSP cmdlet. To enable the
client side, execute the following command on the client:

Enable-WSManCredSSP -Role client -DelegateComputer computername

Without CredSSP: credentials aren’t passed

Network token

created for user

User connects

to target without

credential forwarding

With CredSSP: credentials are passed

CredSSP-enabled server

uses forwarded credentials

to create an interactive

token permitting remote

connections

User connects with

CredSSP enabled ;

credentials are

forwarded to

intermediate computer

Second hop succeeds ,

and user connects

to target computer

Network

token can’t

go off-box,

so second

hop fails

Figure 13.2 How second-hop authentication changes when CredSSP is used. Without

credential forwarding, the second hop fails because the user is operating with a net-

work token. When CredSSP is enabled, the intermediate computer uses the forwarded

credentials to create an interactive token, allowing it to create remote connections.
516 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

This command enables you to pass credentials from the client to the delegate computer
for authentication. To enable the server side, run the following command on the server:

Enable-WSManCredSSP -Role server

As you might expect, you have to run these commands from an elevated PowerShell
session.

Be aware that there are some security concerns with this mechanism. It requires
that the credentials be stored on the intermediate machine, even if only temporarily.
If that machine is compromised, these stored credentials are at risk. The more
machines that store credentials, the greater the potential risk of having credentials
stolen becomes. In a bastion server scenario, this may represent a serious concern and
so care must be taken in choosing when and where to use this feature.

There’s one more variation in our discussion of user authentication that we have to
cover before we move on: handling administrator privileges in cross-domain scenarios.

Enabling remoting for administrators in other domains

In a large enterprise with more than one domain, an administrator in one domain
may have to perform administrative tasks cross-domain and may encounter a prob-
lem with the way remoting works. Even when a user in another domain is a member
of the Administrators group on the local computer, the user can’t connect to the tar-
get computer remotely with Administrator privileges. The reason is that, with the
default settings, remote connections from other domains run with only standard user
privilege tokens. To enable what you want, you can use the LocalAccountToken-
FilterPolicy Registry entry to change the default behavior and allow remote users
who are members of the Administrators group to run with Administrator privileges.

NOTE Allowing remote users who are members of the Administrators
group to run with Administrator privileges isn’t the default because
making this change has a specific security concern. Setting the
LocalAccountTokenFilterPolicy entry will disable User Account
Control (UAC) remote restrictions for all users on all affected comput-
ers. Make sure you’ve considered the consequences of this change
before proceeding with it.

To change the policy you must define a new value at a specific place in the Registry.
You’ll use the provider commands and the Registry provider to make this change, set-
ting the value of the LocalAccountTokenFilterPolicy Registry entry to 1. The
command to do this looks like this:

C:\PS> New-ItemProperty -Path `
 HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System `
 -Name LocalAccountTokenFilterPolicy `
 -PropertyType DWord -Value 1
REMOTING INFRASTRUCTURE IN DEPTH 517

This code will create the new LocalAccountTokenFilterPolicy value in the
Registry at the path

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System

Once this change has been made, administrators from another domain will be able to
remotely access this computer through PowerShell.

At this point, you’re able to set things up so that the server can verify the identity
of the connecting user and the user can verify that they’re connected to the correct
server. Next you’ll learn the various ways you can address the target computer.

13.1.5 Addressing the remoting target

In this section we’ll look at how to specify the address of the target remoting service
that you want to connect to. With TCP/IP-based protocols, there are two parts to a
service address: the IP address of the computer and the network port number that ser-
vice is operating on. We’ll examine both of these elements and also show how proxy
servers fit into the overall scheme.

DNS names and IP addresses

The typical way to address a computer is to use its name. This name is resolved
through the Domain Name Service (DNS) into an IP address. But sometimes it’s nec-
essary to specify the IP address of a computer explicitly instead of going through
DNS. To permit this, the New-PSSession, Enter-PSSession, and Invoke-
Command cmdlets can also take the IP address of the computer. But because Kerberos
authentication doesn’t support IP addresses, NTLM authentication is used by default
whenever you specify an IP address. In other words, you’re looking at the same issues
you encountered earlier when working in a nondomain environment. The IP
addresses for these machines must be added to the TrustedHosts list. See section
13.1.2 for details on how to do this.

Connecting to nondefault ports

By default, PowerShell connects to port 5985 for inbound remoting over HTTP and
to port 5986 for connections over HTTPS. This information can also be retrieved
directly from the WSMan: drive using the following command:

PS (1) > dir WSMan:\localhost\Service\DefaultPorts |
>> Format-Table -AutoSize name,value
Name Value
---- -----
HTTP 5985
HTTPS 5986

On the client end, when you need to connect to a nondefault port, use the -Port
parameter as follows:

Invoke-Command -ComputerName localhost -Port 5985 -ScriptBlock {hostname}
518 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

On the server side, you can change the default port that the service listens on using
the WSMan: drive.

NOTE If you change the default port, you may also be required to add
a new firewall exception for that port.

You use the Set-Item cmdlet to change the Port value in the path WSMan:\local-
host\Listener\<listener>\Port. For example, the following command changes the
default port to 8080:

Set-Item WSMan:\localhost\Listener\Listener_641507880\Port -Value 8080

You can verify the change using the dir command on the path WSMan:\local-
host\Listener\Listener_641507880\Port.

Addressing using a URI

Given all this talk about HTTP, IP addresses, and ports, you might expect that a
machine can be addressed using a URI (or URL) just like a web server and this is, in
fact, the case. In the following example, you’ll use a URI to connect to the default ser-
vice on machine1:

PS (1) > Invoke-Command `
>> -ConnectionUri http://machine1:5985/WSMAN `
>> -Credential $c -ScriptBlock { hostname }
>>
machine1
PS (2) >

This URI tells Invoke-Command the protocol to use (HTTP), the machine name
(machine1), and the port (5985) to connect to, all in a single string.

That covers the basic addressing mechanisms. Now we’ll look at how proxy servers
come into all of this.

Specifying default session options

It should be apparent by now that the number of options you can specify for a
connection is quite large. Specifying this option collection eventually becomes
cumbersome, so PowerShell provides a mechanism for predefining the options to
use via the New-PSSession-Option cmdlet. This cmdlet will create an object that
contains the default values to use. If this object is then stored in the variable
$PSSessionOption, it’ll be used to set the defaults for subsequent connection.
You’ll see an example of this in a minute.

The other approach for managing sets of options is to assign them to a hashtable
and then use splatting to parameterize the command. Splatting was covered in
section 5.8.4.
REMOTING INFRASTRUCTURE IN DEPTH 519

Working with proxy servers

Because PowerShell remoting is built on top of the HTTP protocol, it can take advan-
tage of HTTP proxy servers. For this to work, you have to specify proxy setting
options for the remote command. Three settings are available: ProxyAccessType,
ProxyAuthentication, and ProxyCredential. They can be specified either as
explicit parameters to New-PSSession when you create a session, or can be config-
ured in a SessionOption object and passed via the -SessionOption parameter of
the New-PSSession, Enter-PSSession, or Invoke-Command cmdlet. The settings
object can also be stored in the $PSSessionOption preference variable. If this vari-
able is defined, the cmdlets will use these settings as the default (explicit settings will
always override this, of course).

In the following example, you’ll create a session option object with proxy session
options and then use that object to create a remote session. First, create the session
object:

PS (1) > $PSSessionOption = New-PSSessionOption `
>> -ProxyAccessType IEConfig `
>> -ProxyAuthentication Negotiate `
>> -ProxyCredential Domain01\User01
>>
PS (2) >

When you run this command, it’ll prompt you to enter the credentials for the user
Domain01\User01. Because this object now has the credentials needed to connect, you
won’t have to enter them again. Now you establish a connection to the remote server:

PS (3) > New-PSSession -ConnectionURI https://www.myserver.com
PS (4) >

It connects without any problems.
We’ve now covered the identification, authentication, and addressing issues that

impact establishing a remote connection. Now we’ll explore additional issues that
you might need to address depending on what versions of the Windows operation
system you’re running on the target computers.

13.1.6 Windows version-specific connection issues

When connecting to older client operating systems through remoting, you must con-
sider a couple of additional issues.

NOTE These settings affect all users on the system and can make the
system more vulnerable to a malicious attack. Use caution when mak-
ing these changes.

Windows XP with SP3

Windows XP SP3 is the oldest client operating system that PowerShell remoting is
supported on. For remote access to work properly on a machine running this version
520 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

of Windows, you have to change the default setting for the Network Access: Sharing
and Security Model for Local Accounts security policy. On non-domain joined
machines, this change is necessary to allow remote logons using local account creden-
tials to authenticate using those credentials. To make this change, use the Local Secu-
rity Policy MMC snap-in.

NOTE Just to be clear, we’re talking about a Microsoft Management
Console (MMC) snap-in, not a PowerShell v1 snap-in.

To start this snap-in, run secpol.msc. You can do so from the PowerShell command line
or by choosing Start > Run to launch MMC with this snap-in, as shown in figure 13.3.

In the left-hand pane of the MMC window, navigate to the path Security Set-
tings\Local Policies\Security Options to see the list of local security settings. From that
list, double-click Network Access: Sharing and Security Model for Local Accounts.
In the resulting property dialog box, change the setting to Classic - Local Users
Authenticate as Themselves, as shown in figure 13.3.

Windows Vista

To enable remote access on Windows Vista clients, you need to set the Local Account
Token Filter policy—which requires setting the LocalAccountTokenFilterPolicy
Registry entry in

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System

to 1. You can use PowerShell to do this. Run the following command to create the entry:

New-ItemProperty `
 -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System `
 -Name LocalAccountTokenFilterPolicy -PropertyType DWord -Value 1

With this change, it becomes possible to connect to a computer running Vista
through PowerShell remoting.

Figure 13.3 You can use the secpol.msc MMC snap-in on Windows XP SP3 to enable

PowerShell remoting to access this machine. The displayed policy item must be set to

Classic for remoting to work.
REMOTING INFRASTRUCTURE IN DEPTH 521

At this point, you’re able to reliably connect your clients to your servers, but there’s
one more consideration you need to address if you want to ensure the reliability of
your network: resource consumption. In the next section, we’ll describe the various
options available to you for resource management.

13.1.7 Managing resource consumption

In chapter 12, we talked about throttling at the command level using the -Throttle-
Limit parameter. The remoting cmdlets allow you to connect to many computers at
once and send commands to all of those computers concurrently. It’s also possible for
many people to connect to the same machine at the same time. Allowing an arbitrary
number of connections requires an arbitrarily large number of resources, so to prevent
overloading either the client or the server, the remoting infrastructure supports
throttling on both the client and server ends. Throttling allows you to limit the num-
ber of concurrent connections, either outbound or inbound. We’ll look at the out-
bound case first.

To help you manage the resources on the local computer, PowerShell includes a
feature that lets you limit the number of concurrent remote connections that are
established for each command that’s executed. The default is 32 concurrent connec-
tions, but you can use the -ThrottleLimit parameter to change the default throttle
setting for a particular command. The commands that support -ThrottleLimit are
shown in table 13.6.

When using -ThrottleLimit to throttle the number of connections, remember that
it only applies to the current command. It doesn’t apply to subsequent commands or
other sessions running on the computer. This means that if commands are being run
concurrently in multiple sessions, the number of active connections on the client
computer is the sum of the concurrent connections in all the sessions.

Table 13.6 PowerShell cmdlets supporting the -ThrottleLimit parameter

Name Synopsis

Invoke-Command Runs commands on local and remote computers

New-PSSession Creates a persistent connection to a local or remote computer

Get-WmiObject Gets instances of Windows Management Instrumentation (WMI) classes
or information about the available classes

Invoke-WmiMethod Calls WMI methods

Remove-WmiObject Deletes an instance of an existing WMI class

Set-WmiInstance Creates or updates an instance of an existing WMI class

Test-Connection Sends ICMP echo request packets (pings) to one or more computers

Restart-Computer Restarts (reboots) the operating system on local and remote computers

Stop-Computer Stops (shuts down) local and remote computers
522 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

Controlling resource consumption with quotas

Controlling the number of connections is one way to limit resource consumption on
the client. But even when the number of connections is restricted, a single connection
can still consume a large amount of resources if a lot of data is being transferred. To
manage this, you can use quota settings to restrict the amount of data that gets trans-
ferred. These settings can be made at several different levels.

On a per-session level, you can protect the local computer by using the Maximum-
ReceivedDataSizePerCommandMB and MaximumReceivedObjectSizeMB parame-
ters of the New-PSSessionOption cmdlet and the $PSSessionOption preference
variable.

Alternatively, on the host end you can add restrictions to the endpoint configura-
tion through the MaximumReceivedDataSizePerCommandMB and Maximum-
ReceivedObjectSizeMB parameters of the Register-PSSessionConfiguration
cmdlet.

Finally, at the WSMan layer, there are a number of settings you can use to protect
the computer. The MaxEnvelopeSizeKB and MaxProviderRequests settings let you
limit the amount of data that can be sent in a single message and specify the total num-
ber of messages that can be sent. These settings are available under the <Computer-
Name> node in the root of the WSMan: drive. You can use the Max* settings in the
WSMan:\<ComputerName>\Service node to control the maximum number of connec-
tions, and concurrent operations on a global and current basis. The following com-
mand shows these settings for the local host:

PS (1) > dir wsman:\localhost\service\maxc* | fl name,value

Name : MaxConcurrentOperations
Value : 4294967295

Name : MaxConcurrentOperationsPerUser
Value : 15

Managing resource consumption

The idea of constraining resource consumption in a session isn’t unique to remoting.
This principle has been applied throughout the system starting with PowerShell v1.
PowerShell provides mechanisms to limit resource consumption in a number of
areas using a set of constraint variables. For example, the maximum number of
variables that can be created is constrained using the $MaximumVariableCount
variable. (To see all of the constraint variables, execute dir variable:max*.)
The PowerShell team’s philosophy on this point was to try to provide a safe
environment by understanding what problems might occur, and then defining
reasonable limits with healthy margins in each area. Users can then adjust these
limits up or down as appropriate for their environment or application.
REMOTING INFRASTRUCTURE IN DEPTH 523

Name : MaxConnections
Value : 25

This output shows that the user is limited to 15 concurrent operations, and a maxi-
mum of 25 connections is allowed.

When these quotas are exceeded, an error will be generated. At that point, you
need to take a look at what you (or someone else) are trying to do. If the operation is
legitimate, it makes sense to increase the quotas.

For example, the following command increases the object size quota in the
Microsoft.PowerShell session configuration on the remote computer from 10
MB (the default value) to 11 MB:

Set-PSSessionConfiguration -Name microsoft.powershell `
 -MaximumReceivedObjectSizeMB 11 -Force

Again, this configuration is based on the type of activity that you need to perform.
Another kind of resource that you need to manage is the open connections to a

target machine. We’ll show you how to manage them using timeouts.

Setting timeouts on operations

We’ve looked at managing the number of connections and controlling the amount of
data that can be sent or received. The last mechanism for managing resource con-
sumption is to limit the amount of processor time that an operation is permitted to
consume. You can do so by setting timeouts on operations. If an operation exceeds
the timeout value, then an error will occur and the operation will be terminated.
Note that timeouts can be set at both the client and server ends of the connection.
The shortest timeout of the two settings always takes precedence.

Through the WSMan: drive, you have access to both client-side and server-side
timeout settings. To protect the client, you can change the MaxTimeoutms setting in
the node in the WSMan: drive that corresponds to the computer in question. To look
at these settings for the local machine, first cd into the appropriate node:

PS (1) > cd wsman:\localhost

Use Get-ChildItem to see the settings:

PS (2) > Get-ChildItem | Format-Table -auto

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost

Name Value Type
---- ----- ----
MaxEnvelopeSizekb 150 System.String
MaxTimeoutms 60000 System.String
MaxBatchItems 32000 System.String
MaxProviderRequests 4294967295 System.String
Client Container
Service Container
Shell Container
524 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

Listener Container
Plugin Container
ClientCertificate Container

On the server side, you need to be connected to remote machine via WSMan, so use
the Connect-WSMan command with the appropriate credentials to connect:

PS (1) > Connect-WSMan -ComputerName brucepay64h `
>> -Credential (Get-Credential)
>>

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential

The remote machine will now be visible as a node under the WSMan: drive:

PS (2) > cd wsman:\
PS (3) > Get-ChildItem

 WSManConfig:

ComputerName Type
------------ ----
localhost Container
brucepay64h Container

Set your current directory to the Service subnode of the remote machine

PS (4) > cd brucepay64h\service

and look at the contents:

PS (5) > Get-ChildItem | Format-Table -auto
WSManConfig: Microsoft.WSMan.Management\WSMan::brucepay64h\Service

Name Value
---- -----
RootSDDL O:NSG:BAD:P(A;;GA;;;BA)S:P(A...
MaxConcurrentOperations 4294967295
MaxConcurrentOperationsPerUser 15
EnumerationTimeoutms 60000
MaxConnections 25
MaxPacketRetrievalTimeSeconds 120
AllowUnencrypted false
Auth
DefaultPorts
IPv4Filter *
IPv6Filter *
EnableCompatibilityHttpListener false
EnableCompatibilityHttpsListener false
CertificateThumbprint

You can see the EnumerationTimeoutms and the MaxPacketRetrievalTime-
Seconds timeout settings.
REMOTING INFRASTRUCTURE IN DEPTH 525

Alternatively, you can protect the local computer by setting the various timeouts on
the session when you create it. You can do so by creating a session option object using
the New-PSSessionOption cmdlet with the -CancelTimeout, -IdleTimeout,
-OpenTimeout, and -OperationTimeout parameters. Once you’ve created this
object, you can explicitly pass it to New-PSSession using the -SessionOption para-
meter (or implicitly by assigning it to the $PSSessionOption preference variable).

One problem with timeouts is that it’s hard to tell if the operation timed out
because there was a problem or because it just needed more time to complete the
operation. If the timeout expires, the remoting infrastructure will simply terminate
the operation and generate an error.

It’s up to you to investigate why the timeout occurred and either change the com-
mand to complete within the timeout interval or determine the source of the timeout
(client or server) and increase the timeout interval to allow the command to complete.

In this example, you’ll use the New-PSSessionOption cmdlet to create a session
option object with a -OperationTimeout value of 10 seconds. This parameter takes
its value in milliseconds so you’ll provide the value accordingly:

PS (1) > $pso = New-PSSessionOption -OperationTimeout (10*1000)

Now use the session option object to create a remote session:

PS (2) > $s = New-PSSession -ComputerName brucepay64h `
>>> -SessionOption $pso

Now try running a command in this session that takes longer than 10 seconds. Use
the foreach cmdlet along with Start-Sleep to slowly emit strings of stars. Here’s
what happens:

PS (3) > Invoke-Command $s `
>> { 1..10 | foreach {"$_" + ('*' * $_) ; Start-Sleep 1}}
1*
2**
3***
4****
Processing data from remote server failed with the
following error message: The WinRM client cannot complete
the operation within the time specified. Check if the machine
name is valid and is reachable over the network and firewall
exception for Windows Remote Management service is enabled.
For more information, see the about_Remote_Troubleshooting
Help topic.
 + CategoryInfo : OperationStopped:
(System.Manageme...pressionSyncJob:PSInvokeExpressionSyncJob) []
 , PSRemotingTransportException
 + FullyQualifiedErrorId : JobFailure

When the timeout occurs, you get an error message explaining that the operation was
terminated due to the timeout and suggesting some remedial actions or a way to get
more information.
526 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

This completes our in-depth coverage of the remoting infrastructure. At this
point, you have all the background needed to be able to set up and manage the
remoting infrastructure so you can effectively deploy services. Now let’s move on to
the fun stuff! In the next section, we’ll look at how to create custom remoting ser-
vices. Using the mechanisms provided by PowerShell, you can address a variety of
sophisticated scenarios that normally require lots of hardcore programming. In
PowerShell, this work reduces to a few lines of script code.

13.2 BUILDING CUSTOM REMOTING SERVICES

In chapter 12, we looked at remoting from the service consumer perspective. It’s time
for you to take on the role of service creator instead. In this section, you’ll learn how
to create and configure custom services instead of just using the default PowerShell
remoting service. You’ll see how to configure your services to limit the operations a
client can perform through these endpoints in a very precise way.

13.2.1 Remote service connection patterns

We’ll start with a short discussion about service architecture. There are two connec-
tion patterns used in remoting: fan-in and fan-out. What you saw in chapter 12 were
primarily fan-out patterns. When you create custom remoting services, you’ll also be
using the fan-in pattern, so we’ll briefly describe these two patterns in this section.

Fan-out remoting

The most common remoting scenario for administrators is the one-to-many configu-
ration, in which one client computer connects to a number of remote machines in
order to execute remote commands on those machines. This is called the fan-out sce-
nario because the connections fan out from a single point, as shown in figure 13.4.

Client machine

Target machines or

managed nodes

Figure 13.4 In fan-out remoting, a single client fans out connections to manage

multiple servers.
BUILDING CUSTOM REMOTING SERVICES 527

In this figure, you see a single client with concurrent connections to a number of
servers that it wants to manage, usually as part of a group of operations. Custom
services fit into the fan-out model when you want to restrict the access that the client
has. For example, you may want to define a service that only exposes the health data
from the monitoring example in section 12.2.3. In this type of scenario, there will
typically only be a single client connecting to your service.

Fan-in remoting

In enterprises and hosted solution scenarios, you’ll find the opposite configuration
where many client computers connect to a single remote computer, such as a file
server or a kiosk. This many-to-one is known as the fan-in configuration, shown in
figure 13.5.

Windows PowerShell remoting supports both fan-out and fan-in configurations.
In the fan-out configuration, PowerShell remoting connects to the remote machine
using the WinRM service running on the target machine. When the client connects
to the remote computer, the WSMan protocol is used to establish a connection to the
WinRM service. The WinRM service then launches a new process (wsm-
provhost.exe) that loads a plug-in that hosts the PowerShell engine. This arrange-
ment is shown in figure 13.6.

Creating a new process for each session is fine if there aren’t many users connect-
ing to the service. But if several connections are expected, as is the case for a high-
volume service, the one-process-per-user model won’t scale very well. To address this
issue, an alternate hosting model, targeted at developers, is available for building
custom fan-in applications on top of PowerShell remoting. Instead of using the
WinRM service to host WSMan and the PowerShell plug-in, Internet Information

Single server with custom

constrained PowerShell

remoting endpoint

Figure 13.5 In the fan-in ar-

rangement, multiple client

computers connect to a single

server. This is usually a dele-

gated administration scenario

in which a constrained end-

point is used to provide access

to controlled services to a vari-

ety of clients. This model is

used by Outlook.com.
528 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

Services (IIS) is used instead. In this model, instead of starting each user session in a
separate process, all the PowerShell sessions are run in the same process along with
the WSMan protocol engine. This configuration is shown in figure 13.7.

Windows Remote

Management (WinRM)

service

wsmprovhost for user 1

PowerShell session

WSMan protocol

User 1

User 2

User 3

wsmprovhost for user 2

PowerShell session

wsmprovhost for user 3

PowerShell session

Figure 13.6 When multiple users connect to the WinRM service, a new

wsmprovhost process is created to host the PowerShell session for that

user. Even when the same user connects multiple times, a new process is

still created for each connection.

Internet Information Server (IIS) worker process

PowerShell session

WSMan protocol

User 1

User 2

User 3

PowerShell session

PowerShell session

Figure 13.7 When IIS hosting is used for fan-in, each user still gets their own

session but only one process is used to host all the sessions. This is much more

 efficient because you aren’t creating a process per user.
BUILDING CUSTOM REMOTING SERVICES 529

Another feature of this hosting model is that the authentication mechanism is pluggable,
which allows for alternate authentication services like LiveID to be used. A guide for set-
ting up remoting is available on MSDN as part of the WinRM documentation under the
topic “IIS Host Plug-in Configuration” (but be aware that this isn’t a simple process).

NOTE IIS hosting and fan-in remote management aren’t supported
on Windows XP or Windows Server 2003. They require Windows
Vista or above when using a nonserver operating system and Windows
Server 2008 or later for a server OS.

Having all the sessions running in the same process has certain implications. Because
PowerShell lets you get at pretty much everything in a process, multiple users running
unrestricted in the same process could interfere with one another. On the other hand,
because the host process persists across multiple connections, it’s possible to share
process-wide resources like database connections between sessions.

Given the lack of session isolation, this approach isn’t intended for full-featured
general-purpose PowerShell remoting. Instead, it’s designed for use with constrained,
special-purpose applications using PowerShell remoting. To build these applications,
you need two things:

• A way to create a constrained application environment

• A way to connect to PowerShell remoting so the user gets the environment
you’ve created instead of the default PowerShell configuration

We’ll start with the second one first and look at how you specify custom remoting
endpoints in the next section.

13.2.2 Working with custom configurations

In section 13.1.6, we talked about connecting to a computer by name (and optionally
by port number) when using PowerShell remoting. The remoting infrastructure will
always connect to the default PowerShell remoting service. In the nondefault connec-
tion case, you also have to specify the configuration on the target computer to connect
to. A configuration is made up of three elements:

• The name you use to connect to the endpoint

• A script that will be run to configure the sessions that will run in the endpoint

• An ACL used to control who has access to the endpoint

When using the Invoke-Command, New-PSSession, or Enter-PSSession cmdlet,
you can use the -ConfigurationName parameter to specify the name of the session
configuration you want to connect to. Alternatively, you can override the normal
default configuration by setting the $PSSessionConfigurationName preference
variable to the name of the endpoint you want to connect to.

When you connect to the named endpoint, a PowerShell session will be created
and then the configuration script associated with the endpoint will be executed. This
530 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

configuration script should define the set of capabilities available when connecting to
that endpoint. For example, there may be different endpoints for different types of
management tasks—managing a mail server, managing a database server, or manag-
ing a web server. For each task, a specific endpoint would be configured to expose the
appropriate commands (and constraints) required for performing that task. In the
next section, you’ll see how to create your own custom endpoints.

13.2.3 Creating a custom configuration

Following on our theme of remote monitoring from chapter 12, you’re going to cre-
ate a configuration that exposes a single custom command, Get-PageFaultRate.
This command will return the page fault rate from the target computer.

Session configuration

Every remoting connection will use one of the named configurations on the remote
computer. These configurations set up the environment for the session and determine
the set of commands visible to users of that session.

When remoting is initially enabled using the Enable-PSRemoting cmdlet, a
default configuration is created on the system called Microsoft.PowerShell (on
64-bit operating systems, there’s also the Microsoft.PowerShell32 endpoint).
This endpoint is configured to load the default PowerShell configuration with all
commands enabled. The Enable-PSRemoting cmdlet also sets the security descrip-
tor for this configuration so that only members of the local Administrators group can
access the endpoint.

You can use the session configuration cmdlets to modify these default session con-
figurations, to create new session configurations, and to change the security descrip-
tors of all the session configurations. These cmdlets are shown in table 13.7.

Table 13.7 The cmdlets for managing the remoting endpoint configurations

Cmdlet Description

Disable-PSSessionConfiguration Denies access to the specified session configuration
on the local computer by adding an “Everyone
AccessDenied” entry to the access control list (ACL)
on the configuration

Enable-PSSessionConfiguration Enables existing session configurations on the local
computer to be accessed remotely

Get-PSSessionConfiguration Gets a list of the existing, registered session config-
urations on the computer

Register-PSSessionConfiguration Creates and registers a new session configuration

Set-PSSessionConfiguration Changes the properties of an existing session con-
figuration

Unregister-PSSessionConfiguration Deletes the specified registered session configura-
tions from the computer
BUILDING CUSTOM REMOTING SERVICES 531

In the next section, we’ll look at using these cmdlets to create and manage a custom
endpoint.

Registering the endpoint configuration

Endpoints are created using the Register-PSSessionConfiguration cmdlet and
are customized by registering a startup script. In this example, you’ll use a simple
startup script that defines a single function, Get-PageFaultRate. The script looks
like this:

PS (1) > @'
>> function Get-PageFaultRate {
>> (Get-WmiObject Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
>> }
>> '@ > Initialize-HMConfiguration.ps1
>>

Before you can use this function, you need to register the configuration, specifying
the full path to the startup script. Call this new configuration wpia1. From an ele-
vated PowerShell session, run the following command to create the endpoint:

PS (2) > Register-PSSessionConfiguration -Name wpia1 `
>> -StartupScript $pwd/Initialize-HMConfiguration.ps1 -Force
>>

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Name Type Keys
---- ---- ----
wpia1 Container {Name=wpia1}

The output of the command shows that you’ve created an endpoint in the WSMan
plug-in folder. To confirm this, cd into that folder and run the dir command:

PS (3) > cd wsman:\localhost\plugin
PS (4) > dir

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Name Type Keys
---- ---- ----
Event Forwarding Plugin Container {Name=Event Fo...
microsoft.powershell Container {Name=microsof...
Microsoft.PowerShell32 Container {Name=Microsof...
WMI Provider Container {Name=WMI Prov...
wpia1 Container {Name=wpia1}

This shows a list of all the existing endpoints, including the one you just created,
wpia1. Now test this endpoint with the Invoke-Command command and run the
function defined by the startup script:

PS (5) > Invoke-Command localhost -ConfigurationName wpia1 {
>> Get-PageFaultRate }
58709002
532 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

This code verifies that the endpoint exists and is properly configured. Now clean up
by unregistering the endpoint:

PS (6) > Unregister-PSSessionConfiguration -Name wpia1 -Force
PS (7) >

Next, verify that the endpoint has been removed:

PS (8) > dir

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Name Type Keys
---- ---- ----
Event Forwarding Plugin Container {Name=Event Fo...
microsoft.powershell Container {Name=microsof...
Microsoft.PowerShell32 Container {Name=Microsof...
WMI Provider Container {Name=WMI Prov...

This covers the basic tasks needed to create a custom PowerShell remoting endpoint
using a configuration script to add additional functionality to the session defaults.
Our ultimate goal, though, was to create a custom endpoint with reduced functional-
ity, exposing a restricted set of commands to qualified users, so clearly you aren’t done
yet. There are two remaining pieces to look at: controlling individual command visi-
bility, which we’ll get to in section 13.2.5, and controlling overall access to the end-
point, our next topic.

13.2.4 Access controls and endpoints

By default, only members of the Administrators group on a computer have permis-
sion to use the default session configurations. To allow users who aren’t part of the
Administrators group to connect to the local computer, you have to give those users
Execute permissions on the session configurations for the desired endpoint on the
target computer. For example, if you want to enable nonadministrators to connect to
the default remoting Microsoft.PowerShell endpoint, you can do so by running
the following command:

Set-PSSessionConfiguration Microsoft.PowerShell -ShowSecurityDescriptorUI

This code launches the dialog box shown in figure 13.8.
You add the name of a user or a group you want to enable to the list, then select

the Execute (Invoke) check box. Then dismiss the dialog box by clicking OK. At this
point, you’ll get a prompt telling you that you need to restart the WinRM service
for the change to take effect. Do so by running Restart-Service winrm as shown:

PS (1) > Restart-Service winrm
PS (2) >

Once the service is restarted, the user or group you’ve enabled can connect to the
machine using remoting.
BUILDING CUSTOM REMOTING SERVICES 533

Setting security descriptors on configurations

When Enable-PSRemoting creates the default session configuration, it doesn’t create
explicit security descriptors for the configurations. Instead, the configurations inherit
the security descriptor of the RootSDDL. The RootSDDL is the security descriptor that
controls remote access to the listener, which is secure by default. To see the RootSDDL
security descriptor, run the Get-Item command as shown:

PS (1) > Get-Item wsman:\localhost\Service\RootSDDL

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Service

WARNING: column "Type" does not fit into the display and was removed.

Name Value
---- -----
RootSDDL O:NSG:BAD:P(A;;GA;;;BA)S:P(AU;FA;GA;;;WD...

The string format shown in the Value output in the example uses the syntax defined
by the Security Descriptor Definition Language (SDDL), which is documented in the
Windows Data Types specification MS-DTYP in section 2.5.1.

Figure 13.8 This dialog box is

used to enable the Execute per-

mission on the default remoting

configuration. Use this dialog

box to allow a user who isn’t a

member of the Administrators

group to connect to this comput-

er using PowerShell remoting.
534 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

To change the RootSDDL, use the Set-Item cmdlet in the WSMan: drive. To
change the security descriptor for an existing session configuration, use the Set-
PSSessionConfiguration cmdlet with the -SecurityDescriptorSDDL or
-ShowSecurityDescriptorUI parameter.

At this point, you know how to create and configure an endpoint and how to con-
trol who has access to that endpoint. But in your configuration all you’ve done is add
new commands to the set of commands you got by default. You haven’t addressed
the requirement to constrain the environment. The next section introduces the mech-
anisms used to restrict which commands are visible to the remote user.

13.2.5 Constraining a PowerShell session

You first need to know how to constrain a local session. In a constrained environ-
ment, you want to limit the variables and commands available to the user of the ses-
sion. You accomplish this by controlling command and variable visibility. Let’s look at
command visibility first.

Command and variable visibility is conceptually similar to exporting functions
from a module, but it uses a different implementation. When a command is exported
from a module, it’s registered in the caller’s command table. In the remoting scenario
with Invoke-Command, there’s no “table” to copy the commands into and so you
need a different mechanism to control visibility of the command.

NOTE The same is true of explicit remoting and interactive remoting.
With implicit remoting, you do copy commands into the caller’s com-
mand table, but they’re local proxy commands instead of local refer-
ences to exported commands.

Another more important consideration is security. Module exports are designed to
prevent namespace collisions but don’t prevent you from accessing the content of the
module. In other words, it’s not a security boundary, as shown in figure 13.9.

In figure 13.9, the user can’t call Get-Count directly because it hasn’t been
exported from the module. But by using the call operator & and the PSModuleInfo
object for that module, users can still indirectly invoke the command with a script-
block, illustrating that a module boundary doesn’t constitute a security boundary.

In a constrained session, you need to establish a boundary and explicitly prevent
access to the state of the session other than through the public or visible commands.
Now that you’ve defined the boundary, let’s look at controlling which commands are
exposed.

NOTE In local sessions, where the user operates in the same process as
the session, the session boundary isn’t sufficient to provide a true secu-
rity. Only when you combine a constrained session with remote (and
therefore out-of-process) access do you actually get a security boundary.
BUILDING CUSTOM REMOTING SERVICES 535

Controlling command visibility

The mechanism used to control command visibility is the Visibility property on
the CommandInfo object for that command. This mechanism isn’t restricted to
remoting, by the way—you can use this mechanism in the normal interactive Power-
Shell session. In fact, it’s a good way of testing your configuration without creating an
endpoint.

To make a command invisible or private, first use Get-Command to get the
CommandInfo object, then set the Visibility property on that object to Private.
You’ll modify your current session to make the Get-Date command private. This is a
good place to start playing with visibility because hiding Get-Date (typically) won’t
break anything (more on that later). First, run the command as you might conven-
tionally do:

PS (1) > Get-Date

Saturday, April 16, 2011 9:04:20 PM

This returns today’s date—nothing unexpected here. Now use Get-Command to
retrieve the CommandInfo object for Get-Date:

PS (2) > $gd = Get-Command Get-Date

Let’s look at the current setting of the Visibility property:

PS (3) > $gd.Visibility
Public

It returns Public, meaning it can be seen and therefore executed from outside the
session. Change this to Private:

PS (4) > $gd.Visibility = "Private"

Module boundary

Accessing a private command in a module

Get-Count

& $mc { Get-Count }

External call fails...

Call operator with
module context

succeeds...

Scriptblock makes an
internal call...

Figure 13.9 Even though the Get-Count command isn’t exported, by

using the call operator and the PSModuleInfo object for that module,

the user can still indirectly call the private function. The module bound-

ary only facilitates organizing command namespaces and doesn’t consti-

tute a security boundary.
536 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

Verify the change:

PS (5) > $gd.Visibility
Private

Now try calling the cmdlet again:

PS (6) > Get-Date
The term 'Get-Date' is not recognized as the name of a cmdlet,
function, script file, or operable program. Check the spelling of
the name, or if a path was included, verify that the path is
correct and try again.
At line:1 char:9
+ Get-Date <<<<
 + CategoryInfo : ObjectNotFound: (Get-Date:String)
 [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

You got an error complaining that the command doesn’t exist.

NOTE Notice that this is the same error you’d get if the command
really didn’t exist. Obscuring the error message this way prevents
attacks that probe for hidden commands. We’ll talk more about this
type of attack in chapter 21 when we discuss security.

Just to be sure, try calling it another way using the call (&) operator:

PS (7) > & "Get-Date"
The term 'Get-Date' is not recognized as the name of a cmdlet,
function, script file, or operable program. Check the spelling of
the name, or if a path was included, verify that the path is
correct and try again.
At line:1 char:2
+ & <<<< "Get-Date"
 + CategoryInfo : ObjectNotFound: (Get-Date:String)
 [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

And of course it still fails. But, because you’re a sophisticated PowerShell user, you’ll
try one more technique: using a scriptblock with the call operator to invoke the com-
mand:

PS (8) > & {Get-Date}

Saturday, April 16, 2011 9:04:20 PM

This time it worked! So what’s going on here? The difference in this case is that the
external user didn’t call the command directly. Instead, you called a visible func-
tion—the scriptblock—defined inside the session and, because it was calling from
inside, it was able to call the private function. This is shown in figure 13.10.

This is a very important point to understand because it’s the key to creating a
restricted special-purpose endpoint: an external call can only access visible com-
mands; but these commands, because they’re defined as part of the configuration, can
BUILDING CUSTOM REMOTING SERVICES 537

see all the other commands in the configuration. This means that an externally visi-
ble command can call any internal commands in the session. So, if the user makes an
external call to a visible command, that visible command is able to call the private
commands.

These calling conventions are very similar to the way methods on classes or
exported functions work. The external caller of the session/class/module can only call
the public/exported commands (at least directly) but the private commands have
implicit access to the private state of the session/class/module. This means you can
create a public wrapper function that calls the private function. For example, you can
create a function MyGetDate that calls Get-Date and then converts the result into a
string and returns that string. Here’s what that looks like:

PS (9) > function MyGetDate { [string] (Get-Date) }

When you call it, you get the default string representation of the date:

PS (10) > MyGetDate

11/17/2009 22:11:39

Now you’ve officially constrained the session because the MyGetDate wrapper func-
tion has less functionality than the private Get-Date function. There are a couple of
additional things you need to do to get a truly constrained environment. But first let’s
make Get-Date visible again. You can do this by setting the Visibility property
back to Public:

PS (11) > $gd.Visibility = "public"
PS (12) > Get-Date

Tuesday, November 17, 2009 9:05:59 PM

And everything is back to normal.

Figure 13.10 If the command isn’t visible across the session boundary, the user can’t

call it. If the user can call a visible command, that visible command can call the private

internal command.

& { Get-Date }

Internal vs. external command access in a session

Get-Date
Get-Date

C
al

l f
ro

m
 in

si
de

& { Get-Date }

User can’t call Get-Date
directly because it’s not visible
outside the session

User can use the call operator
to invoke a scriptblock that
calls Get-Date indirectly

PSSession
538 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

It’s not much of a security mechanism if you can just use the properties on the
command objects to control the visibility of commands. Clearly there needs to be
more to the story, so in the next section we’ll revisit the restricted language we men-
tioned in section 10.6 when we discussed module manifests and the data language.

Setting the language mode

In the previous section, you learned how to make a command private and then call it
through a public function. Obviously if you allow external users to create their own
functions, this won’t be very secure. So the next thing you need to do is constrain
what PowerShell language features the user has access to. You accomplish this through
the $ExecutionContext variable. As you saw in chapter 11, $ExecutionContext
captures—well—the execution context of the session. The property of interest in this
case is SessionState. Let’s see what that property exposes:

PS (1) > $ExecutionContext.SessionState

Drive : System.Management.Automation.Dri
 veManagementIntrinsics
Provider : System.Management.Automation.Cmd
 letProviderManagementIntrinsics
Path : System.Management.Automation.Pat
 hIntrinsics
PSVariable : System.Management.Automation.PSV
 ariableIntrinsics
LanguageMode : FullLanguage
UseFullLanguageModeInDebugger : False
Scripts : {*}
Applications : {*}
Module :
InvokeProvider : System.Management.Automation.Pro
 viderIntrinsics
InvokeCommand : System.Management.Automation.Com
 mandInvocationIntrinsics

And you see a lot of interesting things. Of particular interest are three properties:
LanguageMode, Scripts, and Applications.

When we looked at constrain commands in the previous section, you used the
Visibility property on the CommandInfo object to make Get-Date private. This
approach works for commands that exist in memory, but scripts and executables are
loaded from disk each time, which means that a new CommandInfo object is returned
each time. Setting the Visibility property won’t be very useful if you’re returning a
new object each time. Another mechanism is needed for this, and this mechanism is a
list of permitted commands and scripts. The default setting for these properties is a
single element, *, which means that any external command or script may be exe-
cuted. If this element is deleted so that the list is empty, it means that no commands
of this type may be executed. To permit only specific commands to be called, add the
full path to the command or script to this list.
BUILDING CUSTOM REMOTING SERVICES 539

NOTE You might logically assume that wildcards would be permitted
in this list. They aren’t. The only pattern that has a special significance
is when the list contains a single *. Pattern matching may be added in
future releases, but although it was considered, it wasn’t implemented
in PowerShell v2.

Let’s work through an example showing how these lists work. First, you’ll get the
absolute path to the ipconfig command using the Definition property on its
CommandInfo object:

PS (1) > $ipp = (Get-Command ipconfig.exe).Definition

This is an easy way of getting the full path to the command, regardless of which oper-
ating system you’re on. Once you have that, you’ll clear the Applications list. (You
had to get the CommandInfo for ipconfig before you cleared the list because after
you cleared the list Get-Command would no longer be able to find the command.)

PS (2) > $ExecutionContext.SessionState.Applications.Clear()

Now add the path you saved in $ipp to the command to the list:

PS (3) > $ExecutionContext.SessionState.Applications.Add($ipp)

And now try to run the command:

PS (4) > ipconfig | Select-String ipv4

 IPv4 Address. : 192.168.1.15
 IPv4 Address. : 192.168.1.5

The command works as intended—this was the point of adding its path to the list,
after all. Now let’s try a command that isn’t on the list:

PS (5) > expand /? | Select-String expand
The term 'expand.exe' is not recognized as the name of a cmdlet,
 function, script file, or operable program. Check the spelling
of the name, or if a path was included, verify that the path is
correct and try again.
At line:1 char:7
+ expand <<<< /? | Select-String expand
 + CategoryInfo : ObjectNotFound:
(expand.exe:String) [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

You get a “command not found” error. Notice that this error doesn’t say that the com-
mand is private—the system behaves as though the command doesn't exist. It does so
for security purposes. Now let’s attempt something that will seem a bit strange. Try
calling the hidden command from inside a scriptblock:

PS (6) > & { expand /? | Select-String expand }

Expands one or more compressed files.
EXPAND [-r] Source Destination
540 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

EXPAND -r Source [Destination]
EXPAND -D Source.cab [-F:Files]
EXPAND Source.cab -F:Files Destination
 -r Rename expanded files.
 -F:Files Name of files to expand from a .CAB.

And the command was found! So what’s going on here? Well, this is part of the con-
strained session model. Private commands are hidden from external commands—that
is, commands that come across the session boundary, in this case, between the con-
sole host and the PowerShell interpreter. Scripts and functions (including script-
blocks) are considered internal commands and so they can see all functions. This is
similar to the way modules work. Only public/exported members are visible outside
the session/module boundary. The one big difference is that there’s a way to see
inside the module (for debugging purposes) but there’s no way to see inside the ses-
sion once restrictions are in place. Now let’s reset the Applications list:

PS (7) > $ExecutionContext.SessionState.Applications.Clear()
PS (8) > $ExecutionContext.SessionState.Applications.Add('*')
PS (9) >

You now know how to use the Applications list to constrain the set of external com-
mands that may be run. This is intended to be a security measure, but as you saw ear-
lier, if you can create a scriptblock, that scriptblock can “bypass” the security
boundary. You’ll also need to limit the ability to create functions and scriptblocks.
You can do so using the LanguageMode property on SessionState. Here’s the
default setting:

PS (2) > $ExecutionContext.SessionState.LanguageMode
FullLanguage

The default setting is to allow all aspects of the PowerShell language to be used when
sending commands to the engine. You’ll change this setting in a minute, but first you
need to set up a way to undo what you’re doing. Once you’ve constrained the lan-
guage in a session, there won’t be a way to unconstrain it for that session.

NOTE All the settings we’re looking at in this section are transient
and only apply to the current session you’re working with. Other ses-
sions aren’t affected, nor are any new sessions that are created. So if you
do find that you’ve broken your session by doing something out of
order, simply exit and start a new session.

First, create a function to restore the LanguageMode to FullLanguage:

PS (3) > function Restore-FullLanguageMode {
>> $ExecutionContext.SessionState.LanguageMode = "FullLanguage"
>> }
>>

When you run this function, it’ll reset LanguageMode to FullLanguage.
BUILDING CUSTOM REMOTING SERVICES 541

Now change LanguageMode to RestrictedLanguage. RestrictedLanguage is
the subset of the PowerShell language that’s used in PowerShell data files. We talked
about this when we covered module manifests in chapter 10 (section 10.6):

PS (4) > $ExecutionContext.SessionState.LanguageMode =
>> "RestrictedLanguage"
>>

Now see how your session has been affected. First, you can’t set variables:

PS (5) > $a=123
Assignment statements are not allowed in restricted language
mode or a Data section.
At line:1 char:4
+ $a= <<<< 123
 + CategoryInfo : ParserError: (=:OperatorToken) []
 , ParentContainsErrorRecordException
 + FullyQualifiedErrorId : AssignmentStatementNotSupportedIn
 DataSection

You also can’t create functions of any kind:

PS (6) > function foo {}
Function declarations are not allowed in restricted language
mode or a Data section.
At line:1 char:13
+ function foo <<<< {}
 + CategoryInfo : ParserError: (foo:Token) [],
ParentContainsErrorRecordException
 + FullyQualifiedErrorId : FunctionDeclarationNotSupportedIn
 DataSection

You can try to be clever and use the Set-Item cmdlet as you saw in chapter 11 in sec-
tion 11.8.6:

PS (7) > Set-Item function:foo {}
Scriptblock literals are not allowed in restricted language
mode or a Data section.
At line:1 char:25
+ set-item function:foo {} <<<<
 + CategoryInfo : ParserError: (:) [],
ParentContai nsErrorRecordException
 + FullyQualifiedErrorId :
ScriptBlockNotSupportedInDataSection

Because you can’t perform assignments, obviously you can’t use assignment to reset
the language:

PS (8) > $ExecutionContext.SessionState.LanguageMode = "FullLanguage"
Assignment statements are not allowed in restricted language
mode or a Data section.
At line:1 char:46
+ $ExecutionContext.SessionState.LanguageMode = <<<<
"FullLanguage"
 + CategoryInfo : ParserError: (=:OperatorToken) []
542 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

 , ParentContainsErrorRecordException
 + FullyQualifiedErrorId : AssignmentStatementNotSupportedIn
 DataSection

Use the restore function you defined before you switched over to Restricted-
Language mode:

PS (9) > Restore-FullLanguageMode

And everything works again:

PS (10) > $a=123
PS (11) >

Now that you know how to constrain a session, you’re halfway to your goal of being
able to create constrained custom endpoints. In the next section, we’ll look at the sec-
ond piece: creating a custom remoting endpoint.

13.2.6 Creating a constrained execution environment

The idea behind a constrained endpoint is that it allows you to provide controlled
access to services on a server in a secure manner. This is the mechanism that the
hosted Exchange product Outlook.com uses to constrain who gets to manage which
sets of mailboxes.

As mentioned earlier, for the environment to be secure, there needs to be both
access restriction and a boundary. Remoting allows a boundary to be established as
long as the only way to access the remote end is through the remoting layer. The
restrictions can be established by controlling command visibility and restricting the
language. You combine these into a custom remoting endpoint configured with a
script that sets the configuration so that only a small subset of things is visible through
the remoting layer. The code to accomplish this is shown in the following listing.

foreach ($cmd in Get-Command)
{
 $cmd.Visibility = "private"
}
foreach ($var in Get-Variable)
{
 $var.Visibility = "private"
}

$ExecutionContext.SessionState.Applications.Clear()
$ExecutionContext.SessionState.Scripts.Clear()
$ExecutionContext.SessionState.LanguageMode = "NoLanguage"

function Get-HealthModel
{
 @{
 Date = Get-Date

Listing 13.1 Initialize-ConstrainedHMConfiguration.ps1

Hide all commands
in session

Hide all variables
in session

Hide all external
programs, scripts

Set to
NoLanguage
mode

Define public
Get-HealthModel
BUILDING CUSTOM REMOTING SERVICES 543

 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | sort -Descending CPU | select -First 5
 TopWS = Get-Process | sort -Descending WS | select -First 5
 }
}

The first part of this script is generic and reusable. It can be used as a preamble to any
constrained endpoint configuration script. Any function defined after the line setting
the session to NoLanguage mode will be publicly visible and represents the services
this endpoint provides.

NOTE When some people first looked at the example in listing 13.1
they thought there was a bug because some statements are executed
after the language mode is set. This isn’t the case for two reasons: First,
because this is an endpoint configuration script, it’s executed inside the
session boundary where the restrictions don’t apply. Second, a Power-
Shell script is completely parsed before execution begins so all language
processing for this script was completed before the language mode
change was made, and language mode checks are only done during
parse time.

In this example, you’re adapting the health model function you saw in chapter 12,
section 12.2.3, to be run in this endpoint. Try this script. From an elevated Power-
Shell session, run the following commands:

PS (1) > Unregister-PSSessionConfiguration -Name wpia1 -Force
PS (2) > Register-PSSessionConfiguration -Name wpia1 `
>> -StartupScript $pwd/Initialize-ConstrainedHMConfiguration.ps1 `
>> -Force
>>

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Name Type Keys
---- ---- ----
wpia1 Container {Name=wpia1}

The first command removes the existing endpoint definition in case it may be left
from an earlier operation. The second line creates the new endpoint with the script
from listing 13.1. With the endpoint installed, you can try it. Run the Get-Health-
Model command:

PS (3) > icm localhost -ConfigurationName wpia1 {Get-HealthModel}

Name Value
---- -----
Date 2/24/2010 11:32:49 PM
TopWS {System.Diagnostics.Process (svchos...
PageFaults 63217485
544 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

TopCPU {System.Diagnostics.Process (svchos...
FreeSpace 362546515968

It executes properly. Try another command:

PS (4) > Invoke-Command localhost -ConfigurationName wpia1 {Get-Date}
The term 'Get-Date' is not recognized as the name of a cmdlet,
function, script file, or operable program. Check the spelling of the name,
 or if a path was included, verify that the path is correct and try
again.
 + CategoryInfo : ObjectNotFound: (Get-Date:String) [],
 CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

This code fails with the expected error. Try using Get-Command to see the list of the
things you can execute:

PS (5) > Invoke-Command localhost -ConfigurationName wpia1 {Get-Command}
The term 'Get-Command' is not recognized as the name of a cmdlet,
function, script file, or operable program. Check the spelling of the
name, or if a path was included, verify that the path is correct and
try again.
 + CategoryInfo : ObjectNotFound: (Get-Command:String) [
], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

This code also fails—not unexpected, but it’d be nice to see what’s exposed. Try inter-
active remoting:

PS (6) > Enter-PSSession localhost -ConfigurationName wpia1
Enter-PSSession : The term 'Get-Command' is not recognized as the
name of a cmdlet, function, script file, or operable program. Check the
spelling of the name, or if a path was included, verify that the path
 is correct and try again.
At line:1 char:16
+ Enter-PSSession <<<< localhost -ConfigurationName wpia1
 + CategoryInfo : ObjectNotFound: (Get-Command:String) [
 Enter-PSSession], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

This code also fails because an interactive session requires certain commands to be
available on the remote end, like the default outputter commands we discussed earlier.
Let’s move on to implicit remoting. Where interactive remoting isn’t likely to be very
interesting with only one command, the constrained endpoint is the ideal scenario for
implicit remoting:

PS (8) > $s = New-PSSession localhost -ConfigurationName wpia1
PS (9) > Import-PSSession $s -Verbose
Import-PSSession : Import-PSSession cmdlet needs the following
commands in the remote session: Get-Command, Get-FormatData, Select-Object.
 The following commands are used, but optional: Get-Help,
Measure-Object. Please make sure the remote session includes the required

commands and try again.
At line:1 char:17
+ Import-PSSession <<<< $s -Verbose
BUILDING CUSTOM REMOTING SERVICES 545

 + CategoryInfo : ObjectNotFound: (:) [Import-PSSession]
 , RuntimeException
 + FullyQualifiedErrorId : ErrorRequiredRemoteCommandNotFound,Mic
 rosoft.PowerShell.Commands.ImportPSSessionCommand
PS (10) >

This code also fails for the same reason. For implicit remoting to work, it needs to be
able to get the information about the commands in the remote session. From the
error message for the Import-PSSession case, you can see the list of commands that
need to be present. You could create a script to handle this, but there’s a feature in the
PowerShell API that was specifically designed to address this case. There’s a .NET class
that’s part of the PowerShell software development kit (SDK) that’s intended to be
used by programmers who are writing custom hosts for the PowerShell engine. This
class is used to create the initial settings for a session used in different applications.
This class is called InitialSessionState and you can use it as follows:

$iss = [Management.Automation.Runspaces.InitialSessionState]::
CreateRestricted(

"remoteserver")

This creates an object that contains the settings needed for building a constrained
environment intended for a remoteserver application. You don’t need all the set-
tings that this object contains, but it does have something very useful in it: a set of
function definitions that fulfill the needs of both interactive and implicit remoting.
You can see this list by running this code:

PS (1) > $iss =
>> [Management.Automation.Runspaces.InitialSessionState]::CreateRestricted(
>> "RemoteServer")
>>
PS (2) > $iss.Commands | where { $_.Visibility -eq "Public" } |
>> Format-Table name
>>

Name

Get-Command
Get-FormatData
Select-Object
Get-Help
Measure-Object
Exit-PSSession
Out-Default

The bodies of these functions are similar to the proxy functions used for implicit
remoting that you saw in chapter 12, section 12.4.2.

NOTE When you look at this list of commands, you may wonder why
some of them are included. For example, Measure-Object seems like
a strange thing to have on the list. The reason these commands are
included is that they’re needed to implement some of the elements of
546 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

the PowerShell remoting protocol. In particular, they’re used to help
with the command-discovery component described in MS-PSRP sec-
tion 3.1.4.5, “Getting Command Metadata.”

The goal here is a bit different because they’re used to provide public facades for pri-
vate commands. If you’re interested in how these functions are defined, look at the
Definition property on the objects returned by Commands by using the following
code:

PS (3) > $p = $iss.Commands | where { $_.Visibility -eq "Public" }
PS (4) > $p[0] | Format-List name,definition
Name : Get-Command
Definition : [CmdletBinding()]
 param(
 [ValidateLength(0, 1000)]
 [ValidateCount(0, 1000)]
 [System.String[]]
 ${Name},

 [ValidateLength(0, 1000)]
 [ValidateCount(0, 100)]
 [System.String[]]
 ${Module},
:
:

The output is truncated here because it’s quite long. (Again, be happy you don’t have
to write these functions—you’re welcome to explore them at your leisure but we’re
not going to spend any more time looking at them.) Once you have this object, you
can copy these functions into your session:

foreach ($cmd in $iss.Commands | where { $_.Visibility -eq "Public"})
{
 $needsAlias = Get-Command -CommandType Cmdlet `
 -ErrorAction SilentlyContinue $cmd.Name
 if ($needsAlias)
 {
 $a = Set-Alias $cmd.Name "$($needsAlias.ModuleName)\$($cmd.Name)" `
 -PassThru
 $a.Visibility = "Private"
 }
 Set-Item "function:global:$($cmd.Name)" $cmd.Definition
}

This code fragment loops through the set of command definitions, looking for the
public definitions, and then uses the function provider to define new public func-
tions in the session. It also defines some new private aliases that are used to bypass the
proxies for internal calls. This step is necessary because some of the public functions
you want to write may use the some of the cmdlets you’ve just proxied. Because the
proxies don’t implement all the features of the wrapped cmdlets, not being able to
BUILDING CUSTOM REMOTING SERVICES 547

access to the un-proxied commands could interfere with the operation of any new
commands you want to write.

Using aliases to bypass the proxies works because of the way command resolution
operates. Remember that, when you’re looking for a command, you look for aliases
first, then functions, and then cmdlets. This order is always followed when the call is
coming from inside the session. If the call is coming from outside the session, the
lookup order doesn’t change, but if one of the things it finds is private, that defini-
tion is skipped and the lookup moves on to the next type of command. So, if you
define an alias that uses the module-qualified name of a cmdlet, internal lookups will
resolve to the alias. This alias uses module-qualified name for the cmdlet, thereby
skipping the function and going directly to the cmdlet. External lookups, on the
other hand, won’t see the alias because it’s private. They can only see the public con-
strained proxy function. These lookup patterns are shown in figure 13.11.

Now let’s see how all this looks when you add these code fragments to your con-
figuration script. The following listing shows the updated configuration script.

foreach ($cmd in Get-Command)
{
 $cmd.Visibility = "private"
}
foreach ($var in Get-Variable)
{
 $var.Visibility = "private"
}
$ExecutionContext.SessionState.Applications.Clear()
$ExecutionContext.SessionState.Scripts.Clear()

Get-HealthModel

Aliases, proxies, and cmdlets in constrained sessions

Select-Object Select-Object proxy function (visibility: public)

Get-HealthModel function (visibility: public)

Constrained PSSession

Select-Object alias (visibility: private)

Select-Object cmdlet (visibility: private)

S
e

s
s
io

n

b
o

u
n

d
a

ry

Figure 13.11 The call flow

from the public constrained

Select-Object proxy

function to the private uncon-

strained Select-Object

cmdlet. When the user calls

the public Get-
HealthModel and it calls

Select-Object, the call re-

solves to the private

Select-Object alias. This

alias is hard-coded to bypass

the constrained proxy func-

tion and call the cmdlet di-

rectly giving unconstrained

access internally.

Listing 13.2 Initialize-ComplexConstrainedHMConfiguration.ps1

Hide existing
commands
548 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

ExecutionContext.SessionState.LanguageMode =
 "NoLanguage"
$iss =
 [Management.Automation.Runspaces.InitialSessionState]::CreateRestricted(
 "remoteserver")
foreach ($proxy in $iss.Commands | where { $_.Visibility -eq "Public"})
{
 $cmd = Get-Command -type cmdlet -ea silentlycontinue $proxy.name
 if ($cmd)
 {
 $a = Set-Alias "$($proxy.name)" `
 "$($cmd.ModuleName)\$($cmd.Name)" -PassThru
 $a.Visibility = "Private"
 }
 Set-Item "function:global:$($proxy.Name)" `
 $proxy.Definition
}
function Get-HealthModel
{
 @{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | sort -Descending CPU | select -First 5
 TopWS = Get-Process | sort -Descending WS | select -First 5
 }
}

This script is identical to the earlier script with the exception that it has the additional
lines needed to define the proxy functions. Let’s test this out. First, re-create the end-
point using the new configuration script:

PS (1) > Unregister-PSSessionConfiguration -Name wpia1 -Force
PS (2) > Register-PSSessionConfiguration -Name wpia1 -StartupScript `
>> $pwd/Initialize-ComplexConstrainedHMConfiguration.ps1.ps1 -Force
>>

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Name Type Keys
---- ---- ----
wpia1 Container {Name=wpia1}

NOTE In practice, you wouldn’t normally bother to re-create the end-
point because the script is actually loaded and run each time a session
starts. It’s sufficient to simply edit the script and then start a new con-
nection to test your changes (existing connections will remain unaf-
fected).

Start an interactive remoting session with this new configuration:

PS (3) > Enter-PSSession localhost -ConfigurationName wpia1

Set NoLanguage
mode

Get list of required proxies

Bind private
 alias and proxy

function

Define public
content
BUILDING CUSTOM REMOTING SERVICES 549

This time it succeeds without any problems. You can run Get-Command to get the list
of available commands in the session:

[localhost]: PS>Get-Command

CommandType Name Definition
----------- ---- ----------
Function Exit-PSSession [CmdletBinding()]...
Function Get-Command [CmdletBinding()]...
Function Get-FormatData [CmdletBinding()]...
Function Get-HealthModel ...
Function Get-Help [CmdletBinding()]...
Function Measure-Object [CmdletBinding()]...
Function Out-Default [CmdletBinding()]...
Function Select-Object [CmdletBinding()]...

Now try running the Get-HealthModel function:

[localhost]: PS>Get-HealthModel

Name Value
---- -----
FreeSpace 359284412416
PageFaults 215576420
Date 2/26/2010 10:05:30 PM
TopWS {System.Diagnostics.Process (svchos...
TopCPU {System.Diagnostics.Process (sqlser...

It works as expected. Now exit the session by calling exit:

[localhost]: PS>exit
The syntax is not supported by this runspace. This might be because
it is in no-language mode.
 + CategoryInfo :
 + FullyQualifiedErrorId : ScriptsNotAllowed

You get an error. This error occurs because you’re in NoLanguage mode and exit is a
keyword. You haven’t seen this before because you haven’t done interactive remoting
with a constrained session before. The solution to this is to use the Exit-PSSession
function that was defined as part of the standard set of proxy functions:

[localhost]: PS>Exit-PSsession

Now import this session:

PS (6) > $s = New-PSSession localhost -ConfigurationName wpia1
PS (9) > Import-PSSession $s

ModuleType Name ExportedCommands
---------- ---- ----------------
Script tmp_9bed4009-478e-4e91... Get-HealthModel
550 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

The import worked, so you can call Get-HealthModel:

PS (10) > Get-HealthModel

Name Value
---- -----
Date 2/26/2010 10:52:36 PM
TopWS {System.Diagnostics.Process (svchos...
PageFaults 217681970
TopCPU {System.Diagnostics.Process (sqlser...
FreeSpace 360739450880

It works just like a local command. The details of remoting are hidden.
Let’s step back and think about what you’ve accomplished here. With about 40

lines of script, you’ve defined a secure remote service. And of these 40 lines, most of
them are a boilerplate preamble. Just paste them at the beginning of the configura-
tion script and then add the additional functions to define the services you want to
expose.

From the users’ perspective, by using Import-PSSession they’re able to install
the necessary client software to use this service simply by connecting to the service.

Constrained sessions combined with implicit remoting results in an extremely
flexible system, allowing you to create precise service boundaries with very little
server-side code and no client code. Consider how much code would be required to
create an equivalent service using alternate technologies!

And with this, we’ve come to end of our coverage of the remoting features in
PowerShell.

13.3 SUMMARY

In this chapter, we looked at a PowerShell remoting from the service or application
creator’s point of view. The goal of the chapter was to show you how to create a cus-
tom service using the remoting capabilities.

To make sure you have the necessary background and context for building this
service, we explored how PowerShell remoting works. Topics included the following:

• Describing the PowerShell remoting protocol stack, which includes HTTP and
WSMan

• Managing WSMan using cmdlets and the WSMan: drive

• Authenticating both the target computer and the incoming user connecting to
the service

• Understanding various issues related to addressing the target computer

• Ensuring the reliability of your services by managing resource consumption
SUMMARY 551

Next, you started to build your service. You began by looking at the fan-in and fan-
out service architectures. Then we covered the following:

• Creating custom configurations and remoting endpoints

• Configuring an endpoint with a startup script

• Controlling who has access to the endpoint using ACLs

• Constraining a session by controlling the set of commands visible to users con-
necting to the endpoint

• Controlling the flavor of PowerShell that’s available to the endpoint user

• Using a startup script in a custom configuration that sets up the necessary con-
straints for the application

• Configuring the session so that implicit remoting can be used with the endpoint

PowerShell remoting and the underlying technologies are both broad and deep areas.
In this chapter and the previous one, we’ve covered most of the features of the technol-
ogies and how they can be applied. The next chapter explores errors and exceptions.
552 CHAPTER 13 REMOTING: CONFIGURING APPLICATIONS AND SERVICES

C H A P T E R 1 4

Errors and exceptions

14.1 Error handling 554
14.2 Dealing with errors that terminate

execution 569
14.3 Debugging with the host APIs 580

14.4 Capturing session output 593
14.5 PowerShell and the event log 597
14.6 Summary 605
Progress, far from consisting in change, depends on retentiveness. Those who
cannot remember the past are condemned to repeat it.

 —George Santayana, The Life of Reason

It’s always useful to keep in mind that PowerShell isn’t “just” a shell or scripting lan-
guage. Its primary purpose is to be an automation tool and perform critical manage-
ment tasks on a server, such as send software updates, inspect log files, or provision
user accounts. You need to be sure that either the task is completed properly or the
reason for failure is appropriately recorded.

In this chapter, we’ll focus on the latter topic: how PowerShell reports, records,
and manages error conditions. Handling of error conditions is one of the areas where
PowerShell shines compared to other scripting tools. The support for diagnostic trac-
ing and logging is practically unprecedented in traditional scripting languages.
Unfortunately, these features don’t come entirely free—there are costs in terms of
complexity and execution overhead that aren’t there in other environments. All these
553

capabilities are very much a part of PowerShell as a management tool; Microsoft set a
higher bar for PowerShell than has been set for most other language environments.

We’ll begin the chapter by looking at the error processing subsystem. Errors in
PowerShell aren’t simply error codes, strings, or even exceptions as found in lan-
guages such as C# and VB.NET. They’re rich objects that include just about every-
thing you could think of that might be useful in debugging a problem.

NOTE Some people dislike (okay, despise) the use of the word rich in
this context. But given the wealth of information that PowerShell error
objects contain, rich really is the right word.

We’ll examine these ErrorRecord objects in detail, along with how they’re used by
the various PowerShell mechanisms to manage error conditions. We’ll also look at the
other mechanisms that are available for solving script execution problems, including
tracing and script debugging. PowerShell v1 had fairly weak debugging tools. We’ll
look at how this was addressed by the new features in v2.

14.1 ERROR HANDLING

Error handling in PowerShell is very structured. PowerShell errors aren’t simply bits of
text written to the screen—they’re rich objects that contain a wealth of information
about where the error occurred and why. There’s one aspect to error handling in
PowerShell that’s unique: the notion of terminating versus nonterminating errors. This
aspect aligns with the streaming model that PowerShell uses to process objects.

Here’s a simple example that will help you understand this concept. Think about
how removing a list of files from your system should work. You stream this list of files
to the cmdlet that will delete the files. Imagine that you can’t delete all the files on the
list for various reasons. Do you want the command to stop processing as soon as it
hits the first element in the list? The answer is probably, no. You’d like the cmdlet to
do as much work as it can but capture any errors so that you can look at them later.
This is the concept of a nonterminating error—the error is recorded and the operation
continues. On the other hand, there are times when you do want an operation to stop
on the first error. These are called terminating errors. Sometimes you want an error to
be terminating in one situation and nonterminating in another, and PowerShell pro-
vides mechanisms that allow you to do this.

Because the architecture supports multiple nonterminating errors being generated
by a pipeline, it can’t just throw or return an error. Here’s where streaming comes
into play: nonterminating errors are simply written to the error stream. By default,
these errors are displayed, but there are a number of other ways of working with
them. In the next few sections, we’ll look at those mechanisms. But first we need to
take at look at the error records themselves.
554 CHAPTER 14 ERRORS AND EXCEPTIONS

14.1.1 ErrorRecords and the error stream

As we delve into the topic of error handling, we’ll first take a look at capturing error
records in a file using redirection, and then you’ll learn how to capture error messages
in a variable. By capturing these errors instead of just displaying them, you can go
back at a later time to analyze and hopefully fix what went wrong.

First, let’s review the normal behavior of objects in the pipeline. Output objects
flow from cmdlet to cmdlet but error records are written directly to the default out-
put processor. By default, this is the Out-Default cmdlet and the error records are
displayed:

PS (1) > dir nosuchfile
Get-ChildItem : Cannot find path 'C:\files\nosuchfile' because
it does not exist.
At line:1 char:4
+ dir <<<< nosuchfile

These flows are shown in figure 14.1.
In the figure, you see the output objects go from A to B to C and finally to Out-

Default. But the error record streams are all merged and go directly to Out-
Default.

When you use the redirection operators discussed in chapter 5, you can change
flow. For example, you can redirect the error messages to a file:

PS (2) > dir nosuchfile 2> err.txt

A B C

Out-Default

PowerShell object flow for

simple pipeline A | B | C
Error records output by A go to input of Out-Default
 Error records output by B go to input of Out-Default
 Error records output by C go to input of Out-Default

Output of A goes to input of B
Output of B goes to input of C
Output of C goes to input of Out-Default

Figure 14.1 This diagram shows the output object and error record routing;

then, the simple pipeline A | B | C is run from a PowerShell host process like

PowerShell.exe or PowerShell_ISE.exe. Output objects go to the next

command in the pipeline and error objects go directly to Out-Default.
ERROR HANDLING 555

This changes the diagram to look like what’s shown in figure 14.2.
But this approach has the downside that the error message is rendered to display-

able text before writing it to the file. When that happens, you lose all the extra infor-
mation in the objects. Take a look at what was saved to the file:

PS (3) > Get-Content err.txt
Get-ChildItem : Cannot find path 'C:\files\nosuchfile' because
it does not exist.
At line:1 char:4
+ dir <<<< nosuchfile 2> err.txt

The error text is there as it would’ve been displayed on the console, but you’ve lost all
of the elements of the object that haven’t been displayed. And this lost information
may be critical to diagnosing the problem. You need a better way to capture this
information. The first mechanism we’ll look at is capturing the error records by using
the stream merge operator 2>&1, and then assigning the result to a variable.

When you add error stream merging into the picture, the flow of objects changes.
With stream merging, instead of having all error records going to the default output
stream, they’re routed into the output stream and the combined set of objects is
passed to the input of the next command. This flow is shown in figure 14.3.

Let’s see how this works. First use the stream merge operator to capture the error
stream in a variable by using assignment:

PS (4) > $err = dir nosuchfile 2>&1

A B C

Out-Default

PowerShell object flow for

pipeline

A 2> foo.txt | B | C

Error records output by A go to input of Out-File
 Error records output by B go to input of Out-Default
 Error records output by C go to input of Out-Default

Output of A goes to input of B
 Output of B goes to input of C
 Output of C goes to input of Out-Default

Out-File err.txt

Figure 14.2 Revised pipeline including the use of redirection operators
556 CHAPTER 14 ERRORS AND EXCEPTIONS

Now use Get-Member to display the properties on the object. Use the -Type parame-
ter on Get-Member to filter the display and only show the properties:

PS (5) > $err | Get-Member -Type property

 TypeName: System.Management.Automation.ErrorRecord

Name MemberType Definition
---- ---------- ----------
CategoryInfo Property System.Management.Automation...
ErrorDetails Property System.Management.Automation...
Exception Property System.Exception Exception {...
FullyQualifiedErrorId Property System.String FullyQualified...
InvocationInfo Property System.Management.Automation...
TargetObject Property System.Object TargetObject {...

Although this shows you all the properties and their definitions, some of the property
names are a little tricky to figure out, so further explanation is in order. Table 14.1
lists all the properties, their types, and a description of each property.

Table 14.1 ErrorRecord properties and their descriptions

Property name Property type Description

CategoryInfo ErrorCategoryInfo This string breaks errors into a number of
broad categories.

ErrorDetails ErrorDetails This may be null. If present, ErrorDetails
can specify additional information, most
importantly ErrorDetails.Message,
which (if present) is a more exact descrip-
tion and should be displayed instead of
Exception.Message.

A B C

Out-Default

PowerShell object flow for

pipeline

A 2>&1 | B | C

Error records output by A go to input of B
 Error records output by B go to input of Out-Default
 Error records output by C go to input of Out-Default

Output of A goes to input of B
Output of B goes to input of C
Output of C goes to input of Out-Default

Figure 14.3 Revised pipeline

including the addition of error

stream merging
ERROR HANDLING 557

You can look at the values of an error record’s properties by piping the error object
into Format-List. To see all the properties, you must specify –Property * along
with –Force. This command tells the formatting subsystem to skip the default pre-
sentation and show all properties. The result looks like this:

PS (10) > $err | Format-List –Property * -Force

Exception : System.Management.Automation.ItemNotFoun
 dException: Cannot find path 'C:\files\n
 osuchfile' because it does not exist.
 at System.Management.Automation.Sessi
 onStateInternal.GetChildItems(String pat
 h, Boolean recurse, CmdletProviderContex
 t context)
 at System.Management.Automation.Child
 ItemCmdletProviderIntrinsics.Get(String
 path, Boolean recurse, CmdletProviderCon
 text context)
 at Microsoft.PowerShell.Commands.GetC
 hildItemCommand.ProcessRecord()
TargetObject : C:\files\nosuchfile
CategoryInfo : ObjectNotFound: (C:\files\nosuchfile:Str
 ing) [Get-ChildItem], ItemNotFoundExcept
 ion
FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Comman
 ds.GetChildItemCommand
ErrorDetails :
InvocationInfo : System.Management.Automation.InvocationI
 Nfo

In this output, you can see the exception that caused the error was ItemNotFound-
Exception. The TargetObject property contains the full path the cmdlet used to

Exception System.Exception This is the underlying .NET exception corre-
sponding to the error that occurred.

FullyQualifiedErrorId System.String This identifies the error condition more spe-
cifically than either the ErrorCategory or
the Exception. Use FullyQualified-
ErrorId to filter highly specific error condi-
tions. Note that this is a nonlocalized field,
so performing string matches against it will
continue to work regardless of language set-
tings.

InvocationInfo InvocationInfo This is an object that contains information
about where the error occurred—typically
the script name and line number.

TargetObject System.Object This is the object that was being operated
on when the error occurred. It may be null,
as not all errors will set this field.

Table 14.1 ErrorRecord properties and their descriptions (continued)

Property name Property type Description
558 CHAPTER 14 ERRORS AND EXCEPTIONS

locate the item. This overall error is placed in the broader category of ObjectNot-
Found. There are no additional error details for this object.

Let’s take a closer look at the InvocationInfo property. This member provides
information about where the error occurred. Here’s what it looks like:

PS (6) > $err.InvocationInfo

MyCommand : Get-ChildItem
ScriptLineNumber : 1
OffsetInLine : 11
ScriptName :
Line : $err = dir nosuchfile 2>&1
PositionMessage :
 At line:1 char:11
 + $err = dir <<<< nosuchfile 2>&1
InvocationName : dir
PipelineLength : 1
PipelinePosition : 1

Because you entered this command on the command line, the script name is empty
and the script line is 1. OffsetInLine is the offset in the script line where the error
occurred. Other information is also available, such as the number of commands in
the pipeline that caused an error, as well as the index of this command in the pipeline.
This message also includes the line of script text where the error occurred. Finally,
there’s the PositionMessage property. This property takes all the other information
and formats it into what you see in PowerShell errors.

Extracting all of the detailed information from an error record is a fairly common
occurrence when debugging scripts, so it’s worth writing a small helper function to
make it easier. Listing 14.1 shows a function that will dump out all the properties of
an error object and then iterate through any InnerException properties on the error
record exception to show all the underlying errors that occurred.

function Show-ErrorDetails
{
 param(
 $ErrorRecord = $Error[0]
)

 $ErrorRecord | Format-List * -Force
 $ErrorRecord.InvocationInfo | Format-List *
 $Exception = $ErrorRecord.Exception
 for ($depth = 0; $Exception -ne $null; $depth++)
 { "$depth" * 80
 $Exception |Format-List -Force *
 $Exception = $Exception.InnerException
 }
}

This function takes a single parameter, which holds the error record to display. By
default, it shows the most recent error recorded in $error. It begins by showing all the

Listing 14.1 The Show-ErrorDetails function

Show depth
of nested
exception

b

Show exception propertiesc
Link to nest
exceptionsd
ERROR HANDLING 559

properties in the record followed by the invocation information for the faulting com-
mand. Then it loops, tracing through any nested exceptions d, showing each one c
proceeded by a separator B line showing the nesting depth of the displayed exception.

There’s a lot of information in these objects that can help you figure out where
and why an error occurred. The trick is to make sure that you have the right error
objects available at the right time. It simply isn’t possible to record every error that
occurs—it’d take up too much space and be impossible to manage. If you limit the
set of error objects that are preserved, you want to make sure that you keep those you
care about. Obviously, having the wrong error objects doesn’t help. Sometimes
you’re interested only in certain types of errors or only in errors from specific parts of
a script. To address these requirements, PowerShell provides a rich set of tools for
capturing and managing errors. The next few sections cover these tools and the tech-
niques for using them.

14.1.2 The $error variable and –ErrorVariable parameter

The point of rich error objects is that you can examine them after the error has
occurred and possibly take remedial action. Of course, to do this you have to capture
them first. In the previous section, I showed you how to redirect the error stream, but
the problem with this approach is that you have to think of it beforehand. Because
you don’t know when errors occur, in practice you’d have to do it all the time. Fortu-
nately, PowerShell performs some of this work for you and automatically “remembers
the past,” at least as far as errors go. There’s a special variable $error that contains a
collection of the errors that occurred while the engine has been running. This collec-
tion is maintained as a circular bounded buffer. As new errors occur, old ones are dis-
carded, as shown in figure 14.4.

 The number of errors that are retained is controlled by the $MaximumError-
Count variable, which can be set to a number from 256 (the default setting) to
32768. The collection in $error is an array (technically an instance of
System.Collections.ArrayList) that buffers errors as they occur. The most
recent error is always stored in $error[0].

NOTE Although it’s tempting to think that you could just set
$MaximumErrorCount to some very large value (32768 is the largest
allowed) and never have to worry about capturing errors, in practice this
strategy isn’t a good idea. Rich error objects also imply fairly large error
objects. If you set $MaximumErrorCount to too large a value, you won’t
have any memory left. In practice, there’s usually no reason to set it to
anything larger than the default, though you may set it to something
smaller if you want to make more space available for other things. Also,
even if you only have a few objects, these objects may be very large. If
you find that this is the case for a particular script, you can change the
maximum error count to something small. As an alternative, you could
clean out all the entries in $error by calling $error.Clear().
560 CHAPTER 14 ERRORS AND EXCEPTIONS

Let’s explore using the $error variable. You’ll start with the same error as before:

PS (1) > dir nosuchfile
Get-ChildItem : Cannot find path 'C:\working\book\nosuchfile' be
cause it does not exist.
At line:1 char:4
+ dir <<<< nosuchfile

You didn’t explicitly capture it, but it’s available in $error[0]

PS (2) > $error[0]
Get-ChildItem : Cannot find path 'C:\working\book\nosuchfile'
because it does not exist.
At line:1 char:4
+ dir <<<< nosuchfile

with all of the error properties. For example, here’s the exception object:

PS (3) > $error[0].exception
Cannot find path 'C:\working\book\nosuchfile' because it does
not exist.

And here’s the target object that caused the error:

PS (4) > $error[0].targetobject
C:\working\book\nosuchfile

Now let’s do something that will cause a second error:

PS (5) > 1/$null
Attempted to divide by zero.
At line:1 char:3
+ 1/$ <<<< null

Here you have a division-by-zero error.

$error currently contains five errors E1-E5. $MaximumErrorCount
is set to limit $error to five elements, so next error to be generated

will cause oldest error (E1) to be dropped.

1/$zero causes

error E6…

E1 E2 E3 E4 E5

E1

E2 E3 E4 E5

E6

E1 E2 E3 E4 E5

…which is added

to $error

E1 pushed off end

$error still contains five errors, but now they

are E2-E6. E2 will be dropped if another

error occurs.

Figure 14.4 How the $error
variable handles new errors

when MaximumErrorCount

has been reached. The oldest

error is dropped and the new

one is added to the end.
ERROR HANDLING 561

NOTE The example here uses 1/$null. The reason for doing this
instead of simply 1/0 is because the PowerShell interpreter does some-
thing called constant expression folding. It looks at expressions that con-
tain only constant values. When it sees one, it evaluates that expression
once at compile time so it doesn’t have to waste time doing it again at
runtime. This means that impossible expressions, such as division by
zero, are caught and treated as parsing errors. Parsing errors can’t be
caught and don’t get logged when they’re entered interactively, so they
don’t make for a good example. (If one script calls another script and
that script has one of these errors, the calling script can catch it, but the
script being parsed can’t.)

Let’s verify that the second error is in $error[0]. Look at the exception member:

PS (6) > $error[0].exception
Attempted to divide by zero.

Yes, it is. You’ll also verify that the previous error, “file not found,” is now in position 1:

PS (7) > $error[1].exception
Cannot find path 'C:\working\book\nosuchfile' because it does no
t exist.

Again, yes, it is. As you can see, each new error shuffles the previous error down one
element in the array.

TIP The key lesson to take away from this is that when you’re going to
try to diagnose an error, you should copy it to a “working” variable so it
doesn’t get accidentally shifted out from under you because you made a
mistake in one of the commands you’re using to examine the error.

The $error variable is a convenient way to capture errors automatically, but there are
two problems with it:

• First, as we discussed earlier, $error only captures a limited number of errors so
important information may fall off the end of the buffer.

• Second, $error contains all the errors that occur, regardless of where they
came from or what command generated them, all mixed together in a single
collection. You’ll find it hard to locate the information you need to diagnose a
specific problem.

The first problem can be worked around using redirection to capture all the errors,
but that still doesn’t address mixing all the errors together. To deal with this second
issue, when you want to capture all the errors from a specific command you use a
standard parameter on all commands called -ErrorVariable. This parameter names
a variable to use for capturing all the errors that the command generates. Here’s an
example. This command generates three error objects, because the files nofuss,
nomuss, and nobother don’t exist:
562 CHAPTER 14 ERRORS AND EXCEPTIONS

PS (1) > dir nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nofuss' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nomuss' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nobother' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs

In the command, you specified the name of the error variable to place these records
into: errs.

NOTE The argument to -ErrorVariable is the name of the variable
with no leading $. If errs had been written as $errs, then the errors
would’ve been stored in the variable named by the value in $errs, not
$errs itself. Also note that the -ErrorVariable parameter works like
a tee—that is, the objects are captured in the variable, but they’re also
streamed to the error output.

Let’s verify that the errors were actually captured. First, the number of elements in
$err should be 3:

PS (2) > $errs.count
3

It is. Now dump the errors themselves:

PS (3) > $errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nofuss' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nomuss' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nobother' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs

They do, in fact, match the original error output.

NOTE The errors should match the original output because they’re
actually the same error objects. The -ErrorVariable parameter (alias
–ev) captures references to each object written to the error stream. In
effect, the same object is in two places at once—well, three if you count
the default $error variable.
ERROR HANDLING 563

Because there’s no need to see the object twice, you can use redirection to discard the
written objects and save only the references stored in the specified variable. Let’s rerun
the example this way:

PS (4) > dir nofuss,nomuss,nobother -ErrorVariable errs 2>$null

This time nothing was displayed; verify the error count:

PS (5) > $errs.count
3

It’s 3 again, as intended. Let’s just check the TargetObject member of the last error
object to verify that it’s the filename nobother:

PS (6) > $errs[2].TargetObject
C:\Documents and Settings\brucepay\nobother
PS (7) >

Yes, it is. This example illustrates a more sophisticated way of capturing error objects
than merely displaying them. In section 14.1.5, you’ll see an even more flexible way
to control how errors are redirected.

All of these mechanisms provide useful tools for handling collections of error
objects, but sometimes all you care about is that an error occurred at all. A couple of
additional status variables, $? and $LASTEXITCODE, enable you to determine whether
an error occurred.

14.1.3 Determining if a command had an error

Displaying errors is very useful; it lets the user know what happened. But scripts also
need to know when an error has occurred so they can react properly. For example, a
script shouldn’t try to remove a file if the cd into the directory containing the file
failed. PowerShell makes this easy by providing two error variables that capture the
command status. First, to see if an error occurred when executing a command, a
script can check the status of the variable $?, a simple Boolean variable that holds the
execution status of the last variable.

NOTE The use of the $? variable is borrowed from the UNIX shells.

The $? variable will be true if the entire operation succeeded, and false otherwise. For
example, if any of the operations wrote an error object, then $? will be set to false
even if the error was discarded using redirection. This is an important point: it means
that a script can determine whether an error occurred even if the error isn’t displayed.
Here are some examples showing the use of $?. First you call Get-Item, passing in
two item names that you know exist and one you know doesn’t exist:

PS (1) > Get-Item c:,nosuchfile,c:

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
564 CHAPTER 14 ERRORS AND EXCEPTIONS

Get-Item : Cannot find path 'C:\nosuchfile' because it does not
exist.
At line:1 char:9
+ Get-Item <<<< c:,nosuchfile,c:
d--hs 6/13/2006 10:12 PM C:\

You get the expected error.

PS (2) > $?
False

And $? is false. Now try the same command, but this time specify only the names of
items that exist:

PS (3) > Get-Item c:,c:

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
d--hs 6/13/2006 10:12 PM C:\

PS (4) > $?
True

This time, there are no errors and $? is true.
Whereas the $? variable only indicates success or failure, $LASTEXITCODE con-

tains the exit code of the last command run. But this applies only to two types of
commands: native or external commands and PowerShell scripts (but not functions).

NOTE On Windows, when a process exits it can return a single integer
as its exit code. This integer is used to encode a variety of conditions,
but the only one we’re interested in is whether it’s zero or non-zero.
This convention is used by almost all programs. If they were successful,
then their exit code is zero. If they encountered an error, then the exit
code is non-zero.

PowerShell captures the exit code from a script or executable in $LASTEXITCODE, and
if that value is non-zero, it sets $? to false. Let’s use cmd.exe to demonstrate this. You
can tell cmd to execute a single command by passing it the /c option along with the
text of the command. In this example, the command you want to run is exit, which
takes a value to use as the exit code for the command:

PS (1) > cmd /c exit 0

You told cmd to exit with code 0. Verify this by checking the values of $LASTEXIT-
CODE and $?, respectively:

PS (2) > $LASTEXITCODE
0
PS (3) > $?
True
ERROR HANDLING 565

As expected, the exit code was zero, and consequently $? is true. Next try it with a
non-zero value:

PS (4) > cmd /c exit 1
PS (5) > $LASTEXITCODE
1
PS (6) > $?
False

This time, the exit code is 1, so $? is set to false. You can do the same exercises with
scripts. First create a script that exits with a zero exit code:

PS (7) > "exit 0" > invoke-exit.ps1
PS (8) > ./invoke-exit
PS (9) > $LASTEXITCODE
0
PS (10) > $?
True
$LASTEXITCODE is 0 and $? is true. Now try it with a non-zero value.
PS (11) > "exit 25" > invoke-exit.ps1
PS (12) > ./invoke-exit
PS (13) > $LASTEXITCODE
25
PS (14) > $?
False

Now $LASTEXITCODE contains the value the script exited with, which is 25, and $? is
set to false.

So far, we’ve looked at how to capture errors and how to detect when they occur.
Next we’ll explore some of the methods PowerShell provides to control what happens
when an error is generated.

14.1.4 Controlling the actions taken on an error

Earlier, we talked about the differences between terminating and nonterminating
errors. Sometimes you want to be able to turn nonterminating errors into terminat-
ing ones because the operation you’re performing is too critical to tolerate nontermi-
nating errors. For example, imagine you’re setting up a website for a user. You want to
reuse a directory that had been previously used for someone else. First you want to
remove all the old files and then install the new user’s files. Obviously, you can’t start
installing the new files until all the old ones are deleted. In this situation, the failure
to delete a file, which is normally a nonterminating error, must now be treated as a
terminating error. The next step in the process can’t begin until the current step is
100% complete.

The way to control whether errors are terminating or nonterminating is by setting
the error action policy, which you do by setting the error action preference. This is a
mechanism that allows you to control the behavior of the system when an error
occurs. There are four possible settings for this preference: Continue, Silently-
Continue, Stop, and Inquire. These preferences are described in table 14.2.
566 CHAPTER 14 ERRORS AND EXCEPTIONS

There are two ways to set the error action preference: by setting the $ErrorAction-
Preference variable as in

$ErrorActionPreference = "SilentlyContinue"

or by using the -ErrorAction (or -ea) parameter that’s available on all cmdlets,
advanced functions, and advanced scripts.

TIP When setting any of the preferences, you can use either the iden-
tifier string (such as "Stop") or its numeric equivalent (such as 1).
The numeric value is more convenient for interactive use. If you do
need to set a preference in a script for some reason, using the identifier
string is preferred.

Let’s see some examples of these preferences in action. Here’s a simple one. First run a
command that has some nonterminating errors. You’ll use the Get-Item cmdlet to
get two items that exist and two items that don’t exist:

PS (1) > Get-Item c:\,nosuchfile,c:\,nosuchfile

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Cannot find path 'C:\Documents and Settings\brucepay\
nosuchfile' because it does not exist.
At line:1 char:9
+ Get-Item <<<< c:\,nosuchfile,c:\,nosuchfile

Table 14.2 The supported identifiers and numeric equivalents for ErrorActionPreference

Identifier Numeric value Descriptions

Continue 2 This is the default preference setting. The error
object is written to the output pipe and added to
$error, and $? is set to false. Execution then
continues at the next script line.

SilentlyContinue 0 When this action preference is set, the error mes-
sage isn’t written to the output pipe before continu-
ing execution. Note that it’s still added to $error,
and $? is still set to false. Again, execution continues
at the next line.

Stop 1 This error action preference changes an error from a
nonterminating error to a terminating error. The error
object is thrown as an exception instead of being
written to the output pipe. $error and $? are still
updated. Execution does not continue.

Inquire 3 Prompts the user requesting confirmation before
continuing on with the operation. At the prompt,
the user can choose to continue, stop, or suspend
the operation.
ERROR HANDLING 567

d--hs 6/13/2006 10:12 PM C:\
Get-Item : Cannot find path 'C:\Documents and Settings\brucepay\
nosuchfile' because it does not exist.
At line:1 char:9
+ Get-Item <<<< c:\,nosuchfile,c:\,nosuchfile

If you look at the output, you can see that there are two output objects and two error
messages. You can use redirection to discard the error messages, making the code eas-
ier to read:

PS (2) > Get-Item c:\,nosuchfile,c:\,nosuchfile 2> $null

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
d--hs 6/13/2006 10:12 PM C:\

Now you just see the output objects because you’ve sent the error objects to $null.
You can use the -ErrorAction parameter to do the same:

PS (3) > Get-Item c:\,nosuchfile,c:\,nosuchfile `
>> -ea SilentlyContinue
>>

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
d--hs 6/13/2006 10:12 PM C:\

Again, the error messages aren’t displayed, but this time it’s because they aren’t being
written at all instead of written and discarded. Finally, let’s try the “Stop” preference:

PS (4) > Get-Item c:\,nosuchfile,c:\,nosuchfile `
>> -ea Stop
>>
 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Command execution stopped because the shell variable
"ErrorActionPreference" is set to Stop: Cannot find path
'C:\Documents and Settings\brucepay\nosuchfile' because it does not
exist.
At line:1 char:9
+ Get-Item <<<< c:\,nosuchfile,c:\,nosuchfile `

This time, you see only one output message and one error message—the first one.
This is because the error is treated as a terminating error and execution stops. Note
that the error message contains additional text explaining that execution stopped
because of the error action preference setting.
568 CHAPTER 14 ERRORS AND EXCEPTIONS

Of course, the -ErrorAction parameter controls the error behavior for exactly
one cmdlet. If you want to change the behavior for an entire script or even a whole
session, you can do so by setting the $ErrorActionPreference variable. Let’s redo
the last example but use the variable instead of the parameter:

PS (5) > & {
>> $ErrorActionPreference="Stop"
>> Get-Item c:\,nosuchfile,c:\,nosuchfile
>> }
>>

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Command execution stopped because the shell variable
"ErrorActionPreference" is set to Stop: Cannot find path
'C:\Documents and Settings\brucepay\nosuchfile' because it does not
exist.
At line:3 char:9
+ Get-Item <<<< c:\,nosuchfile,c:\,nosuchfile

Again, the cmdlet stops at the first error instead of continuing.

NOTE In this example, note the use of the call operator & with a
scriptblock containing the scope for the preference setting. Using the
pattern & { ...script text... }, you can execute fragments of
script code so that any variables set in the enclosed script text are dis-
carded at the end of the scriptblock. Because setting $ErrorAction-
Preference has such a profound effect on the execution of the script,
we’re using this technique to isolate the preference setting.

Through the -ErrorActionPreference parameter and the $ErrorActionPrefer-
ence variable, the script author has good control over when errors are written and
when they’re terminating. Nonterminating errors can be displayed or discarded at
will. But what about terminating errors? How does the script author deal with them?
Sometimes you only want an error to terminate part of an operation. For example,
you might have a script move a set of files using a series of steps for each move. If one
of the steps fails, you want the overall move operation to terminate for that file, but
you want to continue processing the rest of the files. To do this, you need a way to
trap these terminating errors or exceptions, and that’s what we’ll discuss next.

14.2 DEALING WITH ERRORS THAT TERMINATE EXECUTION

This section will deal with the ways that PowerShell processes errors that terminate
the current flow of execution, also called terminating errors. Here we’ll cover the lan-
guage elements for dealing with terminating errors and how you can apply these
DEALING WITH ERRORS THAT TERMINATE EXECUTION 569

features. If you have a programming background, you’re probably more familiar with
terminating errors when they’re called by their more conventional name—exceptions.
So call them what you will; we’re going to delve into catching these terminating
errors. We’ll look at ways to trap or catch these errors and take some action as a con-
sequence. In some cases, these may be remedial actions (such as trying to fix the prob-
lem) or simply recording that the errors occurred. PowerShell provides two
statements for dealing with terminating errors: the trap statement, which is some-
what similar to the on error statement in Visual Basic or VBScript, and the try/
catch statement, modeled after the try/catch statement in C#.

14.2.1 The trap statement

The only way for exceptions to be caught in PowerShell v1 was by using the trap state-
ment. This feature is also present in PowerShell v2 and has some unique characteristics
that we’ll cover in this section. The trap statement syntax is shown in figure 14.5.

The trap statement can appear anywhere in a block of code. This means that it
may be specified after a statement that generates an error and still handle that error.
When an exception (terminating error) occurs that isn’t otherwise handled, control
will be transferred to the body of the trap statement and the statements in the body
are then executed.

You can optionally specify the type of exception to catch, such as division by zero.
If no exception is specified, then it will trap all exceptions. Here’s an example:

PS (1) > trap { "Got it!" } 1/$null
Got it!
Attempted to divide by zero.
At line:1 char:30
+ trap { "Got it!" ; break } 1/$ <<<< zero

In this example, the statement

1/$null

was executed. $null is treated like zero in integer expressions, causing a division-by-
zero exception to occur. When this happens, control transfers to the statement list in
the body of the trap statement. In this case, it just writes “Got it!” which you see in

trap [<exceptionType>]
{

<statementList>
}

trap keyword .NET type of exception to trap;

optional and may be omitted

Body of trap
statement

Figure 14.5 The syntax of the trap statement. The body of the statement

will be executed when an exception with matching type is caught. If no ex-

ception type is specified, all exceptions will be caught.
570 CHAPTER 14 ERRORS AND EXCEPTIONS

the output. You also see that the error message is still displayed, even though you
trapped this exception. This is a significant point. What happens after a trap handler
execution has completed depends on how the block finishes. If the body of the trap
handler block finishes normally, an error object will be written to the error stream,
and, depending on the setting of $ErrorActionPreference, either the exception
will be rethrown or execution will continue at the statement after the statement that
caused the exception. This is what you saw in the previous example. To make this
point clearer, let’s add another statement after the one that caused the error:

PS (2) > trap { "Got it!" } 1/$zero; "LAST"
Got it!
Attempted to divide by zero.
At line:1 char:22
+ trap { "Got it!" } 1/$ <<<< zero; "LAST"
LAST

You see the error message—but following it, you see output from the last statement.
The interpreter’s behavior after you leave the trap handler can be controlled by

the break and continue keywords. (See chapter 6 for other uses of these keywords.)
Let’s look at break first. Here’s the example again, but this time you’ll terminate the
trap block with break:

PS (3) > trap { "Got it!"; break } 1/$zero; "LAST"
Got it!
Attempted to divide by zero.
At line:1 char:30
+ trap { "Got it!"; break } 1/$ <<<< zero; "LAST"

You see the error record, but you don’t see the output "LAST" because after the trap
block exited, the error was rethrown as a terminating error instead of resuming execu-
tion. This flow of control is shown in figure 14.6.

The other modification to the trap flow control is to use the continue statement:

PS (4) > trap { "Got it!"; continue } 1/$zero; "LAST"
Got it!
LAST

This time, you see the output from the trap block and from the "LAST" statement, but
no error record. Exiting a trap block is somewhat equivalent to the error action preference

trap
{
"Got it!"; break

}
1/$zero
"LAST"

Division by zero

causes exception,

transferring control to

trap statement
When trap body

completes by calling

break, execution

resumes, skipping "LAST"

Figure 14.6 The flow of control when break is used in a trap statement. When the division-

by-zero exception occurs, control jumps to the trap block and then breaks out of the script.
DEALING WITH ERRORS THAT TERMINATE EXECUTION 571

SilentlyContinue. This works in a similar manner to the VBScript On Error
Resume Next statement. Figure 14.7 shows the control flow when continue is used.

There’s one other feature available in the trap block itself. The exception that
was trapped is available in the trap block in the $_ variable. Here’s the example, but
with the output of the trap statement showing the value in $_ as a string:

PS (5) > trap { "Got it: $_"; continue } 1/$zero;
Got it: Attempted to divide by zero.

In this case, the output is the ToString() of the exception. But $_ isn’t an exception;
it’s an error record, so the trap handler has full access to all the information in the
error handler. Let’s verify the type of this object:

PS (6) > trap { "Got it: " + $_.gettype(); continue } 1/$zero;
Got it: System.Management.Automation.ErrorRecord

In the trap block in this example, you’re displaying the type of the value in $_. How
all this works is shown in figure 14.8.

There are some paths through the figure that we haven’t talked about yet, so let’s
work through a few more examples. We said earlier that control transfers to the next
statement after the one that caused the exception. Actually it’s a bit more complicated
than that. It transfers to the next statement in the same scope as the trap statement.
This flow of control is illustrated in figure 14.9.

And now an example. You’ll use scriptblocks to create the two scopes. The code
looks like this:

&{
 trap {"TRAP"}
 &{
 "one"
 "two"
 1/$null
 "three"
 "four"
 }
 "OUTERBLOCK"
}

trap
{
"Got it!"; continue

}
1/$zero
"LAST"

Division by zero

causes exception,

transferring control to

trap statement

When trap body completes

by calling continue,

execution resumes at

"LAST" statement

Figure 14.7 The flow of control when continue is used in a trap statement instead

of break. When the division-by-zero exception occurs, control jumps to the trap

block and then resumes at the "LAST" statement before exiting the script.
572 CHAPTER 14 ERRORS AND EXCEPTIONS

Hit break
statement?

Statement generates

terminating exception

Write error, then

rethrow exception

Is there a trap
in scope?

Qualified by

matching exception?

Is there an

unqualified trap?

Execute trap
body

Yes

Yes

Yes
Yes

No
No

No

No
Hit continue

statement?

Trap block

exits, error is

written, and

execution

continues at next

statement

Don’t write error;

continue with next

statement

Yes

No

Execution for current block

is terminated, and

exception propagates up

until it’s trapped or caught

or top level is reached

Figure 14.8 A flow chart illustrating the complete

error-handling logic used by the trap statement

trap
{
<trap body>

}

Statement 1
Statement 2
Statement 3 error
Statement 4
Statement 5
Statement 6

Statement 3 generates

terminating error,

causing control to pass

to trap statement

When trap body

completes, execution

resumes at statement 4

Figure 14.9 The flow of control when a trap statement is used. If there’s

a trap statement in scope, control transfers to the body of the trap

statement where the error is processed.
DEALING WITH ERRORS THAT TERMINATE EXECUTION 573

The trap statement in the outer block writes out the string “TRAP” so you’ll know it
was executed:

PS (7) > & {
>> trap {"TRAP"}
>> &{

Now create an inner scope that will emit a number of strings:

.
>> "one"
>> "two"
>> 1/$null

Part of the way through, throw an exception:

>> "three"
>> "four"
>> }
>> "OUTERBLOCK"

At the end of the output block, write out the string “OUTERBLOCK” so you’ll
know where you are:

>> }
>>
one
two
TRAP
Attempted to divide by zero.
At line:6 char:3
+ 1/$ <<<< null
OUTERBLOCK

Look at the output that was produced. You can see the first couple of numbers
printed and then the exception, but look where execution resumed—at the first state-
ment outside the block. This pattern allows you to skip entire sections of code instead
of a single line, as shown in figure 14.10.

& {
trap {"TRAP"}
& {

"one"
"two"
1/$null
"three"
"four"

}
"OUTERBLOCK"

}

Executing 1/$null
generates terminating

error, causing control to

pass to trap statement

When trap body

completes, execution

resumes at
"OUTERBLOCK " statement

Figure 14.10 The flow of control when a trap statement is used with nest-

ed blocks. When the error occurs, control transfers to the trap body. When

the trap body completes, execution resumes at the first statement after the

nested scriptblock.
574 CHAPTER 14 ERRORS AND EXCEPTIONS

It essentially mimics the way the try/catch statement found in other languages such
as C# works and was the only way to accomplish this in version 1. In fact, the try/
catch (or try/catch/finally) pattern is so common that it was added to Power-
Shell in v2. We’ll look at how this statement can be used to simplify your scripts in
the next section.

14.2.2 The try/catch/finally statement

The trap statement, while powerful and flexible, ended up being hard to use for a lot
of the traditional script/programming error-handling patterns. To address this, v2
introduced the more familiar try/catch/finally statement found in other lan-
guages. As is the case with all of the other PowerShell flow-control statements, this
statement adopts the syntax from C#. This syntax is shown in figure 14.11.

The figure shows that there are three parts to this statement: the try block, the
catch block, and the finally block. The try block is always required along with at
least one of the catch or finally clauses. If an error occurs in the code in the try
block resulting in an exception, PowerShell checks to see if there is a catch block
specified. If there is a catch block, then it checks to see if specific exception types are
to be caught. If there is and at least one of the specified types matches, then the
catch block is executed. If not, then the search continues looking for another catch
block that might match.

NOTE This is one place where the PowerShell try/catch statement
has some advantages over its C# cousin. In C#, only one exception can
be specified per catch clause so it’s more complicated to take the same
action for multiple exceptions that don’t have a common base class.

If there’s a catch block with no exception types specified, this clause will be executed
(which tends to be the most common case). And if there’s a finally block, the code

try
{
statement1
statement2

}
catch [Exception Type Name List...]
{
statement3
statement4

}
finally
{
statement5
statement6

}

try keyword
Statements that may result in

exception being thrown

catch keyword

allowing zero, one,

or more exception

types to catch

finally keyword;

optional block

Statements executed if

exception of matching type

is thrown; catch block can

be omitted if there is a

finally block

Statements that will always be

executed (optional); catch

and finally can be used

together but at least one must

be present

Figure 14.11 The syntax of the try/catch/finally statement. This statement allows

exceptions to be processed in a structured way.
DEALING WITH ERRORS THAT TERMINATE EXECUTION 575

in the finally block runs. (Actually the finally block always runs whether there
was an exception or not.) Here’s an example using a catch statement with no excep-
tion type specified:

PS (1) > try
>> {
>> 1
>> 2
>> 3/$null
>> 4
>> 5
>> }
>> catch
>> {
>> "ERROR: $_"
>> }
>> finally
>> {
>> "ALL DONE"
>> }
>>
1
2
ERROR: Attempted to divide by zero.
ALL DONE
PS (2) >

In this example, the third statement in the try block causes a terminating error. This
error is caught and control transfers to the catch block. Then, when the catch block
is complete, the finally block is executed. This flow of control is shown in figure 14.12.

The complete processing logic for the try/catch/finally statement is shown in
the flowchart in figure 14.13.

Which should you use in your scripts? In general, the flow of control with try/
catch/finally is almost always easier to understand than the trap statement

try
{
1
2
3/$null
4
5

}
catch
{
"ERROR: $_"

}
finally
{
"ALL DONE"

}

Executing 3/$null

generates terminating error,

causing control to pass to

the catch block; "ERROR:
Attempted to divide
by zero" emitted

When catch block completes,

execution transfers to finally
block; "ALL DONE" emitted

Figure 14.12 The flow of control in a try/catch/finally statement. When an

exception occurs, control transfers to the catch block and then the finally block.
576 CHAPTER 14 ERRORS AND EXCEPTIONS

except in some very simple cases. For example, in a function or script, you may want
to have a general “catch all” exception that generates an error and then exits the func-
tion or script. You can do so simply by putting a trap statement at the top of the
script rather than wrapping the body of the script in a try/catch. There are also
some exception handling patterns that can be expressed with trap that are hard to
handle with try/catch. That said, if you encounter something like this, think hard
about what you’re doing. The trap statement is like the infamous goto statement:
you can express any flow of control, but patterns that can’t be expressed with a struc-
ture statement tend to be hard to understand, debug, and maintain.

finally
block?

Execute try block

Execute finally
block

Exception?

Catch with

matching

exception

Execute catch
block

Catch all
Execute catch

block

Yes

Yes

Yes
Yes

No

No

No

No

Figure 14.13 The complete logical flow in

the try/catch/finally statement
DEALING WITH ERRORS THAT TERMINATE EXECUTION 577

Using try/catch in expressions

An interesting application of the try/catch statement when used in combination
with PowerShell’s expression-oriented syntax is that it makes it fairly easy to write
functions that provide default values if an expression throws an exception. Let’s look
at using try/catch in a custom div function. We want a function that never throws
an exception even when dividing by zero. The function might look like this:

function div ([int] $x, [int] $y) {try { $x/$y } catch {[int]::MaxValue}}

Give it a try

PS (2) > div 1 0
2147483647

and you get the maximum integer value instead of the error you normally get when
you divide by zero:

PS (3) > 1/0
Attempted to divide by zero.
At line:1 char:3
+ 1/ <<<< 0
 + CategoryInfo : NotSpecified: (:) [], ParentConta
 insErrorRecordException
 + FullyQualifiedErrorId : RuntimeException

We’ll take a look at another application of this technique later in section 14.3.3 when
we talk about handling nonexistent property errors.

Clearly exceptions are a powerful error-handling mechanism. With this mecha-
nism, errors are never missed because you forgot to check for a return code. In fact,
you have to do the opposite and take action to suppress them instead. Having mas-
tered catching other people’s exceptions, let’s look at how you can leverage this fea-
ture in your own scripts with the throw statement.

14.2.3 The throw statement

To complete the exception handling topic, you need a way to generate terminating
errors or exceptions. You can accomplish this by using the throw statement.

NOTE In the original design, throw was supposed to be a cmdlet rather
than a keyword in the language. But having a cmdlet throw the excep-
tion meant that the thrown exception was subject to the cmdlet’s error
action policy, and the whole point of throw was to bypass this policy
and always generate an exception. It wasn’t so much a case of the tail
wagging the dog as it was staple-gunning the poor beast to the floor. And
so, learning from past mistakes, Microsoft made it into a keyword.

The syntax of the throw statement is shown in figure 14.14.
578 CHAPTER 14 ERRORS AND EXCEPTIONS

The simplest example is to throw nothing:

PS (8) > throw
ScriptHalted
At line:1 char:5
+ throw <<<<

This approach is convenient for casual scripting. You don’t need to create an error
object or exception object—the throw statement takes care of all of this. Unfortu-
nately, the message you get isn’t very informative. If you want to include a meaningful
message, you can easily provide your own:

PS (9) > throw "My Message!"
My Message!
At line:1 char:6
+ throw <<<< "My Message!"

You see the message in the output. It’s also possible to use throw to throw Error-
Record objects or .NET exceptions if you want to use more detailed error handling.
Instead of passing a string, you pass these objects.

Now let’s revisit the multiscope catch and use throw this time instead of divid-
ing by $null:

PS (10) > &{
>> trap {"$_" ; continue}
>> &{
>> "one"
>> "two"
>> throw "CATCH"
>> "three"
>> }
>> "ALL DONE"
>> }
>>
one
two
CATCH
ALL DONE

The pattern is the same as in the previous case, except that now you throw a specific
message that appears in the output. This is followed by the output from the next
statement in the outer scope.

throw [<expression>]

throw keyword Optional expression that

produces value to throw

Figure 14.14 The syntax of the throw statement
DEALING WITH ERRORS THAT TERMINATE EXECUTION 579

There are other important applications of the throw statement in function defini-
tions—for instance, times when you want to make a function parameter mandatory.
The throw statement provides an efficient way to do this. Take a look at the follow-
ing function definition:

PS (11) > function hi ($name=$(throw '$name is required'))
>> { "Hi $name" }
>>

In this example, you’re using the throw statement in a subexpression as the initializer
for $name. As you’ll recall from chapter 7, the initializer expression is executed if no
value was provided on the command line. Try this function out, first with a value for
name:

PS (12) > hi Bob
Hi Bob

You receive the expected greeting. Next try it without a value:

PS (13) > hi
$name is required
At line:1 char:27
+ function hi ($name=$(throw <<<< '$name is required'))
PS (14) >

You get a terminating error telling you that you have to provide a value for $name.
This is a simple pattern that can be used to enforce mandatory parameters on func-
tions and scripts. And speaking of functions and scripts, all these error features are
great for letting you know something is wrong, but how do you go about fixing the
problem? This is our cue to segue into our next section: debugging.

14.3 DEBUGGING WITH THE HOST APIS
The most basic form of debugging a script is to put statements in your script that dis-
play information about the execution of the script. Because you don’t want your
debugging output mixed into the rest of the output, you need mechanisms to display
output directly on the console. You do this either by using the Write-Host cmdlet or
by using what are called the host APIs. These APIs are available through the $host
variable. This object has the following members:

PS (1) > $host

Name : ConsoleHost
Version : 1.0.10568.0
InstanceId : 5c685c70-c950-4ce5-9aae-78331e4091a7
UI : System.Management.Automation.Internal.Host.In
 ternalHostUserInterface
CurrentCulture : en-US
CurrentUICulture : en-US
PrivateData :
580 CHAPTER 14 ERRORS AND EXCEPTIONS

The information available from $host includes the name of the host, its version, and
so forth. The member that you’re most interested in is the UI member. This member
surfaces a number of methods that can be used to write messages directly to the host
instead of the error stream. The ones you’re most interested in are the read and write
methods:

PS (2) > $host.ui | Get-Member [rw]*line*

 TypeName: System.Management.Automation.Internal.Host.Internal
HostUserInterface

Name MemberType Definition
---- ---------- ----------
ReadLine Method System.String ReadLine()
ReadLineAsSecureString Method System.Security.SecureStrin...
WriteDebugLine Method System.Void WriteDebugLine(...
WriteErrorLine Method System.Void WriteErrorLine(...
WriteLine Method System.Void WriteLine(), Sy...
WriteVerboseLine Method System.Void WriteVerboseLin...
WriteWarningLine Method System.Void WriteWarningLin...

For example, if you want to write out a text message, you can use

PS (3) > $host.ui.writeline("Hi there")
Hi there

to print out a simple string. Or you can use a more complex form of this method

PS (4) > $host.ui.writeline("red","green", "Hi there")
Hi there

to print out a string in color. You can also get input from the user. To read a line from
the console, use the ReadLine() method:

PS (6) > $host.ui.readline()
Hi
Hi

There’s a second level of host UI available called RawUI. This provides even more low-
level functions for accessing the console. For example, to read a single key from the
console, you can use

PS (7) > $host.ui.rawui.readkey()
g
 VirtualKeyCode Character ControlKeyState KeyDown
 -------------- --------- --------------- -------
 71 g 0 True

This returns information about the key code and other attributes of the keypress
instead of simply the character.

The other way to access the host interfaces is through the Read-Host and Write-
Host cmdlets. These cmdlets do approximately the same thing as the host methods
but can be a bit easier to use. In particular, the Read-Host cmdlet allows you to spec-
ify a prompt when reading:
DEBUGGING WITH THE HOST APIS 581

PS (8) > Read-Host "Enter some text"
Enter some text: some text
some text

It even inserts a colon after your text when prompting.
Using the features described in this section, you can instrument your scripts in

order to debug their behavior. Although this is a tried and true way of debugging, it
requires you to make changes to your scripts to see what going on. PowerShell pro-
vides other mechanisms to find problems in your scripts. One of these features is
“strict mode,” which is our next topic.

14.3.1 Catching errors with strict mode

PowerShell provides some built-in static and runtime checks to help you catch errors
in your scripts. Static checks are performed at script load/compile time, and runtime
checks are dynamic checks done at runtime.

NOTE These features are similar to Option Explicit in Visual Basic or
strict mode in PERL and are named after the PERL feature.

PowerShell v1 offered a limited set of checks, enabled through the Set-PSDebug
cmdlet. PowerShell v2 introduced a new cmdlet—Set-StrictMode—which enables
a much more comprehensive set of checks. In the next two sections we’ll look at what
these checks are and how they can help you catch bugs in your code.

Using the v1 strict mode

In this section, we’ll cover the v1 strict mode checks. These checks are enabled using
the Set-PSDebug cmdlet with the -Strict parameter. The syntax for this command
is shown in figure 14.15.

This cmdlet allows you to turn on tracing and stepping, which act to provide a
rudimentary debugger feature. We’re going to cover debugging in chapter 15 so we
won’t discuss -Trace or -Step further at this point. The -Off parameter turns off all
features enabled through Set-PSDebug. Let’s look at the set of checks performed in
strict mode v1.

Set-PSDebug [-Trace 0|1|2] [-Step] [-Strict]

Set-PSDebug -Off

Set script tracing level:

0 = off, 1 = basic, 2 = full
Turn on strict mode

Turn on stepping

Turn off all debugging featuresSet-PSDebug cmdlet

Figure 14.15 The Set-PSDebug cmdlet parameters. Among other things,

this cmdlet is used to turn the v1 strict mode features on and off.
582 CHAPTER 14 ERRORS AND EXCEPTIONS

Catching undefined variables with strict mode

A common source of errors in scripts is the use of undefined or uninitialized variables,
usually because you misspelled the variable’s name. As in many other scripting lan-
guages, in PowerShell if a variable is undefined, it’s treated as though it was defined
and set to the value $null. You can test this behavior with a simple expression:

PS (1) > 2 * $nosuchvariable
0

In this expression, $nosuchvariable isn’t defined. This means that it’s treated as
though it were $null. Because $null in a numeric expression is treated as zero, the
whole expression evaluates to zero. You should note that the variable is only treated as
though it were $null. This doesn’t mean that a variable named $nosuchvariable is
actually created as a side effect. You can verify this using dir with the variable pro-
vider to see if the variable is defined:

PS (2) > dir variable:\nosuchvariable
Get-ChildItem : Cannot find path 'nosuchvariable' because it doe
s not exist.
At line:1 char:4
+ dir <<<< variable:\nosuchvariable

Now that you’ve seen the default behavior for variables that don’t exist, let’s turn on
strict mode and try it again. First enable v1 strict mode:

PS (3) > Set-PSDebug –Strict

Try evaluating the same expression:

PS (4) > 2 * $nosuchvariable
The variable $nosuchvariable cannot be retrieved because it has
not been set yet.
At line:1 char:19
+ 2 * $nosuchvariable <<<<

This time, you get an error telling you that the variable hasn’t been defined. So, define it

PS (5) > $nosuchvariable=13

and run the command again:

PS (6) > 2 * $nosuchvariable
26

Now you get the expected result. If you delete the variable using the provider

PS (7) > del variable:\nosuchvariable

and run the expression for a third time

PS (8) > 2 * $nosuchvariable
The variable $nosuchvariable cannot be retrieved because it has
not been set yet.
At line:1 char:19
+ 2 * $nosuchvariable <<<<
DEBUGGING WITH THE HOST APIS 583

you’re back to the error message. This mechanism is quite helpful in finding bugs in
scripts. Unfortunately, the way it’s implemented, it will only catch these errors if the
problematic statement is actually executed.

There’s also one type of uninitialized variable use that won’t be caught even at run-
time with v1 strict mode, and that is the use of uninitialized variables when double-
quoted strings are expanded. This means that, even if you’re catching things like this

$result = 2 + $nosuchvariable

no error will be raised for

$result = "the variable is $nosuchvariable"

so you may still have hidden bugs in this type of construct.
Some of the shortcomings of strict mode in v1 were addressed in PowerShell v2

by adding some additional types of checks. Let’s see what was added.

14.3.2 The Set-StrictMode cmdlet in PowerShell v2

The v1 strict mode feature enabled through Set-PSDebug -Strict is useful, but the
set of checks is limited to undefined variables. PowerShell v2 introduced a new ver-
sion of strict mode and a new cmdlet, Set-StrictMode, to enable additional checks.
The syntax for this cmdlet is shown in figure 14.16.

The -Version parameter takes either 1 or 2 as an argument controlling whether
v1 or v2 checks are enabled. Version 2 strict mode includes the undefined variable
check from v1 and adds some additional checks. In the next few sections, we’ll look
at what these new checks do.

Catching uninitialized variable use in string expansions

As mentioned earlier, strict mode in v1 only caught references to uninitialized vari-
ables in script text. It didn’t catch the use of uninitialized variables in string expan-
sions. Strict mode v2 fixes this and the use of uninitialized variables is caught
everywhere. Let’s look at an example. To refresh, in nonstrict mode, when you refer-
ence a nonexistent variable it’s treated as being equivalent to $null:

PS (1) > $nosuchvariable
PS (2) >

Set-StrictMode [-Version <Int32>]

Set-StrictMode -Off

Turn on strict mode, optionally specifying version 1 or version 2

checks; use string "latest" to select newest set of checks

Turn off strict mode

Figure 14.16 The Set-StrictMode
cmdlet and its parameters. This is a

new cmdlet in version 2 that enables

additional compile-time and runtime

checks processing a script.
584 CHAPTER 14 ERRORS AND EXCEPTIONS

Now turn on strict mode v1 and reference the variable again

PS (2) > Set-PSDebug -Strict
PS (3) > $nosuchvariable
The variable '$nosuchvariable' cannot be retrieved because it
has not been set.
At line:1 char:16
+ $nosuchvariable <<<<
 + CategoryInfo : InvalidOperation: (nosuchvariable
 :Token) [], RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined

and you get the uninitialized variable message as expected. Now put the string in quotes

PS (4) > "$nosuchvariable"

PS (5) >

and it expands the string with no errors. Turn on strict mode v2 and try the string
expansion

PS (5) > Set-StrictMode -Version 2
PS (6) > "$nosuchvariable"
The variable '$nosuchvariable' cannot be retrieved because it
has not been set.
At line:1 char:16
+ "$nosuchvariabl <<<< e"
 + CategoryInfo : InvalidOperation: (nosuchvariable
 :Token) [], RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined

and you also get the uninitialized variable error in the string expansion case. Next
we’ll look at some of the new strict mode v2 features.

Catching attempts to read nonexistent properties

To have appropriately shell-like behavior, by default PowerShell allows you to try
dereferencing nonexistent properties. That means you can do things like display a
mixed collection of [System.IO.FileInfo] and [System.IO.DirectoryInfo]
objects, including a reference to the Length property that doesn’t exist for [Sys-
tem.IO.DirectoryInfo] objects. Imagine how annoying it’d be to type dir and get
a lot of “property not found” errors. Try running

dir | foreach { $_.name + " " + $_.length }

in your home directory with strict mode v2 turned on and you’ll see what I mean.

NOTE This only applies to explicit property references in script text.
Cmdlets still ignore missing properties even when strict mode v2 is turned
on. The interactive environment is pretty much unusable otherwise.

Try a simple example. First turn strict mode off, then get a [DateTime] object into
the variable $date:
DEBUGGING WITH THE HOST APIS 585

PS (1) > Set-StrictMode -Off
PS (2) > $date = Get-Date

Now reference a nonexistent property

PS (3) > $date.nosuchproperty
PS (4) >

and no error is raised. You can verify that this will not be caught with strict mode v1:

PS (4) > Set-StrictMode -Version 1
PS (5) > $date.nosuchproperty
PS (5) >

You get no error, as before. Now turn on strict mode v2 and try accessing the property:

PS (6) > Set-StrictMode -Version 2
PS (7) > $date.nosuchproperty
Property 'nosuchproperty' cannot be found on this object. Make
sure that it exists.
At line:1 char:7
+ $date. <<<< nosuchproperty
 + CategoryInfo : InvalidOperation:
(.:OperatorToken) [], RuntimeException
 + FullyQualifiedErrorId : PropertyNotFoundStrict

This time you get an error. As with the variable check, property checks will help catch
typos in your script. It would be better if you could catch them at compile time, but
then you’d need to know the types of all the expressions. Because PowerShell is
dynamically typed, that isn’t really possible.

NOTE But what about checking against the type-constraints on vari-
ables, you might ask? Strict mode could include this kind of check, but
it can’t do a complete check because PowerShell allows extensions on
instances as well as types. For example, when you look at a file entry
in PowerShell, you see a Mode property. The underlying .NET type
[System.IO.FileInfo] doesn’t have a property with this name. The
Mode property is one of the properties added by the PowerShell run-
time. Because these properties can be added at runtime, even for a
type-constrained variable, the most you could say is that the member
probably won’t exist by the time the statement is executed. Only the
runtime check is guaranteed to be correct.

Checking for functions called like methods

An extremely common source of errors for experienced programmers is to call func-
tions in the same way you would in other languages, or in the same way methods are
called in PowerShell. Let’s see this in action. Turn off strict mode (or set it to v1):

PS (1) > Set-StrictMode -Off
586 CHAPTER 14 ERRORS AND EXCEPTIONS

Then define a function that looks like this:

PS (2) > function divide ($x,$y) { $x / $y }

This function takes two arguments, divides the first by the second, and returns the
result. Now let’s call it like a method with parentheses around a function. This is how
you’d call a function in a language like C#:

PS (3) > divide(9, 3)
Method invocation failed because [System.Object[]] doesn't
contain a method named 'op_Division'.
At line:1 char:31
+ function divide ($x,$y) { $x / <<<< $y }
 + CategoryInfo : InvalidOperation:
(op_Division:String) [], RuntimeException
 + FullyQualifiedErrorId : MethodNotFound

What happens is that you get a very surprising error. You know that numbers can be
divided, so why did this fail? By putting the two arguments in parentheses, you’re telling
the system to pass a single argument, which is an array of two numbers. We talked about
this problem in section 7.2.1. Now turn on strict mode v2, and try it again:

PS (4) > Set-StrictMode -Version 2
PS (5) > divide(9, 3)
The function or command was called as if it were a method.
Parameters should be separated by spaces. For information
about parameters, see the about_Parameters Help topic.
At line:1 char:7
+ divide <<<< (9, 3)
 + CategoryInfo : InvalidOperation: (:) [], Runtime
 Exception
 + FullyQualifiedErrorId : StrictModeFunctionCallWithParens

Now you get a very prescriptive error message explaining exactly what’s gone wrong.
Follow the instructions, rewriting the function call, removing the parameters, and
separating it with spaces instead of a comma; then try running it again:

PS (6) > divide 9 3
3
PS (7) >

This time it works.
This technique may seem like a trivial, almost silly check, but this issue has caused

a lot of problems for a lot of people, including members of the PowerShell team.

Checking for empty variable references in strings

The final check is another corner-case check, this time for empty delimited variables.
A delimited variable is something like ${a variable}, which allows you to have
characters in a variable name that are normally not allowed. For example:

PS (1) > Set-StrictMode -off
PS (2) > ${a variable} = "foo"
DEBUGGING WITH THE HOST APIS 587

The other important use for delimited variables is in string expansion, where the vari-
able name being expanded could be confused with the rest of the string:

PS (3) > $prefix = "foo"; "The word is ${prefix}bar"
The word is foobar

Here the variable ${prefix} is expanded properly. Without the braces, the runtime
would’ve tried to expand $prefixbar and failed. Now let’s move on to the problem-
atic scenario. Normally, outside of a string, if no names are specified between the
braces, an error will occur, strict mode or not:

PS (4) > ${}
Empty ${} variable reference, there should be a name between the
 braces.
At line:1 char:1
+ <<<< ${}
 + CategoryInfo : ParserError: (:) [],
ParentContainsErrorRecordException
 + FullyQualifiedErrorId : EmptyVariableReference

But in string expansions, it expands into $, as in

PS (5) > "The word is ${}bar"
The word is $bar

A minor error to be sure, but it’s one you can detect at compile time (at least in Power-
Shell v2), so you check for it. Turn on v2 strict mode and rerun the command

PS (6) > Set-StrictMode -Version 2
PS (7) > "The word is ${}bar"
Braced variable name cannot be empty.
At line:1 char:21
+ "The word is ${}bar" <<<<
 + CategoryInfo : InvalidOperation: (:) [], Runtime
 Exception
 + FullyQualifiedErrorId : EmptyBracedVariableName

and now you get the error.

Applying strict mode v2 to scripts

You now know what the new checks are—let’s talk about when to apply them. In gen-
eral, it’s recommended that new code be written to be strict mode v2 “clean.” In other
words, the code should produce no errors when strict mode v2 is turned on. The temp-
tation is to leave it on all the time. Unfortunately, this approach can break a lot of script
code. Many scripts are written to take advantage of the default property dereference
behavior. This means that a lot of fixing may need to be done. There are also cases
where rewriting the code to not depend on this behavior can be very messy—the code
would have to either explicitly check for the existence of a property before trying to
access it, or explicitly trap the exception and ignore it. Consider the example at the
beginning of the section that addressed catching references to nonexistent properties:

dir | foreach { $_.name + " " + $_.length }
588 CHAPTER 14 ERRORS AND EXCEPTIONS

This code results in an error every time dir returns a directory object. To make this
work in strict mode v2, you’d have to do something like this

dir | foreach { $_.name + " " + $(try { $_.length } catch { $null })}

where the try/catch statement is used to process the error. In this code, if there’s no
exception, then the value of the property is returned. If there is an exception, the
catch block returns $null. (At least the expression-oriented nature of the Power-
Shell language simplifies this example instead of requiring intermediate variables and
an if statement.)

14.3.3 Static analysis of scripts

Most of the checks performed in strict mode are only applied at runtime, but there
are some other checks you can do statically before you ever run the script. This was
made possible in PowerShell v2 by the introduction of the PowerShell tokenizer API,
a .NET class that takes the text of a PowerShell script and breaks it down into pieces
called tokens. Tokens correspond to the types of elements found in the PowerShell
language, which include things like keywords, operators, and so on—basically all the
things we talked about in chapters 2 through 8. Unfortunately, this mechanism isn’t
packaged in a convenient way for scripting. It was designed for the PowerShell ISE, as
you’ll see in the next chapter. But, with a little work, it’s still usable from a script. First
we’ll discuss how to use the API. We’ll start by tokenizing a small piece of script text.
(If you have strict mode turned on, you’ll have to turn it off for these examples.) Put
the text you want to tokenize into a variable:

PS (2) > $script = "function abc ($x) {dir; $x + 1}"

The tokenizer returns two things: the tokens that make up the script and a collection
of any errors encountered while parsing the script. Because the API is designed for use
from languages that can’t return multiple values, you also need to create a variable to
hold these errors:

PS (3) > $parse_errs = $null

Now you’re ready to tokenize the script. Do so by calling the static method Token-
ize() on the PSParser class as follows:

PS (4) > $tokens = [System.Management.Automation.PSParser]::Tokenize(
>> $script,
>> [ref] $parse_errs)

This code will put the list of tokens in the $tokens variable and any parse errors will
be placed into a collection in $parse_errs. Now dump these two vari-
ables—$parse _errs—to the error stream and $tokens to the output stream:

>> $parse_errs | Write-Error
>> $tokens | Format-Table -auto type,content,startline,startcolumn
>>
DEBUGGING WITH THE HOST APIS 589

 Type Content StartLine StartColumn
 ---- ------- --------- -----------
 Keyword function 1 1
 CommandArgument abc 1 10
 GroupStart (1 14
 GroupEnd) 1 15
 GroupStart { 1 17
 Command dir 1 18
StatementSeparator ; 1 21
 Operator + 1 24
 Number 1 1 26
 GroupEnd } 1 27

Because the text being tokenized is valid PowerShell script, no errors are generated.
You do get a list of all the tokens in the text displayed on the screen. You can see that
each token includes the type of the token, the content or text that makes up the
token, as well as the start line and column number of the token. You’ll now wrap this
code up into a function to make it easier to call; name the function Test-Script:

PS (5) > function Test-Script ($script)
>> {
>> $parse_errs = $null
>> $tokens = [system.management.automation.psparser]::Tokenize(
>> $script,
>> [ref] $parse_errs)
>> $parse_errs | Write-Error
>> $tokens
>> }
>>

Try it on a chunk of invalid script text:

PS (6) > Test-Script "function ($x) {$x + }" |
>> ft -auto type,content,startline, startcolumn
>>
Test-Script : System.Management.Automation.PSParseError
At line:1 char:12
+ Test-Script <<<< "function ($x) {$x + }" |
 + CategoryInfo : NotSpecified: (:) [Write-Error], Write
 ErrorException
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErr
 orException,Test-Script

Test-Script : System.Management.Automation.PSParseError
At line:1 char:12
+ Test-Script <<<< "function ($x) {$x + }" |
 + CategoryInfo : NotSpecified: (:) [Write-Error], Write
 ErrorException
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErr
 orException,Test-Script

Test-Script : System.Management.Automation.PSParseError
At line:1 char:12
+ Test-Script <<<< "function ($x) {$x + }" |
590 CHAPTER 14 ERRORS AND EXCEPTIONS

 + CategoryInfo : NotSpecified: (:) [Write-Error], Write
 ErrorException
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErr
 orException,Test-Script

 Type Content StartLine StartColumn
 ---- ------- --------- -----------
 Keyword function 1 1
GroupStart (1 10
 GroupEnd) 1 11
GroupStart { 1 13
 Operator + 1 15
 GroupEnd } 1 17

Now you see a number of errors. When you run a script that has syntax errors, you
get just one error before the parsing continues. With the tokenizer API, the parser
tries to reset itself and continue. This means that you may be able to deal with more
errors at one time, but the reset process doesn’t always work and sometimes you get
incorrect errors. The other thing to notice is that, in the list of tokens being dis-
played, some of the actual tokens in the script, such as the variables, aren’t output.
Again, this is because when the parser attempts to recover, it can get confused and
miss some tokens. (This is why, when you just run a script you only get one
error—you know the first error is correct but aren’t sure about the rest. It’s simpler [if
not more efficient] to deal with one correct error at a time rather than a collection of
possible incorrect errors.)

Let’s rewrite the test function. You’re going to do a little work to clean up the errors,
but you’ll also add a new static check. Because the tokenizer output tells you what
tokens are commands, you can use Get-Command to see if there are any references to
commands that don’t exist. This won’t always be an error—a script may load a module
defining the missing command at runtime—so you need to consider it to be a warning
to investigate instead of an actual error. Here’s what the new script looks like:

PS (7) > function Test-Script ($script)
>> {
>> $parse_errs = $null
>> $tokens = [system.management.automation.psparser]::Tokenize(
>> $script,
>> [ref] $parse_errs)
>> foreach ($err in $parse_errs)
>> {
>> "ERROR on line " +
>> $err.Token.StartLine +
>> ": " + $err.Message +
>> "`n"
>> }
>> foreach ($token in $tokens)
>> {
>> if ($token.Type -eq "Command")
>> {
>> $gcmerr = Get-Command $token.Content 2>&1
DEBUGGING WITH THE HOST APIS 591

>> if (! $?)
>> {
>> "WARNING on line " +
>> $gcmerr.InvocationInfo.ScriptLineNumber +
>> ": " + $gcmerr.Exception.Message +
>> "`n"
>> }
>> }
>> }
>> }
>>

The first part of the script hasn’t changed much—you tokenize the string and then
display any errors, though in a more compact form. Then you loop through all of the
tokens looking for code commands. If you find a command, you check to see if it
exists. If not, you display a warning. Let’s try it out. First, define the test script with
expected errors and an undefined command:

PS (8) > $badScript = @'
>> for ($a1 in nosuchcommand)
>> {
>> while ()
>> $a2*3
>> }
>> '@
>>

Now run the test and see what you get:

PS (9) > Test-Script $badScript
ERROR on line 1: Unexpected token 'in' in expression or statement.

ERROR on line 1: Unexpected token 'nosuchcommand' in expression or
statement.

ERROR on line 3: Missing expression after 'while' in loop.

ERROR on line 4: Missing statement body in while loop.

WARNING on line 18: The term 'nosuchcommand' is not recognized as
the name of a cmdlet, function, script file, or operable program. Check
the spelling of the name, or if a path was included, verify that the
path is correct and try again.

In the output you see the expected syntax errors, but you also get a warning for the
undefined command. There are a lot of things you could do to improve this checker.
For example, you could look for variables that are used only once. By using these
analysis techniques on the script text, you can find potential problems much sooner
than you would if you waited to hit them at runtime.

So far we’ve looked at a number of tools and approaches that you can use to learn
what’s wrong with your scripts. But how do you figure out what’s going on when
other people are running your (or other people’s) scripts in a different environment,
592 CHAPTER 14 ERRORS AND EXCEPTIONS

possibly at a remote location? To help with this, the PowerShell console host includes
a session transcript mechanism. You’ll learn how this works in the next section.

14.4 CAPTURING SESSION OUTPUT

When trying to debug what’s wrong with someone’s script at a remote location, you’ll
find extremely helpful the ability to see the output and execution traces from a script
run. The PowerShell console host allows you to do this via a mechanism that captures
console output in transcript files. This transcript capability is exposed through the
Start-Transcript and Stop-Transcript cmdlets, shown in figure 14.17.

NOTE Unfortunately, the implementation of these cmdlets is a feature
of the console host (PowerShell.exe) and so is not available in other
hosts, including the PowerShell ISE. But all is not lost—there’s a way to
effectively achieve the equivalent with the ISE, as you’ll see in the next
chapter. Other host applications may have similar mechanisms.

14.4.1 Starting the transcript

To start a transcript, run Start-Transcript as shown in the next example. Let’s
begin the example by running a command before starting the transcript so you can
see what is and is not recorded. Run Get-Date to get the current date

PS (1) > Get-Date

Thursday, April 15, 2011 10:10:12 PM

and now start the transcript:

PS (2) > Start-Transcript
Transcript started, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415221017.txt

Start-Transcript [[-Path] <string>] [-Append] [-Force] [-NoClobber]

Stop-Transcript

Turn off transcription

Turn on transcription

Specify path for

transcript file instead

of using default

Append to file instead of

overwriting it

Force writing to file even

if it’s read-only
If writable file already

exists, don’t overwrite it

Figure 14.17 The cmdlets to start and stop console transcription. When transcription is

turned on, all output to the console is written to the transcript file.
CAPTURING SESSION OUTPUT 593

Because you didn’t specify a filename for the transcript file, one will be automatically
generated for you in your Documents directory. Now run a couple of additional
commands:

PS (3) > 2+2
4
PS (4) > $psversiontable

Name Value
---- -----
CLRVersion 2.0.50727.4200
BuildVersion 6.0.6002.18111
PSVersion 2.0
WSManStackVersion 2.0
PSCompatibleVersions {1.0, 2.0}
SerializationVersion 1.1.0.1
PSRemotingProtocolVersion 2.1

Stop the transcript. Again, it conveniently tells you the name of the file containing
the transcript:

PS (5) > Stop-Transcript
Transcript stopped, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415221017.txt

Now let’s see what was captured:

PS (6) > Get-Content C:\Users\brucepay\Documents\PowerShell_transcript
.20100415221017.txt

Windows PowerShell Transcript Start
Start time: 20100415221017
Username : brucepayquad\brucepay
Machine : BRUCEPAYQUAD (Microsoft Windows NT 6.0.6002 Service Pack
2)

Transcript started, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415221017.txt
PS (3) > 2+2
4
PS (4) > $psversiontable

Name Value
---- -----
CLRVersion 2.0.50727.4200
BuildVersion 6.0.6002.18111
PSVersion 2.0
WSManStackVersion 2.0
PSCompatibleVersions {1.0, 2.0}
SerializationVersion 1.1.0.1
PSRemotingProtocolVersion 2.1

PS (5) > Stop-Transcript

Windows PowerShell Transcript End
End time: 20100415221038

594 CHAPTER 14 ERRORS AND EXCEPTIONS

The transcript file includes a header showing you the start time, the name of the user
running the script, and the name and OS information about the computer on which
the command is run.

You see the filename yet again because it was written out after transcription was
turned on and so is captured in the transcript.

After that, you see the output of the commands you ran (including Stop-
Transcript) and then finally a trailer showing the time the transcript stopped.

14.4.2 What gets captured in the transcript

It seems obvious that everything should get captured in the transcript file, but that
isn’t the case. As mentioned earlier, the transcript captures everything written through
the host APIs that were described in section 14.3. What doesn’t get captured is any-
thing that bypasses these APIs and writes directly to the console. This missing infor-
mation is most significant when you’re running applications like ipconfig.exe. If
these commands aren’t redirected within PowerShell, then their output goes directly
to the console and bypasses the host APIs. Let’s see how this looks. Start a new tran-
script that writes to a different file (a new filename is generated each time):

PS (1) > Start-Transcript
Transcript started, output file is C:\Users\brucepay\Documents\PowerS
hell_transcript.20100415222650.txt

Run two commands, one of which uses cmd to echo something directly to the console:

PS (2) > cmd /c echo THIS WONT BE CAPTURED
THIS WONT BE CAPTURED
PS (3) > "This will"
This will

Now, stop the transcript and look at the output:

PS (4) > Stop-Transcript
Transcript stopped, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415222650.txt
PS (5) > Get-Content C:\Users\brucepay\Documents\PowerShell_transcript
.20100415222650.txt

Windows PowerShell Transcript Start
Start time: 20100415222650
Username : brucepayquad\brucepay
Machine : BRUCEPAYQUAD (Microsoft Windows NT 6.0.6002 Service Pack
2)

Transcript started, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415222650.txt
PS (2) > cmd /c echo THIS WONT BE CAPTURED
PS (3) > "This will"
This will
PS (4) > Stop-Transcript

CAPTURING SESSION OUTPUT 595

Windows PowerShell Transcript End
End time: 20100415222708

You see the same headers and trailers as before, but notice that the cmd command is
run but there’s no output for it. Because cmd wrote directly to the console buffer, the
transcript mechanism didn’t capture it. The way to make sure that you do capture the
output of this kind of command is to pipe it through Write-Host, forcing it to go
through the host APIs. Here’s what that looks like:

PS (7) > Start-Transcript
Transcript started, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415223336.txt
PS (8) > cmd /c echo THIS WILL BE CAPTURED 2>&1 | Write-Host
THIS WILL BE CAPTURED
PS (9) > Stop-Transcript
Transcript stopped, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415223336.txt
PS (10) > Get-Content C:\Users\brucepay\Documents\
PowerShell_transcript.20100415223336.txt

Windows PowerShell Transcript Start
Start time: 20100415223336
Username : brucepayquad\brucepay
Machine : BRUCEPAYQUAD (Microsoft Windows NT 6.0.6002 Service Pack
2)

Transcript started, output file is C:\Users\brucepay\Documents\
PowerShell_transcript.20100415223336.txt
PS (8) > cmd /c echo THIS WILL BE CAPTURED 2>&1 | write-host
THIS WILL BE CAPTURED
PS (9) > Stop-Transcript

Windows PowerShell Transcript End
End time: 20100415223410

This time, when you look at the transcript, you can see that the output of command
8 was captured in the transcript.

Using the transcript cmdlets, it’s easy to have the remote user capture the output
of their session. Simply have the remote user call Start-Transcript, run their
script, and then call Stop-Transcript. This process will produce a transcript file
that the user can send to you for examination.

Session transcripts are a handy way to capture what’s going on with a script, but
they require someone to actively call them to get the transcript. There’s another place
where activity is recorded continuously, including for PowerShell: the event log. The
event log is the central store for log messages from the system as well as from all the
applications, services, and drivers running on that machine. It’s a one-stop shop for
diagnostic information. We’ll see how to access this diagnostic treasure trove using
PowerShell in the final section in this chapter.
596 CHAPTER 14 ERRORS AND EXCEPTIONS

14.5 POWERSHELL AND THE EVENT LOG

And now, the final topic in this chapter: exploring the Windows event log using
PowerShell.

The Windows event log provides a central place where applications and operating
system components can record events like the starting and stopping of an operation,
progress, and especially system and application errors. For system administration,
having access to the event log is critical. Obviously, as an admin tool, PowerShell
support for the event log is very important so that’s what we’re going to look at in
this section.

14.5.1 The EventLog cmdlets

PowerShell v1 had only a single, fairly limited command (Get-EventLog) for work-
ing with the event log. More sophisticated operations required using the underlying
.NET classes. PowerShell v2 fills in this gap and provides a comprehensive set of cmd-
lets for working with the event log, as shown in table 14.3.

Table 14.3 The PowerShell EventLog cmdlets

Cmdlet name PowerShell version Description

Get-EventLog v1, enhanced in v2 Gets the events in an event log, or a list of the event
logs, on the local or remote computers

Clear-EventLog v2 Deletes all entries from specified event logs on the
local or remote computers

Write-EventLog v2 Writes a new event log entry to the specified event
log on the local or remote computer

Limit-EventLog v2 Sets the event log properties that limit the size of
the event log and the age of its entries

Show-EventLog v2 Displays the event logs of the local or a remote com-
puter using the event viewer MMC console

New-EventLog v2 Creates a new event log and a new event source on
a local or remote computer

Remove-EventLog v2 Deletes an event log or unregisters an event source

Show-EventLog

You might be wondering why PowerShell includes this cmdlet—all it does is launch
the event log viewer. The answer is simple: usability. PowerShell is a command-line
shell, so you should be able to launch GUI applications from the command line. You
can, of course, but there’s a small problem: most of the commands you want to run,
especially GUI commands, have names that aren't obvious. For example, to launch
the control panel applet for adding and removing software, you run appwiz.cpl. To
POWERSHELL AND THE EVENT LOG 597

The Get-EventLog cmdlet is what we’ll focus our attention on here. This cmdlet
allows you to retrieve a list of the available application and system event logs and then
look at the content of each of the logs. To get a list of the available logs, run Get-
EventLog -List. The output will look something like this:

PS (1) > Get-EventLog -List

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 20,480 0 OverwriteAsNeeded 42,627 Application
 15,168 0 OverwriteAsNeeded 0 DFS Replication
 20,480 0 OverwriteAsNeeded 0 HardwareEvents
 512 7 OverwriteOlder 0 Internet Explorer
 20,480 0 OverwriteAsNeeded 0 Key Management Service
 8,192 0 OverwriteAsNeeded 11,695 Media Center
 16,384 0 OverwriteAsNeeded 80 ODiag
 15,360 0 OverwriteAsNeeded 101 Operations Manager
 16,384 0 OverwriteAsNeeded 790 OSession
 20,480 0 OverwriteAsNeeded 34,798 Security
 20,480 0 OverwriteAsNeeded 47,875 System
 15,360 0 OverwriteAsNeeded 11,988 Windows PowerShell

In addition to the names of the various logs, you can see the configuration settings for
each log, such as the amount of space the log might take and what happens when the
log fills up. You can use the Limit-EventLog cmdlet to change these limits for a log:

PS (4) > Limit-EventLog -LogName Application -MaximumSize 256kb

Then verify that the limit has been changed:

PS (6) > Get-EventLog -List | where {$_.Log -match "application"}

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 256 0 OverwriteAsNeeded 42,627 Application

As well as listing the available logs, Get-EventLog lets you see the events in any log.
Because the event logs can be very large, the cmdlet supports a variety of options to
control the amount of data returned. The parameters to Get-EventLog are shown in
figure 14.18.

(continued)

change the display settings, run desk.cpl. These command names, though related to
their function, are certainly not obvious to a user. Similarly, the command to start the
event viewer is eventvwr.msc. In contrast, the Show-EventLog cmdlet, which fol-
lows the PowerShell naming guidelines, can easily be intuited once you know the
rules. The next question is, why provide a cmdlet instead of an alias? Because, as
well as command naming, a cmdlet provides standard parameter handling, which
allows for things like tab completion. So by providing a “shim” cmdlet for the exist-
ing application, one more small bump is removed from the command-line user’s
experience.
598 CHAPTER 14 ERRORS AND EXCEPTIONS

Table 14.4 describes the various Get-EventLog filter parameters in more detail.

Table 14.4 The types of filters provided by the Get-EventLog cmdlet

Filter Description

Source The -Source parameter allows you to filter log entries based on the name used to
register the event source. This name is usually the name of the application logging
the events, but for larger applications, it may be the name of a subcomponent
within that application.

Message The -Message parameter allows the retrieved entries to be filtered based on the
event’s message text. The specified filter strings may contain wildcard patterns.
(Note that because the text of a message is usually translated, the use of the
-Message filter may not be portable to different locations.)

InstanceID The InstanceId for an entry is the message resource identifier for the event.
This identifier is used to retrieve the localized text for a message from the resource
file for the registered event source. Because this identifier isn’t localized, the
-InstanceID parameter provides a way to filter events by message that’s
portable across locales because the message text is localized but the resource
ID is always the same value.

EntryType The entry type (or severity level) is a way of classifying events based on the poten-
tial impact of the corresponding event on the system’s behavior. The entry types
are Information, Warning, Error, and Critical. Two additional event types
can occur in the security log: Success Audit and Failure Audit.

User The -User parameter filters based on the name of the user on whose behalf the
event occurred. Wildcards patterns can be used in arguments to this parameter.

Get-EventLog

[-LogName] <logname>

[-Computer Name <list of computers>]

[[-InstanceId] <Int64[]>]

[-Newest <n>]

[-After <startDate>]

[-Before <endDate>]

[-UserName <list of wildcard patterns>]

[-Index <index>]

[-EntryType <list of types>]

[-Source <list of source ids>]

[-Message <wildcard pattern>]

Name of event log to read

from on target computer Target computers to

get events from

Message resource

IDs identifying

entries to retrieve

Only return <n>
newest events Only get events

where user name

matches one of

specified patterns

Date range of

records to retrieve

Index of specific

event in log to get

Types of events

to get

Retrieve events

with matching

source identifiers

Only return log entries where message

text matches specified pattern

Figure 14.18 The Get-EventLog cmdlet has a large number of parameters that allow

you to control where the events are retrieved from and which events are to be retrieved.

You can use event type, number, and date range to control the number of events retrieved

and filter those events by username or strings in the event message.
POWERSHELL AND THE EVENT LOG 599

Let’s see how these parameters are used by working through a few examples. We'll
look at the Operations Manager log.

NOTE This log may not be present on your system—it requires that
you use Microsoft Operations Manager (MOM). If you don’t use
MOM, just pick a log from the list you saw earlier (such as System) to
work with instead.

Start by listing the newest 10 events in this log:

PS (1) > Get-EventLog -LogName 'Operations Manager' -Newest 10

 Index Time EntryType Source InstanceID
 ----- ---- --------- ------ ----------
 101 Apr 14 03:28 Information HealthService 1073743827
 100 Apr 14 03:28 Error HealthService 3221227482
 99 Apr 14 03:28 Information Health Service ES... 102
 98 Mar 31 03:20 Information HealthService 1073743827
 97 Mar 31 03:20 Error HealthService 3221227482
 96 Mar 31 03:20 Information Health Service ES... 102
 95 Mar 10 03:30 Information HealthService 1073743827
 94 Mar 10 03:30 Error HealthService 3221227482
 93 Mar 10 03:30 Information Health Service ES... 302
 92 Mar 10 03:30 Information Health Service ES... 301

The -Index parameter lets you retrieve a specific entry from the log. Save this entry
in a variable and then use Format-List to display additional properties of the entry:

PS (2) > $e = Get-EventLog -LogName 'Operations Manager' -Index 99
PS (3) > $e | Format-List

Index : 99
EntryType : Information
InstanceId : 102
Message : HealthService (2264) Health Service Store: The d
 atabase engine (6.00.6002.0000) started a new in
 stance (0).
Category : General
CategoryNumber : 1
ReplacementStrings : {HealthService, 2264, Health Service Store: , 0.
 ..}
Source : Health Service ESE Store
TimeGenerated : 4/14/2010 3:28:02 AM
TimeWritten : 4/14/2010 3:28:02 AM
UserName :

Using Format-List shows you, among other things, the InstanceID and text of the
event message. Now retrieve all the events using this message InstanceID:

PS (4) > Get-EventLog -LogName 'Operations Manager' -Newest 10 `
>> -InstanceId 102
>>
600 CHAPTER 14 ERRORS AND EXCEPTIONS

 Index Time EntryType Source InstanceID
 ----- ---- --------- ------ ----------
 99 Apr 14 03:28 Information Health Service ES... 102
 96 Mar 31 03:20 Information Health Service ES... 102
 90 Mar 10 03:29 Information Health Service ES... 102
 84 Feb 24 03:23 Information Health Service ES... 102
 81 Feb 14 17:55 Information Health Service ES... 102
 78 Feb 10 03:28 Information Health Service ES... 102
 72 Jan 23 03:21 Information Health Service ES... 102
 66 Jan 13 03:25 Information Health Service ES... 102
 60 Dec 10 03:27 Information Health Service ES... 102
 57 Nov 25 03:21 Information Health Service ES... 102

You can use -Before and -After to retrieve messages around a specific date (and
time if desired):

PS (5) > Get-EventLog -LogName 'Operations Manager' `
>> -After 'Oct 15/2009' -Before "Oct 28/2009"
>>

 Index Time EntryType Source InstanceID
 ----- ---- --------- ------ ----------
 28 Oct 27 23:08 Information HealthService 1073743827
 27 Oct 27 23:08 Error HealthService 3221227482
 26 Oct 27 23:07 Information Health Service ES... 102
 25 Oct 27 21:41 Information HealthService 1073743827
 24 Oct 27 21:41 Error HealthService 3221227482
 23 Oct 27 21:40 Information Health Service ES... 102
 22 Oct 27 20:58 Information HealthService 1073743827
 21 Oct 27 20:58 Error HealthService 3221227482
 20 Oct 27 20:58 Information Health Service ES... 102
 19 Oct 18 11:24 Information HealthService 1073743827
 18 Oct 18 11:24 Error HealthService 3221227482
 17 Oct 18 11:23 Information Health Service ES... 102
 16 Oct 15 03:10 Information HealthService 1073743827
 15 Oct 15 03:10 Error HealthService 3221227482
 14 Oct 15 03:09 Information Health Service ES... 102

Here you’ve retrieved all the messages between October 15 and October 28 in 2009.
You can combine -Before and -Newest to get a specific number of messages before
a particular date:

PS (7) > Get-EventLog -LogName 'Operations Manager' `
>> -Before 'Oct 15/2009' -Newest 10
>>

 Index Time EntryType Source InstanceID
 ----- ---- --------- ------ ----------
 13 Oct 11 03:09 Information HealthService 1073743827
 12 Oct 11 03:09 Error HealthService 3221227482
 11 Oct 11 03:08 Information Health Service ES... 102
 10 Oct 10 08:48 Information HealthService 1073743827
 9 Oct 10 08:48 Error HealthService 3221227482
 8 Oct 10 08:48 Information Health Service ES... 302
 7 Oct 10 08:46 Information Health Service ES... 301
POWERSHELL AND THE EVENT LOG 601

 6 Oct 10 08:46 Information Health Service ES... 300
 5 Oct 10 08:46 Information Health Service ES... 102
 4 Sep 17 15:18 Information HealthService 1073743827

And finally, you can use -Message and -After to find all messages matching a spe-
cific pattern that occurred after a specific date. For this example, just use the month
and day numbers and let the year default to the current year:

PS (9) > Get-EventLog -LogName 'Operations Manager' `
>> -Message "*Data*6.0*" -After '4/1' |
>> Format-List Name,Time,EntryType,Message
>>

EntryType : Information
Message : HealthService (2264) Health Service Store: The database
engine (6.00.6002.0000) started a new instance (0).

This command returns a single entry indicating that the database engine started a
new instance.

So why is all this useful? Imagine you see a critical error in an application. This
error shows up in the Application log. You suspect that it might be related to either a
hardware issue or a bad device driver. Rather than manually poring over hundreds of
log entries, you can use the date from the Application log entry to retrieve the events
in the System log that occurred shortly before the application.

Digging through the entries, you identify the problem that led to the failure.
From this, you get the Source and InstanceID identifying the problematic entry.
You quickly write a script to remediate the problem on this machine but realize that
there may be other machines in the organization with similar issues. You put together
a list of potentially at-risk machines and pass this list to Get-EventLog using the
-ComputerName parameter. You also specify the -Source and -InstanceID param-
eters of the problematic message. This command will search the event logs of all the
at-risk machines, returning a list of event log entries matching the criteria. From this
set of events, you can get the names of all the computers that need to be fixed.
Finally, you can use PowerShell remoting to run the remediation script on all the
machines with the problem.

NOTE Although you need PowerShell remoting to run the remedia-
tion script on the target machines, PowerShell remoting isn’t used
when you use Get-EventLog to access a remote computer. Get-
EventLog uses its own remoting protocol, as mentioned in chapter 12.
This means Get-EventLog can be used to examine the logs of the
target computer to help diagnose what went wrong using its own built-
in remoting to connect to that computer. It’s not dependent on Power-
Shell remoting.

The Get-EventLog filtering capabilities make this kind of “forensic” analysis very
easy. One of the things you might want to analyze is PowerShell itself.
602 CHAPTER 14 ERRORS AND EXCEPTIONS

14.5.2 Examining the PowerShell event log

When PowerShell is installed, the installation process creates a new event log called
Windows PowerShell. As PowerShell executes, it writes a variety of information to
this log, which you can see using the Get-EventLog cmdlet. Let’s use the cmdlet to
get the last few records from the PowerShell event log. As always, you can use the
tools PowerShell provides to filter and scope the data you want to look at. You’ll use
an array slice to get the last five records from the log:

PS (2) > (Get-EventLog 'windows powershell')[-5..-1]

WARNING: column "Message" does not fit into the display and was
removed.

 Index Time EntryType Source InstanceID
 ----- ---- --------- ------ ----------
 5 Dec 27 17:25 Information PowerShell 600
 4 Dec 27 17:25 Information PowerShell 600
 3 Dec 27 17:25 Information PowerShell 600
 2 Dec 27 17:25 Information PowerShell 600
 1 Dec 27 17:25 Information PowerShell 600

The default presentation of the event records doesn’t show much information. Let’s
look at one event in detail and see what it contains:

PS (3) > (Get-EventLog "windows powershell")[0] | Format-List *

First, you get some basic event log elements common to all event log entries:

EventID : 400
MachineName : brucepayquad
Data : {}
Index : 8915

Next, you see the event category. This isn’t the same as the error category discussed
earlier. PowerShell event log entries are grouped into several large categories:

Category : Engine Lifecycle
CategoryNumber : 4

Next is the entry type and a message describing the entry. This is followed by a collec-
tion of detail elements, which include things such as the state transition for the
engine, as well as some of the versioning information you saw on the $host object
earlier. This is included in case you have multiple hosts for a particular engine:

EntryType : Information
Message : Engine state is changed from None to Available.
 Details:
 NewEngineState=Available
 PreviousEngineState=None
 SequenceNumber=9
 HostName=ConsoleHost
 HostVersion=2.0
 HostId=29f2d25c-551c-4e8b-9c15-3cd2103c4a70
 EngineVersion=2.0
POWERSHELL AND THE EVENT LOG 603

 RunspaceId=ffff212a-7e81-4344-aecd-c6bcab05b
 715

 PipelineId=
 CommandName=
 CommandType=
 ScriptName=
 CommandPath=
 CommandLine=
Source : PowerShell

The following fields specify the replacement strings that are available. These strings
are substituted into the log message text:

ReplacementStrings : {Available, None, NewEngineState=Available
 PreviousEngineState=None
 SequenceNumber=9
 HostName=ConsoleHost
 HostVersion=2.0
 HostId=29f2d25c-551c-4e8b-9c15-3cd2103c4a70
 EngineVersion=2.0
 RunspaceId=ffff212a-7e81-4344-aecd-c6bcab05b715
 PipelineId=
 CommandName=
 CommandType=
 ScriptName=
 CommandPath=
 CommandLine=}

Finally, some additional information for identifying the event log entry and when it
occurred:

InstanceId : 400
TimeGenerated : 1/10/2010 6:02:19 PM
TimeWritten : 1/10/2010 6:02:19 PM
UserName :
Site :
Container :

Granted, the output isn’t all that interesting, but when you’re trying to figure out
what went wrong on your systems, being able to see when the PowerShell interpreter
was started or stopped could be useful. There are also certain types of internal errors
(also known as bugs) that may cause a PowerShell session to terminate. These errors
also will be logged in the PowerShell event log.

That’s all we’re going to cover on event logs in this chapter. From these examples,
you can see that the event logs provide a lot of information, much of which can help
you manage and maintain your systems. The trick is being able to extract and correlate
the information across the various logs, and this is where PowerShell can be very useful.
604 CHAPTER 14 ERRORS AND EXCEPTIONS

14.6 SUMMARY

This chapter focused on the diagnostic features of PowerShell: the error-handling
mechanisms and the various debugging, tracing, analysis, and logging features. And,
although this is a fairly long chapter, it still can’t claim to be an exhaustive discussion
of all of these features. Let’s summarize the areas that we did cover. We started with
basic error handling:

• The two types of errors in PowerShell: terminating and nonterminating

• The ErrorRecord object and the error stream

• The $error variable and -ErrorVariable parameter

• The $? and $LASTEXITCODE variables

• $ErrorActionPreference and the -ErrorAction parameter

Next, we showed you how to work with terminating errors and exceptions:

• The trap statement and how to use it

• The try/catch/finally statements in PowerShell v2

• Using the throw statement to generate your own terminating exceptions

And then we discussed some of the tools and techniques for finding static and run-
time errors in scripts:

• Using the host APIs to do printf-style debugging

• Catching errors with strict mode, both v1 and v2 versions

• Using the PowerShell tokenizer API to do static analysis of a script to catch
problems before they happen

Finally, we looked at some techniques for examining the behavior of script that other
people may be running by using the transcript feature in PowerShell.exe and by
looking at the event log using the Get-EventLog cmdlet.

This chapter looked at ways to deal with errors in PowerShell scripts after they
have occurred (sometimes long after, in the event log case). In chapter 15, we’ll look
at ways of preventing errors in your scripts by using the PowerShell ISE and the built-
in debugger.
SUMMARY 605

C H A P T E R 1 5

The PowerShell ISE
and debugger

15.1 The PowerShell ISE 607
15.2 Using multiple PowerShell tabs 618
15.3 Extending the ISE 622
15.4 PowerShell script debugging

features 638

15.5 The PowerShell v2 debugger 647
15.6 Command-line debugging 652
15.7 Summary 659
Big Julie: “I had the numbers taken off for luck, but I remember where the spots
formerly were.”

 —Guys and Dolls, words and music by Frank Loesser

In the previous chapter, you learned how PowerShell deals with errors and how those
features help you find bugs in your scripts. In this chapter, we’re going to look at
more tools that help you create correct, reliable scripts. We’ll cover the graphical Inte-
grated Scripting Environment (ISE) as well as the debugger, both of which were intro-
duced with PowerShell v2. First, we’ll begin by covering the basic operation and usage
patterns of the ISE. Next, we’ll look at customizing and extending the ISE using the
object model provided for that purpose. Then, we’ll review how the debugger works
within the ISE and from the command line.
606

15.1 THE POWERSHELL ISE
PowerShell v2 significantly improved the PowerShell scripting experience with the
introduction of the ISE. This new PowerShell host application adds many of the fea-
tures expected in a modern scripting environment:

• Syntax highlighting in the editor and command panes
• Multiple concurrent sessions
• Multiple editor tabs within a session
• Full globalization support
• An extension mechanism that allows you to add your own functionality to the

environment

The goal of the first part of this chapter is to learn to use the ISE effectively and adapt
it to the individual’s working style and environment. We’ll begin with examining the
layout and major features of the ISE.

15.1.1 Controlling the ISE pane layout

The basic layout of the ISE consists of three resizable panes: the editor, output, and
command panes. The layout is shown in figure 15.1.

As you’d expect, the Editor pane holds all the current files being edited, and the
output pane is where the output of executed commands is displayed. The last pane is
the command pane and is intended for command entry. This arrangement is a bit
different than most shells. Typically, shells interleave user commands with the output
text all in the same pane. The ISE does display the commands as they’re executed in
context with the output, but the commands themselves are entered into a separate

Editor

pane

Output

pane

Command

pane

Figure 15.1 The basic layout of the PowerShell ISE. The user interface is broken into

three panes: editor, output, and command input.
THE POWERSHELL ISE 607

pane. This arrangement makes it possible to edit complex commands interactively
while preserving the critical aspects of the traditional shell experience. Let’s take a
closer look at the elements in the command pane.

The command pane

The command pane is composed of three separate pieces: the command input editor,
the prompt line, and the status line, as shown in figure 15.2. In figure 15.2, you can
see that there are two elements in the prompt line: the text of the prompt and a con-
trol for changing the position of the command pane relative to the editor pane. As is

Prompt bar

Command

input editor

Status bar

Font size
Current position in file

Status

informaton

Change command window position

Figure 15.2 The ISE command pane includes the prompt line, the command input editor

and the status line, as well as controls to change the font size and command pane position.

Output pane

Command

input pane

Output pane

Command input

pane

When command pane

is down, it appears

below output pane

When command pane

is up, it appears above

output pane

Script editor

Script editor

Figure 15.3 The command pane can be above or below the output pane.
608 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

the case with the console host, the prompt text is set by the user-definable prompt
function. The position control is used to exchange the relative positions of the output
and command panes, as shown in figure 15.3.

When the position icon (an up arrow) is clicked, the command pane moves from
below the output pane to above it and the icon changes to a down arrow, as shown in
figure 15.3. When the position icon is clicked again, the original positions are restored.

The ISE toolbar

Moving on in our coverage of the basic ISE elements, let’s look at the toolbar. The tool-
bar gives you quick access to common features (such as cut, copy, and paste) but some
PowerShell-specific features are also included. The toolbar is shown in figure 15.4.

In the ISE toolbar, along with the standard items are ISE-specific controls for run-
ning scripts, for creating remote tabs, and for launching the console host Power-
Shell.exe. We’ll cover remote tabs later in section 15.2.2. The toolbar also contains
controls that allow additional layout options for the ISE. You can see one of these
alternate layouts in figure 15.5.

The side-by-side layout in figure 15.5 is most effective on a large monitor, allow-
ing you to have full-sized execution and editor panes beside each other.

New remote

PowerShell tab

Show/hide

script pane
Run script, run selection,

and stop

Clear output pane

Cut, copy, and

paste

Change layout

Undo/redo

edits

New file

Open file Save file

Launch

powershell.exe

Figure 15.4 The ISE toolbar provides controls to create, open, and save files; run scripts;

and control the layout of the ISE. It also allows the user to start a remote PowerShell

session in a new tab as well as launch the console host PowerShell.exe.

Figure 15.5 The layout of the

PowerShell ISE with the edi-

tor pane on the side. The orga-

nization of the three major

panes in the ISE can be con-

trolled to a large extent by

user settings.
THE POWERSHELL ISE 609

There are two other layout modes with the editor pane either hidden or maximized.
These modes are shown in figure 15.6.

Whereas the side-by-side mode is ideal if there’s a lot of screen real estate, the
mode in figure 15.6 allows the ISE to be used effectively on smaller screen devices like
netbooks or tablets. All of these modes can be set from the menus. The other thing
you can do is use hotkey sequences
to switch configurations. The View
menu in figure 15.7 shows a num-
ber of these hotkeys.

Now that you know how to use
the layout settings to choose the
best layout for your work, let’s see
what benefits the ISE editor brings
to the PowerShell user.

15.1.2 Using the ISE editor

The PowerShell ISE editor is built
on the same editor control used in
recent versions of Microsoft Visual
Studio and the Expression Blend
designer tool. As such, it follows the
key-binding sequences used by
these tools and they, in turn, follow
the Windows Common User Access
(CUA) bindings. Because the same
control is used everywhere, the
CUA guidelines apply everywhere,
and you can finally use Ctrl-C and
Ctrl-V to copy and paste between

Editor pane hidden Editor pane mazimized

Figure 15.6 On the left side of this figure, the editor pane has been hidden and the full space

used for the command and output panes. On the right side, the editor pane has been maxi-

mized, hiding the other panes. These modes can also be toggled by pressing Ctrl-R.

Figure 15.7 Items in the View menu and their

associated hotkey sequences for managing

the layout of the panes in the ISE
610 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

panes, including the command pane. The more interesting key bindings are shown in
table 15.1. Where there are special behaviors associated with the keys in the ISE,
they’re marked as ISE in the left column.

Table 15.1 The PowerShell ISE editor key bindings

Key Description

F1 Open the PowerShell help viewer. This launches the hypertext help
viewer, which allows the contents of the PowerShell help system to
be searched and navigated much more easily than the command-
line version of help.

ISE Ctrl-F Search forward in the current editor pane from the current cursor
position. This doesn’t wrap and thus won’t find occurrences earlier
in the text.

F3 Search forward in the current editor pane to find the next occur-
rence of the pattern specified to Ctrl-F.

ISE Shift-F3 Search backward in the current editor pane to find earlier occur-
rences. As with the forward search, this won’t wrap around and con-
tinue searching from the end of the file once the start has been
reached.

ISE Ctrl-H Replace strings in the current editor pane.

ISE Ctrl-G Go to a specific line number in the current file.

ISE F5 Execute the contents of the file in the current editor pane. The file
will be saved to disk before execution. Note: The file will be as
though it were dot-sourced, modifying the global environment.

ISE F8 Dot-source the currently selected text.

ISE Ctrl-Shift-P Start an instance of PowerShell.exe. This is useful for com-
mands that require the console window environment.

Ctrl-F4 Close the current editor pane, prompting to save if the buffer hasn’t
been saved.

Alt-F4 Exit the ISE. If there are no unsaved files, this will cause the ISE to
immediately exit without prompting.

ISE Ctrl-N Open a new editor tab.

Ctrl-S Save the current editor tab.

ISE Ctrl-R Toggle visibility of the script pane.

ISE Ctrl-1 Show the editor pane above the command pane.

ISE Ctrl-2 Show the editor pane on the right

ISE Ctrl-3 Show the editor pane maximized.

Ctrl-O Open an existing file.

ISE Ctrl-T Start a new PowerShell session tab.

ISE Ctrl-W Close the current PowerShell session tab.

ISE Ctrl-Shift-R Open a new remote PowerShell session tab.
THE POWERSHELL ISE 611

In the table are a couple of items that we’ll explore in detail later in the chapter, such
as the new remote PowerShell tab (section 15.2.2). We’ll also look at the key bindings
used by the debugger. But for now, we’ll finish our discussion of the basic operation
of the editor.

Opening a file

In table 15.1, you saw that one way to open a file is to select File > Open or just press
Ctrl-O. This is what you’d expect from an editor. From a shell, though, you expect to
do things with commands—and you can. A command is available in the ISE called
psEdit that will allow you to open files from the command line. It takes wildcards,
so you can use it to open multiple files at once. This command is actually a function,
and the default definition looks like:

PS (STA) (2) > Get-Content function:psedit
param([Parameter(Mandatory=$true)]$filenames)
foreach ($filename in $filenames)
 {
 dir $filename | where {!$_.PSIsContainer} | %{
 $psISE.CurrentPowerShellTab.Files.Add($_.FullName) > $null
 }
 }

Ctrl-A Select everything in the current pane. This works in command and
output panes as well as the editor pane.

ISE Tab If nothing is selected, move to next tab stop. The ISE will insert four
spaces by default. It doesn’t insert tab characters. If more than one
line is selected, then it will shift all the selected lines one tab stop
right.

ISE Shift-Tab If more than one line is currently selected in the editor pane, the
text will be shifted one tab stop (four spaces by default) left.

ISE Ctrl-Tab Cycle through the editor buffers in the current PowerShell tab.

Home, End Move the cursor to the beginning or end of the line. The first time
the Home key is pressed, it moves the cursor to the first nonblank
character in the line. Pressing it again will move to the cursor to the
first character in the line.

ISE Enter In the command pane, execute the command. In the editor pane,
insert a new line. Tab offset is maintained for the new lists.

Shift-Down arrow,
Shift-Up arrow

Extend the text selection up to the next or previous line.

Shift-Left arrow Add the next item/character to the selection.

Shift-Right arrow Add the previous item/character to the selection.

Shift-F10 Display the context menu for current pane (similar to right-clicking).

Ctrl-Home, Ctrl-End Go to the beginning or end of the current editor panes.

Table 15.1 The PowerShell ISE editor key bindings (continued)

Key Description
612 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

The thing to notice in this function definition is the $psISE variable. This variable is
the root of the ISE object model and lets you script against the ISE itself. We’ll cover
this topic in detail later in this chapter.

Creating a new file

Opening existing files is fine, but the goal of the ISE is to help you create new scripts.
Again, you can choose File > New or press Ctrl-N, but there’s an annoyance here: the
Windows file browser dialog box has its own idea of what the current directory
should be and it’s not the same as the current directory you see in the command pane.

If you want to create a file in the current directory, you’ll have to do it from the
command line. Unfortunately, psEdit will just complain if you tell it to open a file
that doesn’t exist. Instead, you have to create the file yourself with the New-Item
cmdlet or with

PS (STA) (4) > "" > newfile.ps1

This code will create a file with one empty line in it. You verify that it was created:

PS (STA) (5) > dir .\newfile.ps1

 Directory: C:\Users\brucepay

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/6/2010 10:02 PM 6 newfile.ps1

Then, open it:

PS (STA) (6) > psEdit .\newfile.ps1

Tab expansion in the editor pane

One of the most useful tools for learning and working with PowerShell is the tab
completion feature. This feature is available in the console host, but it really shines in
the ISE because it works in the editor and the command panes. It also doesn’t suffer
from the limitation that the console shell has where pressing Tab is treated as the end
of line and everything after it is deleted. In the ISE, tab completion can be used any-
where in the editor panes.

When the tab completion function executes, it operates against the state of the
live shell session in the current tab. This means that if you have a variable defined in

Why are there six characters in a one line file?

You might have noticed something funny in the output when you looked at the file
using dir:. It was supposed to be a single empty line, which implies two characters
(CR and LF), not six. The other four characters are the Unicode Byte order mark, or
BOM, indicating that this is a Unicode text file.
THE POWERSHELL ISE 613

your session, the editor will tab-complete against the existing definition of the vari-
able, even if it’s used in a different way in the script you’re editing. Likewise, it will
resolve command parameters against existing commands, not the commands that are
defined in a particular file. At times, this behavior can be confusing. The fact that the
ISE dot-sources scripts when run with F5 mitigates this confusion to some extent
because the script variables become global variables. Now let’s look at the other sig-
nificant feature that the ISE offers for writing scripts.

Syntax highlighting in the ISE panes

Another useful feature of the ISE is that it does syntax highlighting in both the editor
and command panes. As text is entered in either of these panes, the ISE will color the
content of the buffer based on the syntax of what you’ve typed. If there’s an error at
some point in what you type, then the highlighting will stop. This is a way to catch
syntax errors while you’re entering your code. Note that syntax highlighting is limited
to PowerShell script files with .ps1, .psm1, and .psd1 extensions.

NOTE The syntax highlighting is done using the tokenizer API intro-
duced in chapter 14. The PowerShell team made this a public API to
make it easier for other editor environments hosting PowerShell to
support syntax highlighting.

At this point, let’s switch from talking about using the ISE to creating code and look-
ing at what it brings to the table as far as running code is concerned.

15.1.3 Executing commands in the ISE

Because this is an integrated scripting environment, you want to be able to run your
scripts as well as create them. As with the console host, you can run a script simply by
typing the name of the script and pressing Enter. But the ISE offers additional ways to
run scripts, as you’ll see in the next few sections.

Running current editor pane contents

To run the contents of the current editor pane, you press F5. This is consistent with
most other Microsoft products that have an execution capability, like Visual Studio
and PowerPoint. There’s one significant difference between running from the com-
mand pane and running by pressing F5: how the script is run. When run from the
command pane, a script runs in its own scope, as described in chapter 9. But when
it’s run using F5, it runs in the current scope. In other words, it dot-sources the script
into the environment.

WARNING This point is important enough to be repeated. When you
use F5 to run a script, the script is executed in the global environment
of the current session tab. Keeping these variables around means that
any scripts or variables defined in the script will persist after the script
614 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

has exited. Keeping these variables around is good for tab completion
and debugging but can also be confusing as more things are added to
the global environment. When testing a script in the ISE, you should
do the testing in a separate PowerShell tab using the command line to
launch the script rather than pressing F5.

Dot-sourcing has significant consequences, both positive and negative. On the posi-
tive side, because the script is dot-sourced, you can examine the state of variables and
functions it defined because they’re still available in the global session state. On the
negative side, all of these things that are being defined clutter up the global state and
may possibly overwrite existing variables or functions.

Executing selected text

As well as executing the contents of the current editor, you can execute selected
regions of script. Simply select the region of text and then press F8 (see figure 15.8).
The figure shows selecting some lines in a file snippets.ps1 and then executing that
text. As was the case with F5, fragments executed with F8 are run in the global scope.

Figure 15.8 Fragments of code can be executed by selecting the text

and pressing F8. Doing so allows you to test fragments of a script as it’s

being developed.
THE POWERSHELL ISE 615

This makes sense with fragments—you want to be able to execute incrementally and
then examine the effects at each step.

NOTE You may wonder why the key to execute the selected region is
F8. Originally, it was F6. It changed when a very senior person (who
will remain nameless) was doing a demonstration and accidentally hit
F5 (execute the entire script) instead of F6 (execute the selection). The
results were decidedly nonoptimal. So “execute selected” was moved
from F6 to F8.

15.1.4 Considerations when running scripts in the ISE

Up until now, we’ve focused on how to use the ISE and what you can do with it. But
there are also a few things to be aware of that can lead to different behaviors between
the ISE and the console host. In this section, we’re going to investigate a couple of
these issues. Both of these concerns involve aspects of how the Windows operating
system executes programs. Let’s take a look.

Issues with native commands

The things that are most likely to cause problems with the ISE are external executa-
bles, or native commands compiled as console applications. To understand the possi-
ble issues, we’ll begin with some background.

In Windows, executables are either console applications or Win32 applications.
Windows itself treats the two types differently when they’re executed, automatically
allocating console objects for console applications. Although this feature was intended
to simplify things, in practice it can make things more complicated. If a console
application is launched from a Win32 application, the system will allocate a console
window for the application, even if that application will never use that window. As a
result, the user sees a console window suddenly appear. If the user is unaware of
where the window is coming from, they’re likely to close it, causing the console appli-
cation to exit.

Now let’s look at how this impacts the ISE. As mentioned, a console application
has a console object that the application can use to perform full-screen interactions
with the user. For most console applications, all they need to do is perform simple
interactions like writing out some strings or reading from a redirected input. In
these cases, the command works fine with the ISE because the ISE properly handles
redirection.

But if the command tries to perform an interaction that requires calling one of the
console APIs—especially if it tries to read from the console object (as opposed to the
standard input stream)—it will appear to hang in the ISE. Of course, it’s not really
hung and can still be stopped by pressing Ctrl-C or Ctrl-Break, but it’s generally
better to prevent the hang in the first place. To address this, the ISE maintains a list
616 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

of applications that are known not to work properly. For example, the full-screen edi-
tor edit.com doesn’t work in the ISE, and trying to run it will result in the error mes-
sage displayed in figure 15.9.

The list of applications that are blocked by the ISE is stored in a preference vari-
able, $psUnsupportedConsoleApplications, and can be updated or edited by the
user. The default list is as follows:

PS (STA) (5) > $psUnsupportedConsoleApplications
cmd
cmd.exe
diskpart
diskpart.exe
edit.com
netsh
netsh.exe
nslookup
nslookup.exe
powershell
powershell.exe

You might be surprised to see PowerShell on this list, but it uses the console object to
read commands from the user so that tab completion and editing can work. So, if
PowerShell.exe is just run as a command, reading and writing to pipes or with input
redirected, it’s allowed to run from the ISE. But if you try to run it interactively (which
is determined by the fact that it’s at the end of the pipeline), then it will be blocked.

Figure 15.9 Interactive console applications that try to read from the console object aren’t

supported in the ISE and result in an error.
THE POWERSHELL ISE 617

Threading differences between the console and the ISE

Another difference between the console host environment and the ISE is the default
threading apartment model. The threading model primarily affects applications using
COM (see chapter 18).

The console host runs MTA by default but the ISE runs STA. This difference in
threading model is where you may see occasional behavioral differences between the
two environments when using COM. If you run into a situation where you see differ-
ent behavior if a script is run in the console host as opposed to the ISE, the threading
module is probably the culprit. Although the ISE always runs in STA mode, the con-
sole host in version 2 has a new argument -Sta that allows you to change the thread-
ing model to use for the session. This is one way to track down these COM problems:
run the script from the console host without specifying -Sta and then again with
-Sta, and see if there’s a difference. We’ll discuss this issue in more detail in chapter
17 when we look at using .NET directly from PowerShell. For now, let’s resume our
exploration of the features in the ISE.

15.2 USING MULTIPLE POWERSHELL TABS

Easily one of the most popular features in the ISE is the ability to have not just multi-
ple editor instances, but multiple concurrent PowerShell sessions available as tabs.
Each session tab represents its own isolated environment with its own variables, func-
tions, and threads of execution. With multiple session tabs, you can execute multiple
tasks from the same ISE process. If you’re running a task that’s taking a long time, you
can simply start an additional tab in the ISE by pressing Ctrl-T. In fact, there are two
types of session tabs, as you’ll see in the next two sections: local and remote tabs.

What is the apartment threading model?

In simplest terms, the threading apartment model controls the number of threads of
execution in any single object at any given time. In the multithreaded apartment
(MTA), multiple threads can be accessing an object at the same time, so if the object
hasn’t been carefully designed, it could suffer from race conditions. For example,
two threads may be trying to update the same property at the same time, and it
becomes a race to see whose change takes effect. These race conditions lead to
very hard-to-track-down bugs.
In the single-threaded apartment (STA), the system guarantees that only one thread
is updating an object at a time, making everything much simpler. So why have MTA
at all? Because for a lot of objects, multiple threads in the object may be fine—for
example, they may only be reading data but not changing state. This type of concur-
rent access, in turn, leads to better performance characteristics, especially in this
day of multicore processors.
618 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

15.2.1 Local in-memory session tabs

For the most part, sessions in separate tabs are isolated, but they are all executing in the
same process. Given what you’ve seen with remoting and jobs, this might seem some-
what surprising. Up until now, we’ve pretty much implied there’s one PowerShell ses-
sion per process. In fact, it’s possible to have an arbitrary number of session-like objects
called runspaces in a single process, limited only by system resources.

The runspace feature is primarily targeted at programmers and isn’t normally exposed
to the end user. In fact, the only place you’re likely to encounter a runspace is with
tabs in the ISE and even there it’s pretty much invisible.

You don’t need to care about this much except when you’re doing things that affect
the ISE’s environment at the process level. In fact, the most obvious instances of a pro-
cess-wide resource are environment variables and $ENV:. Because there’s only one envi-
ronment table per process, changes to the $ENV: in one tab will affect the other tabs.

Although this in-process tab model is efficient, to get real isolation between your
sessions, you need to create additional processes. As you’ll see in the next section, you
can do so through remoting.

15.2.2 Remote session tabs in PowerShell ISE

In the previous section, we looked at how in-memory sessions work. The ISE also
supports interactive remoting from within a tab (incidentally giving you process isola-
tion between tabs). This means that a session tab can be connected to a remote com-
puter. A remote session tab is effectively equivalent to calling the Enter-PSSession
cmdlet in a local session tab, but rather than force you to start a local session and then
create a remote session, the ISE treats this as a first-class experience, allowing you to
create a remote tab directly.

What’s a runspace?

You may (or may not) have heard the term runspace before. It shows up in discus-
sions periodically but is usually not mentioned in the end-user documentation. Sim-
ply put, a runspace is a space where PowerShell commands can be run. This sounds
pretty similar to how we described a PowerShell session in our discussion of remot-
ing. In fact, each session contains an instance of a runspace object, visible as a prop-
erty on the session object.
So how did we end up with two terms? Here’s what happened. Originally, there was
only the runspace. Then we did some usability testing on remoting and discovered
that the term really seemed to confuse users, with the common response being “so
a runspace is just like a session—right?” Eventually, to minimize confusion, we
added the PSSession object for end users and kept the runspace term for develop-
ers. (We also had to keep runspace because it’s part of the PowerShell API.)
USING MULTIPLE POWERSHELL TABS 619

To start a remote connection, from the File menu select New Remote PowerShell
Tab, as shown in figure 15.10.

Clicking this item will pop up a dialog (see figure 15.11) asking for the name of
the target computer and who to connect as when connecting to that computer.

Figure 15.10 This figure shows the menu

item under the File menu that lets you

 directly connect to a remote machine.

Figure 15.11 When using the ISE to connect to a remote computer, you will be prompted to

enter the name of the computer to connect to and the username to use when connecting.
620 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Fill in the name of the computer and the user to connect as, and then click Connect.
At this point, a second credential dialog will be displayed, asking for the password for
the specified user account.

NOTE So why are there two dialogs? The credential dialog is a system
dialog that provides for enhanced security and, as a result, has to be
displayed separately.

Once you’re connected to the remote endpoint, you’ll see a new tab in the ISE that
displays the name of the computer you’re connected to. Figure 15.12 shows what this
looks like.

Notice the content of the output pane: it shows the actual commands that were run
to establish the remote connection. The Enter-PSSession is nothing new, but the line

if ($?) {$psISE.CurrentPowerShellTab.DisplayName = 'brucepayquad'}

is something you haven’t seen so far.
If the Enter-PSSession command succeeds and a remote connection is estab-

lished, then the value of the variable $? will be $true. When that happens, the Pow-
erShell ISE object model is used to change the display name of the tab to the name of
the remote computer. The object stored in $psISE is a .NET object that lets scripts
manipulate the ISE itself. We’ll look at using this object model in the next section.

In chapter 12, we discussed how interactive remoting works in the case where
you’re just using the console host. This is a relatively simple situation because the
console host is effectively limited to one interactive session at a time. With the ISE,

Figure 15.12 The PowerShell ISE allows you to have multiple sessions running

at the same time. These sessions can be either local or remote. In this figure, the

first tab is a local session and the second tab is a remote session connected to

another computer.
USING MULTIPLE POWERSHELL TABS 621

things are more sophisticated and therefore somewhat more complex. A graphical
environment allows you to work with multiple sessions, including multiple local and
remote sessions, where each session has its own tab in the interface. Figure 15.13
shows the arrangement of connections that you can set up with the ISE.

In this figure, you see that the ISE running on the local machine has three tabs
open: two tabs connected to one remote machine, and one local table and one remote
tab connected to machine 2. This illustrates the flexibility that the ISE provides,
allowing you to easily work with multiple machines from a single ISE instance.

At this point, you should have a pretty good understanding of the ISE from a user
perspective. In the next section, we’ll look at the object model, mentioned earlier in
section 15.2.2, and see how you can customize and extend the environment through
scripting. This mechanism will allow you to bind your favorite commands to menu
items and hotkey sequences.

15.3 EXTENDING THE ISE
The ISE provides a great many features, but there are always more features or tools
you can add to any development environment. Because of this, the ISE provides a sur-
prisingly easy-to-use (at least compared to a lot of other IDEs!) extension model that
allows you to add your own features to the environment.

15.3.1 The $psISE variable

All extensibility points are available through the $psISE variable. This makes the
object model easy to discover because you can use tab completion to navigate and

Local machine
Remote machine 1

Remote session 1
Tab 1: Remote

session

Tab 2: Remote
session

Remote session 2

Remote machine 2

Remote session 1

Tab 3: Local
session

Tab 4: Remote
session

Figure 15.13 In the PowerShell ISE, the user may have multiple tabs open. Each tab has a

session. Local tabs have local sessions, and remote tabs have remote sessions.
622 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Get-Member to explore the objects. Here’s what the output of Get-Member looks like
for this object:

PS (STA) (3) > $psISE | Get-Member -MemberType Property |
>>Format-List name,definition

Name : CurrentFile
Definition : Microsoft.PowerShell.Host.ISE.ISEFile CurrentFile {get;}

Name : CurrentPowerShellTab
Definition : Microsoft.PowerShell.Host.ISE.PowerShellTab
CurrentPowerShellTab {get;}

Name : Options
Definition : Microsoft.PowerShell.Host.ISE.ISEOptions Options {get;}

Name : PowerShellTabs
Definition : Microsoft.PowerShell.Host.ISE.PowerShellTabCollection
PowerShellTabs {get;}

Table 15.2 shows each of these properties and provides a brief description of their
purpose.

In the next few sections, we’ll walk through these members and explore the kinds of
things you can do with them. To help you orient your discovery, figure 15.14 pro-
vides a map showing the hierarchy of objects in the object model.

As we mentioned earlier, the most effective way to explore the contents of the
object model is to start with $psISE and use tab completion to step through the
properties. Let’s begin our exploration with the Options property.

Table 15.2 The top-level properties in the ISE object model

Name Description

CurrentFile This object represents the file shown in the current editor pane. With
this property, you can access the text in the buffer, save the file, and
so on.

CurrentPowerShellTab This gives you access to the tab currently in use—in other words, the
one where you’re typing your commands. Through this member, you
can access file objects for all the files open in this table, add custom
menu items, and so on.

Options We looked at some of the various options that can be set for the ISE
earlier in this chapter. Through the Options property, you can set
additional options as well as perform the customization you saw ear-
lier from a script.

PowerShellTabs This gives a list of all the tabs in the session. You can perform the
same operations from these tabs as you can for the current tab, but
work with all the tabs in the process.
EXTENDING THE ISE 623

15.3.2 Using the Options property

The Options property lets you set a number of ISE options that aren’t directly acces-
sible from the menus. Let’s use Get-Member to display the contents of this property:

PS (STA) (6) > $psISE.Options
SelectedScriptPaneState : Top
ShowToolBar : True
TokenColors : {[Attribute, #FFADD8E6],
[Command, #FF0000FF], [CommandArgument, #FF8A2B
 E2], [CommandParameter, #FF000080]...}
DefaultOptions : Microsoft.PowerShell.Host.ISE.ISEOptions
FontSize : 12
FontName : Lucida Console
ErrorForegroundColor : #FFFF0000
ErrorBackgroundColor : #00FFFFFF
WarningForegroundColor : #FFFF8C00
WarningBackgroundColor : #00FFFFFF

$psISE

CurrentFile

CurrentPowerShellTab

Options

PowerShellTabs

Editor

DisplayName

Encoding

FullPath

IsUntitled

CommandPane

CanInvoke

AddOnsMenu

DisplayName

ExpandedScript

Files

Prompt

StatusText

Output

Figure 15.14 The hierarchy of ob-

jects in the ISE object model. Using

these objects, you can extend and

customize the ISE environment.
624 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

VerboseForegroundColor : #FF0000FF
VerboseBackgroundColor : #00FFFFFF
DebugForegroundColor : #FF0000FF
DebugBackgroundColor : #00FFFFFF
OutputPaneBackgroundColor : #FFF0F8FF
OutputPaneTextBackgroundColor : #FFF0F8FF
OutputPaneForegroundColor : #FF000000
CommandPaneBackgroundColor : #FFFFFFFF
ScriptPaneBackgroundColor : #FFFFFFFF
ScriptPaneForegroundColor : #FF000000
ShowWarningForDuplicateFiles : True
ShowWarningBeforeSavingOnRun : False
UseLocalHelp : True
CommandPaneUp : False

You can see that a number of options correspond to the toolbar and menu items:
CommandPaneUp, ShowToolBar, and so on. There are also a number of new options
that let you set the colors of the various elements in the interface. You can control the
foreground and background colors of each of the panes, as well as change the colors
used to display tokens by assigning color values to these properties.

TIP Although the output from the Options property shows numeric
values for the color settings, you don’t have to use them when assigning
a value to the properties. You can use color names like red or blue in
assignments and the type converter will do the necessary work to con-
vert the string to the corresponding color value.

Through the Options property, you can write scripts that can automatically config-
ure the ISE the way you want. This stuff is pretty obvious, so we’ll move on to some-
thing a bit more exotic (and useful!).

15.3.3 Managing tabs and files

The top-level objects in the ISE are tabs, which in turn contain editor instances. To
get a list of the tabs, use the PowerShellTabs property. You can do this interactively
from the command pane. We’ll try setting up an ISE instance with the arrangement
of tabs as shown in figure 15.15.

Open the ISE, and press Ctrl-T to create a second session tab. Then, in the com-
mand pane, run the following command:

PS (STA) (13) > $psise.PowerShellTabs

DisplayName : PowerShell 1
AddOnsMenu : Microsoft.PowerShell.Host.ISE.ISEMenuItem
StatusText : Running script / selection. Press Ctrl+Break to stop.
ExpandedScript : True
Prompt : PS (STA) (13) >
CommandPane : Microsoft.Windows.PowerShell.Gui.Internal.CommandEditor
Output : Microsoft.Windows.PowerShell.Gui.Internal.OutputEditor
Files : {Untitled1.ps1*}
CanInvoke : False
EXTENDING THE ISE 625

DisplayName : PowerShell 2
AddOnsMenu : Microsoft.PowerShell.Host.ISE.ISEMenuItem
StatusText :
ExpandedScript : False
Prompt : PS (STA) (1) >
CommandPane : Microsoft.Windows.PowerShell.Gui.Internal.CommandEditor
Output : Microsoft.Windows.PowerShell.Gui.Internal.OutputEditor
Files : {}
CanInvoke : True

In the output from this command, you see the list of the tabs currently open in the
ISE. This output shows you the DisplayName of the tab, the current prompt value,
the text in the status line, and so on. In the PowerShell 1 session tab, where the com-
mand ran, you see the status of this tab is “running a script,” which, of course is the
command you just typed. Because it’s running a command, you also see that the Can-
Invoke property is false, indicating that this tab is busy executing a command. If you
look at the output for PowerShell 2, the status text is blank and the CanInvoke prop-
erty is true, indicating that there’s no command running in that tab.

Now let’s look at the methods on this session tab object. Because the output from
the previous command returned a collection, we’ll look at the second item (represent-
ing the tab you’re not currently using) with Get-Member:

PS (STA) (17) > $psISE.PowerShellTabs[1] | Get-Member -type method

 TypeName: Microsoft.PowerShell.Host.ISE.PowerShellTab

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()

Figure 15.15 This is the arrangement of panes in the ISE we’ll use in our examples.

In this case, the ISE has two tabs open and the current tab is labeled PowerShell 1.
626 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Invoke Method System.Void Invoke(scriptblock script)
ToString Method string ToString()

Notice that this object has an Invoke() method, which will invoke a command in
that tab. Let’s try it out. It takes a scriptblock as an argument, so use the Create()
method on [ScriptBlock] to compile the code you want to run:

PS (STA) (27) > $sb =[ScriptBlock]::Create('1..20 | %{sleep 1; Get-Date} ')

The scriptblock contains a number of calls to sleep (the alias for Start-Sleep) to
make sure it’s running long enough to see what’s going on. Let’s verify that you can
invoke your scriptblock in the other tab:

PS (STA) (28) > $psISE.PowerShellTabs[1].CanInvoke
True

Checking the CanInvoke property for that tab confirms that you can execute, so call
Invoke() on your scriptblock:

PS (STA) (30) > $psISE.PowerShellTabs[1].Invoke($sb)

The call to Invoke() starts the scriptblock executing in the other tab, then returns
immediately rather than waiting until the command finishes execution. Let’s check
the CanInvoke property again to verify that the command is running. This time you
expect the property to return false, and it does:

PS (STA) (31) > $psISE.PowerShellTabs[1].CanInvoke
False

Now switch to the PowerShell 2 tab and look at the output (figure 15.16).

Figure 15.16 This tab shows the output of our script. Although you started the script in

the first tab, it’s actually run in the second tab with the output displayed in that tab.
EXTENDING THE ISE 627

In the output pane of the PowerShell 2 tab, you see the results of the command you
ran. In effect, you’re using the second tab to do background processing. It’d be nice if
you could have a better name for this tab. You can use the DisplayName property on
the tab object to change it, as shown in figure 15.17.

Finally, you can put the pieces together into a function to automatically invoke a
scriptblock on the (Bkgn tasks) tab. The code for this function is shown in this listing.

function Invoke-InBackgroundTab
{
 param (
 [parameter(mandatory=$true)]
 $ScriptBlockToInvoke
)

 $bkgnTab = '(Bkgn tasks)'
 $tab = $null
 $needNewTab = $true
 foreach ($tab in $psISE.PowerShellTabs)
 {
 if ($tab.DisplayName -eq $bkgnTab)
 {
 $needNewTab = $false
 break
 }
 }

Figure 15.17 Changing the display name of the current tab to (Bkgn tasks)

Listing 15.1 The Invoke-InBackgroundTab function
628 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

 if ($needNewTab)
 {
 $tab = $psISE.PowerShellTabs.Add()
 $tab.DisplayName = $bkgnTab
 do {
 Start-Sleep -Milliseconds 200
 }
 while (-not $tab.CanInvoke)
 }
 if (! $tab.CanInvoke)
 {
 Write-Error `
 "Background tab is currently busy. Try again later"
 }
 $tab.Invoke($ScriptBlockToInvoke)
}
Set-Alias ibg Invoke-InBackgroundTab

First, this function searches for the target tab and, if it doesn’t exist, it creates a new
tab. When it finds the tab, if it’s not already busy, the scriptblock is invoked and the
output is shown in the target tab’s output pane.

This relatively simple example gives you an idea of how you can work with tabs.
You can perform sophisticated operations with very little code. In the next section,
we’re going to look at how to work with the elements inside a tab: the editor and
output panes.

15.3.4 Working with text panes

During script creation, you spend most of your time in the command and editor panes
and the results of executing commands are shown in the output pane. As was the case
with tabs, the ISE object model allows you to manipulate the contents of these panes
using scripts. Using this capability, you can add custom tools to extend the built-in set
of editor functions. Let’s start by exploring what you can do with the output pane.

Saving the output pane contents

In chapter 14, we discussed how you can use the transcript facility in the console host
to capture the output of your commands for later examination. The ISE doesn’t have
a corresponding transcript mechanism, but you can still copy the contents of the out-
put pane to a file. As before, you start with the $psISE variable to access the contents
of the output pane. Let’s use Get-Member to see what this looks like:

PS (STA) (94) > $psISE.CurrentPowerShellTab.Output |

 Get-Member -MemberType method,property

 TypeName: Microsoft.Windows.PowerShell.Gui.Internal.OutputEditor

Name MemberType Definition
---- ---------- ----------
Clear Method System.Void Clear()
EnsureVisible Method System.Void EnsureVisible(int lineNumber)

Creates background
tab if necessary

Runs only one
background task

Invokes
scriptblock
EXTENDING THE ISE 629

Equals Method bool Equals(System.Object obj)
Focus Method System.Void Focus()
GetHashCode Method int GetHashCode()
GetLineLength Method int GetLineLength(int lineNumber)
GetType Method type GetType()
InsertText Method System.Void InsertText(string text)
Select Method System.Void Select(int startLine, int
startColumn, int endLine, int endColumn)
SetCaretPosition Method System.Void SetCaretPosition(int lineNumber,
int columnNumber)
ToString Method string ToString()
CaretColumn Property System.Int32 CaretColumn {get;}
CaretLine Property System.Int32 CaretLine {get;}
LineCount Property System.Int32 LineCount {get;}
SelectedText Property System.String SelectedText {get;}
Text Property System.String Text {get;set;}

Looking at the members on this object, you see that there are members available to
select text in the pane, insert text, and so on. You’re looking for one specific member:
the Text property itself. This property gives you access to the full text in the output
pane, which you can save to a file by using redirection:

PS (STA) (22) > $psISE.CurrentPowerShellTab.Output.Text > output.txt

This command copies the contents of the output pane to a file called output.txt. You
can then use Notepad to look at this file:

PS (STA) (23) > notepad output.txt

The results of this command are shown in figure 15.18.

Figure 15.18 The contents of

the output buffer, which were

saved to a file on disk and then

opened in Notepad
630 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

We used Notepad to display this output rather than use the ISE so you can see both
the output and the contents of the saved file at the same time. Next, we’ll look at the
object model for the editor pane and see what you can do with that.

Making changes in the editor pane

You’ve seen how to save the contents of the output pane to a file, but you’re limited
in what you can do in this pane because it’s read-only. With the editor pane, you’re
also able to change the contents of the Text property. Let’s see how to do this by
working through an example where you’ll rename a variable in the editor buffer.
Your task will be to replace the $tab variable name in listing 15.1 with the more
descriptive $currentTab.

Assuming the listing is loaded in the current editor pane, let’s see how lines of the
function reference this variable. You can do so with the following command:

PS (STA) (110) > $psISE.CurrentFile.Editor.Text -split "`n" -match '\$tab'
 $tab = $null
 foreach ($tab in $psISE.PowerShellTabs)
 if ($tab.DisplayName -eq $bkgnTab)
 $tab = $psISE.PowerShellTabs.Add()
 $tab.DisplayName = $bkgnTab
 while (-not $tab.CanInvoke)
 if (-not $tab.CanInvoke)
 $tab.Invoke($ScriptBlockToInvoke)

In this command, because the text in the editor buffer is returned as a single file, you
use the -split operator to split the text at newline characters and then use the
-match operator to see the lines containing the pattern. To get a simple count, just
use this:

PS (STA) (111) > ($psISE.CurrentFile.Editor.Text -split "`n" `
>> -match '\$tab').Count
8

We’ll look at modifying the text in the editor using the object model next. However,
before we do that, let’s copy the text to another editor buffer. Direct updates to the
contents of the editor panes aren’t tracked by the normal undo mechanism, but by
making a copy, you’re providing your own “undo” mechanism in case something goes
wrong. First, get a reference to the current tab:

$curFile = $psISE.CurrentFile

You’ll use this to get at the contents of the editor. Create a new file tab and save the
result in the $newFile variable:

$newFile = $psISE.CurrentPowerShellTab.Files.Add()

When you run this command, the tab you just created will become the currently dis-
played file tab. Now you can use the reference to the original file tab to get the text
EXTENDING THE ISE 631

source text. Using the -replace operator, you can make the replacement and assign
the result to the Text property on the editor object in the new file tab:

$newFile.Editor.Text = $curFile.Editor.Text -replace '\$tab', '$currentTab'

This command will also set the new buffer to be the current buffer so you can see the
results of your operation.

Finally, if you want to set current file back to the original file, use this:

$psISE.CurrentPowerShellTab.Files.SetSelectedFile($curFile)

which changes the current file tab back to the original.
In the next section, we’ll look at an example where you work with both tabs and

editor panes to save the state of the ISE.

Saving the list of open files

With the ability to have multiple session tabs with multiple files open, you can end
up with a lot of files open, working on different parts of a project. Unfortunately, the
ISE doesn’t have a project mechanism to keep track of all these files. But now that you
know how to work with both session tabs and file tabs, you can write your own tool
to save a list of the files you’re working with. A function to do this is shown in the fol-
lowing listing.

$PathToSavedISEState =
 "~/documents/WindowsPowerShell/SavedISEState.ps1xml"
function Save-ISEState
{
 $state = foreach ($tab in $psISE.PowerShellTabs)
 {
 foreach ($file in $tab.Files)
 {
 if ($file.FullPath)
 {
 @{
 Tab = $tab.DisplayName
 DisplayName = $file.DisplayName
 FullPath = $file.FullPath
 }
 }
 }
 }
 $state | Export-Clixml $PathToSavedISEState
}

This function loops through all of the ISE tabs and then the files in each tab. For the
file tabs that have been saved (and therefore have a file path), the code builds a
hashtable containing the information you need to restore the tabs. This data is saved
to the target file using the CliXML format (essentially equivalent to the way remoting
serialization works).

Listing 15.2 A function that saves the list of currently open files in the ISE

Save list of files

Loop through
each file in tab

Use hashtable
for data
632 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Now you need a way to read the data back. This task turns out to be quite simple,
as shown by the following function:

function Get-SavedISEState
{
 Import-Clixml $PathToSavedISEState
}

Using the Import-Clixml cmdlet, you can re-create the collection of hashtables you
saved.

Reading the data isn’t as interesting as reloading the files, so the following listing
shows a function that does this as well.

function Restore-ISEState
{
 $tab = ""
 Import-Clixml $PathToSavedISEState |
 foreach {
 if ($_.Tab -ne $tab)
 {
 $targetTab = $psise.PowerShellTabs.Add()
 $tab = $_.Tab
 }
 $targetTab.Files.Add($_.FullPath)
 }
}

This function loads the data and then loops through the hashtables. If the name of
the target tab in the hashtable doesn’t match the current tab name, a new tab is cre-
ated and the file is added to the new tab. This isn’t a perfect solution—it always cre-
ates new tabs—but it shows how this type of operation can be performed.

So far, all of our ISE object model examples have required that you type com-
mands in the command pane to do things. In the next section, you’ll learn how to
speed things up by adding menu items and hotkeys to execute your extensions.

15.3.5 Adding a custom menu

In this section, you’ll see how to add custom menu items and hotkeys to the ISE. You
do so by accessing the AddOnsMenu property on the tab object:

$psise.CurrentPowerShellTab.AddOnsMenu

NOTE This property is associated with a specific tab. This means it
isn’t possible to add a custom menu item to all tabs through a single API
call. On the other hand, it means that different tabs can have different
custom menus, allowing for task-specialized tabs. Of course, if you do
want to add a menu item automatically to each tab, you can put the code
into your profile, which is run every time a new tab is created.

Listing 15.3 A function that restores the file tabs

Reload saved
hashtables

Add file to
current tab
EXTENDING THE ISE 633

Custom menu items are always added as submenus of the Add-ons menu. By default,
the Add-ons menu isn’t displayed until the first custom menu item is added. When
this happens, the menu will appear. Start by adding a simple menu item that just
prints some text to the output pane. The command to do this is

$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add("Say hello!",
 {Write-Host "Hello there"}, "Alt+s")

This command adds a submenu item with the name Say hello!, a scriptblock that
defines the action to take, and a hotkey sequence to invoke the item from the key-
board. Figure 15.19 shows what the added menu item looks like.

In this figure, you can see that executing this command returns the object repre-
senting this menu item. If you try to add another item with the same hotkey
sequence, you’ll get an error:

PS (STA) (26) > $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add(
 "Say hello!", {Write-Host "Hello there"}, "Alt+s")
Exception calling "Add" with "3" argument(s): "The menu 'Say hello!'
uses shortcut 'Alt+S', which is already
in use by the menu or editor functionality."
At line:1 char:52
+ $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add <<<<
("Say hello!", {Write-Host "Hello there"}, "Alt+s"
)
 + CategoryInfo : NotSpecified: (:) [],
MethodInvocationException
 + FullyQualifiedErrorId : DotNetMethodTargetInvocation

But you can add a second item with the same name as long as there’s no colliding hot-
key sequence associated with it:

PS (STA) (29) > $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add(
"Say hello!", {Write-Host "Hello there"}, $null)

Action DisplayName Shortcut Submenus
------ ----------- -------- --------
Write-Host "Hello there" Say hello! {}

Figure 15.19 When you add a custom menu item, it always appears under

the Add-ons menu. The first time a custom item is added, the Add-ons item

appears on the menu bar.
634 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Adding this second item adds another item to the menu instead of replacing the exist-
ing one, as you can see in figure 15.20.

Although you can’t modify an existing item, you can remove it and add a new
item to replace it. Items in the submenu collection can be accessed like an array:

PS (STA) (33) > $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus[0]

Action DisplayName Shortcut Submenus
------ ----------- -------- --------
Write-Host "Hello... Say hello! System.Windows.I... {}

This code returns the corresponding menu item, which you’ll need in order to
remove the item:

PS (STA) (36) > $mi = $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus[0]
PS (STA) (37) > $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Remove($mi)
True

In this example, first you retrieve the menu item and then pass that object to the
Remove()method. If you check the Add-ons menu item, you’ll see that the item has
been removed. If you want to remove all the items, run the following code:

foreach ($item in @($psISE.CurrentPowerShellTab.AddOnsMenu.Submenus))
{
 $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Remove($item)
}

This code gathers the collection of menu items to remove and then loops over the
collection, removing them one at a time.

Figure 15.20 The Add-ons menu can have more than one item with the

name caption. If you add a second item with the same caption, two items

with the same caption will be displayed, but you can’t have two items

with the same shortcut key.

Modifying collections

There’s a trick in this example that’s useful to know. You’d normally expect to be
able to use the Submenus collection directly in the foreach loop. A problem arises,
though, when you remove items from the collection you’re cycling through. This
occurs because the foreach statement uses a .NET enumerator to keep track of
where you are in the collection. If you remove an item from the collection, the enu-
EXTENDING THE ISE 635

A simpler way to remove all menu items is to call the Clear() method on the Sub-
menus collection:

$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()

But the looping solution is more general in that you can selectively remove menu
items by adding conditions to the body of the foreach statement.

Let’s make our example a little more sophisticated. Add some code to prompt the
user for a name to display. You can use the host object’s prompt function to do this:

$sb = {
 $name = Read-Host "Enter the name of the person to say hi to"
 Write-Host "Hello name!"
}
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add("Say hello!",
$sb, $null)

This code will cause a message box to be displayed, as you can see in figure 15.21.
The ability to prompt the user for input significantly increases what you can do

with your extensions. For example, you can add a search tool that wraps around when
it reaches the end of the editor buffer. But you can try that on your own. Right now,
we’ll move on to something else that’s also quite useful.

(continued)

merator won’t match the collection anymore. To avoid problems with inconsistency
in the collection, an error is raised.
To get around this problem, you need to create an intermediate collection of the sub-
menu items. In PowerShell, doing so is easy: simply use the @(...expres-
sion...) operator. This operator evaluates the expression it contains and returns a
new collection containing the results of that evaluation. Because the new collection
is a snapshot of the collection you’re changing, the problem goes away.

Figure 15.21 The prompt from the example menu item looks like this.
636 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Adding a file checker menu item

Let’s look at a more useful example. In chapter 14, you learned how to use the Power-
Shell tokenizer API to check a script for certain kinds of errors. This ability is pretty
handy in the ISE, so let’s add it as a menu item. The code for this appears in the fol-
lowing listing.

function Test-Buffer
{
 $text = $psISE.CurrentFile.Editor.Text
 $out=$null
 $tokens = [management.automation.psparser]::Tokenize($text, [ref] $out)
 $out | fl message, @{
 n="line";
 e = {
 "{0} char: {1}" -f $_.Token.StartLine, $_.Token.StartColumn
 }
 }
}
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add("Test Buffer",
 {Test-Buffer}, "Control+F5")

The code in listing 15.4 adds a custom menu item that will run the script-checking
code when you press Ctrl-F5 (as opposed to pressing F5, which actually runs the
script). This turns out to be a surprisingly handy feature. Although the ISE does syn-
tax highlighting, when there’s an error, it just stops the highlighting without showing
you the error. Using the extension you just added, you can find the syntax errors
without having to run the script.

A submenu for snippets

We’ll look at one final example where you create a custom nested menu. In this exam-
ple, you want to create a Snippets menu showing various PowerShell examples.
Because there are multiple items, you’ll add this as a submenu of the Add-ons menu.
The next listing shows the necessary code.

$snippetText = @'
if ($true) { "if-Part" } elseif { "elseif-Part" } else { "else-Part" }
while ($true) { Write-Host "in while loop" }
foreach ($i in 1..10) { $i; Write-Host "i is $i" }
for ($i=1; $i -lt 20; $i++) { $i }
function basicFunc ($p1, $p2) { $p1 + $p2 }
'@ -split "`n"

$addOns = $psISE.CurrentPowerShellTab.AddOnsMenu
$snippets = $addOns.Submenus.Add("snippets", $null, $null)

Listing 15.4 Script code that adds a syntax checker to the ISE

Listing 15.5 Adding a Snippets menu

Define snippets

Split on
newlines

Add top-level
Snippets menu
EXTENDING THE ISE 637

foreach ($snip in $snippetText)
{
 [void] $snippets.SubMenus.Add($snip, {
 $psise.CurrentFile.Editor.InsertText($snip)
 }.GetNewClosure(),
 $null)
}

Most of this function is straightforward. You use a here-string to define the snippets
and then split it into individual lines with the -split operator. Then you define a
top-level Snippets menu that has no action and add each line as a submenu of the
top-level menu. The one somewhat unusual thing is the use of a closure (see chapter
11) and then defining the action. This closure captures the value of the $snip vari-
able so the code to insert the text is very simple.

In the first part of this chapter, we introduced the ISE and spent a fair amount of
time on how to customize the ISE using the object model. Having a more modern
environment like the ISE makes scripting in PowerShell much easier, but the biggest
advantage is the integrated debugger. Through the remainder of this chapter, we’ll
look at how to use the debugging feature built into the ISE to debug your scripts.
You’ll also see how to use the debugger from the command line and the additional
features it has to offer. Combined, the ISE and debugger provide powerful tools for
debugging scripts in a variety of environments.

15.4 POWERSHELL SCRIPT DEBUGGING FEATURES

This section covers the various tools and techniques for debugging PowerShell scripts.
PowerShell v1 didn’t include a debugger but did have some limited tracing capabilities.
Version 2 introduced a much more comprehensive debugger along with graphical
debugging support in the ISE. We’ll start by looking at the limited (but still useful) trac-
ing features carried over from v1. Then you’ll learn how to debug from the ISE. Finally,
you’ll see the command-line debugger and the additional capabilities it has to offer.

15.4.1 The Set-PSDebug cmdlet

In chapter 14, we introduced the Set-PSDebug cmdlet and talked about using it to
set the PowerShell v1 strict mode. In this section, we’ll cover the remaining features,
tracing and stepping through scripts, that this cmdlet offers. The syntax for this com-
mand is shown in figure 15.22.

The details of each of these features are covered in the following sections.

Add each line
as submenu

Use closure to
capture text

Set-PSDebug [-Trace <Int32>] [-Step] [-Strict]

Set-PSDebug -Off

Set script tracing level:

0 = off, 1 = basic, 2 = full

Turn on strict mode

(see chapter 14)
Turn on stepping

Turn off all

debugging features

Figure 15.22 The Set-PSDebug
cmdlet parameters. This cmdlet can

be used to enable tracing and step-

ping through an executing script.
638 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Tracing statement execution

You turn on basic script tracing as follows:

PS (1) > Set-PSDebug -Trace 1

In this trace mode, each statement executed by the interpreter will be displayed on
the console as shown:

PS (2) > 2+2
DEBUG: 1+ 2+2
4
PS (3) > $a=3
DEBUG: 1+ $a=3
PS (4) > pwd
DEBUG: 1+ pwd

Path

C:\files

The debugging output is prefixed with the DEBUG: tag and is typically shown in a dif-
ferent color than normal text. Note that the entire script line is displayed. This means
that if you have a loop all on one line, you’ll see the line repeated:

PS (5) > foreach ($i in 1..3) {"i is $i"}
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
i is 1
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
i is 2
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
i is 3

In this example, you see the line repeated four times: once for evaluating the expres-
sion 1..3 in the foreach loop and then once for each iteration of the loop, for a
total of four times. This is a good reason, even though PowerShell doesn’t require it,
to write scripts with one statement per line: it can help with debugging, both when
tracing and when using the debugger to set breakpoints.

Basic tracing doesn’t show you any function calls or scripts you’re executing. First,
define a function foo:

PS (6) > function foo {"`$args is " + $args}
DEBUG: 1+ function foo {"`$args is " + $args}

And run it in a loop:

PS (7) > foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 1
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ function foo {"`$args is " + $args}
POWERSHELL SCRIPT DEBUGGING FEATURES 639

$args is 2
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 3

In this output, you can only see the line that’s being executed. You don’t see when you
enter the actual function. To get this extra information, you need to turn on full tracing:

PS (8) > Set-PSDebug -Trace 2
DEBUG: 1+ Set-PSDebug -Trace 2

In this mode, you also see the function calls:

PS (9) > foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 1
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 2
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 3

In addition to function calls, full tracing adds to the display by showing variable
assignments. Let’s redefine the function so that it performs a variable assignment.
We’ll split it across multiple lines so the trace is a bit clearer:

PS (10) > function foo {
>> $x = $args[0]
>> "x is $x"
>> }
>>
DEBUG: 1+ function foo {

And run it again:

PS (11) > foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 2+ $x = $args[0]
DEBUG: ! SET $x = '1'.
DEBUG: 3+ "x is $x"
}
x is 1
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 2+ $x = $args[0]
DEBUG: ! SET $x = '2'.
DEBUG: 3+ "x is $x"
640 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

}
x is 2
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 2+ $x = $args[0]
DEBUG: ! SET $x = '3'.
DEBUG: 3+ "x is $x"
}
x is 3

You can see that for each iteration in the loop, tracing shows the following:

• Loop iteration

• Function call

• Statement doing the assignment

• Actual assignment to $x, including the value assigned

• Statement that emits the value

The value displayed is the string representation of the object being assigned, trun-
cated to fit in the display. It depends on the ToString() method defined for that
object to decide what to display. This isn’t always as useful as you’d like. For example,
with the hashtable

PS (12) > $a = @{x=1; y=2}
DEBUG: 1+ $a = @{x=1; y=2}
DEBUG: ! SET $a = 'System.Collections.Hashtable'.

it shows you the type of the object, but nothing about its actual value. For arrays and
other collections, it shows you a truncated representation of the elements of the list.
So, for an array of 100 numbers, you see this:

PS (13) > $a = 1..100
DEBUG: 1+ $a = 1..100
DEBUG: ! SET $a = '1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 18 19 20 21 22 23...'.

Overall, script tracing is pretty effective, but sometimes you still need to add calls to
Write-Host to your script to help with debugging, as we mentioned in chapter 14.

Debugging scripts run by other people

The other thing we mentioned in chapter 14 was the transcript capability. Transcripts
combined with tracing provide a valuable tool to help with debugging scripts that are
being run by other people in your organization. By capturing the trace output in a
transcript file, you can get a much better idea of what a script is doing in the other
user’s environment.
Tracing is also valuable in debugging remote scripts where you can’t use the ISE
debugger, as you’ll see later in this chapter.
POWERSHELL SCRIPT DEBUGGING FEATURES 641

Stepping through statement execution

The next debugging feature we’ll look at is the mechanism that PowerShell provides
for stepping through a script.

NOTE Like the tracing mechanism, this stepping feature is also a car-
ryover from PowerShell v1. It’s largely subsumed by the ISE debugger,
but there are some advanced scenarios, such as debugging dynamically
generated code, where it’s still very useful. For example, if you use
[ScriptBlock]::Create() to dynamically generate a scriptblock,
you can’t set a breakpoint because you don’t have a line number in a
file to use to set the breakpoint. More on this later.

You turn stepping on by calling the Set-PSDebug cmdlet with the -Step parameter:

PS (14) > Set-PSDebug -Step
DEBUG: 1+ Set-PSDebug -Step

Rerun the foreach loop and take a look at the prompt that’s displayed:

PS (15) > foreach ($i in 1..3) {foo $i}

Continue with this operation?
 1+ foreach ($i in 1..3) {foo $i}
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 1+ foreach ($i in 1..3) {foo $i}

Continue with this operation?
 1+ foreach ($i in 1..3) {foo $i}
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'

Continue with this operation?

The interpreter displays the line to be executed, then asks the user to select Yes, Yes to
All, No, or No to All. The default is Yes.

If you answer Yes, that line will be executed and you’ll be prompted as to whether
you want to execute the next line. If you answer Yes to All, then step mode will be
turned off and execution will continue normally. If you answer either No or No to
All, the current execution will be stopped and you’ll be returned to the command
prompt. There’s no difference in the behavior between No and No to All. The fol-
lowing shows the message you’ll see if you enter No:

Continue with this operation?
 2+ $x = $args[0]
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 2+ $x = $args[0]
642 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

DEBUG: ! SET $x = '2'.
Continue with this operation?
 3+ "x is $x"
}
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): l
WriteDebug stopped because the DebugPreference was 'Stop'.
At line:1 char:23
+ foreach ($i in 1..3) {f <<<< oo $i}
PS (16) >

There’s one more option in the stepping list that we haven’t talked about yet: Sus-
pend. This option is interesting enough to cover in its own section.

15.4.2 Nested prompts and the Suspend operation

One of the most interesting aspects of dynamic language environments is that a script
can recursively call the interpreter. You’ve already seen this with the Invoke-Expres-
sion cmdlet in chapter 11. A variation is to recursively call the interpreter interactively.
This means that you are, in effect, suspending the currently running command and
starting a new nested session. This sequence of events is illustrated in figure 15.23.

In the figure, you see that the user makes a call to the engine using the interfaces
provided by the host application. In this case, instead of returning to the caller, the
engine calls back to the host indicating that it should enter a nested-prompt mode.
While in nested-prompt mode, because the original command pipeline is still active
(the engine never returned to the host), the host must now use nested pipelines to exe-
cute commands. This continues until the engine calls the Exit() API, usually in
response to a request from the user, and the host can resume the original pipeline.

The net effect of all this is that you can suspend the currently executing PowerShell
pipeline and interact with PowerShell at the nested prompt. Why is this interesting?

PowerShell

host

application

Host invokes pipeline that suspends execution

Engine calls EnterNestedPrompt ()

PowerShell

engine

Host invokes nested pipelines

Engine calls Exit()

Host sends exit command to engine

Host resumes non-nested pipeline calls

Figure 15.23 Suspending execution and entering a nested prompt requires oper-

ations on both the host and engine sides of the session.
POWERSHELL SCRIPT DEBUGGING FEATURES 643

Because this allows you to examine and modify the state of the suspended session sim-
ply by using the regular PowerShell commands you’re used to. Instead of creating a
whole new language just for debugger operations, you use the same language you’re
debugging. This feature is the core of all of the debugging capabilities in PowerShell.

There are a couple ways to enter a nested-prompt session, as you’ll see in the next
two sections.

Suspending a script while in step mode

Creating a nested interactive session is what the Suspend operation prompt shown
during stepping does. Let’s try it out. First, turn on stepping:

PS (1) > Set-PSDebug -Step

Then run a statement that should loop 10 times, printing out the numbers from 1 to 10:

PS (2) > $i=0; while ($i++ -lt 10) { $i }

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"):
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }

You’ll see all of the intermediate blather. Keep stepping until the first number is dis-
played:

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"):
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"):
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }
1

At this point, use the Suspend operation to suspend stepping. When prompted,
respond by typing s followed by Enter instead of just pressing Enter:

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }
1

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): s
1>> PS (3) >
644 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

You immediately receive a new prompt. Notice that the prompt has changed to indi-
cate that you’re now working in a nested prompt, or subshell.

NOTE The way to tell when you’re in nested-prompt mode is to
check the $NestedPromptLevel variable. If you’re in a nested
prompt, this variable will be greater than 0.

In this nested prompt, you can do anything you’d normally do in PowerShell. In this
case, you want to inspect the state of the system. For example, let’s check to see what
the variable $i is set to. Because the last statement executed was $i++ and the printed
value for $i was 1, the value should be 2:

1>> PS (4) > $i
2

In fact, it is. But you’re not limited to inspecting the state of the system: you can
change it. In this case, let’s make the loop end early by setting the value to something
larger than the terminating condition. Set it to 100:

1>> PS (5) > $i=100
1>> PS (6) > $i
100

Now exit the nested-prompt session with the normal exit statement. This returns you
to the previous level in the interpreter where, because you’re stepping, you’re prompted
to continue. Respond by typing a followed by Enter for [A] Yes to All to get out
of step mode:

1>> PS (7) > exit

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): a
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }
100

There are two things to notice here: the loop terminates, printing only one number,
and that value is the value you set $i to, which is 100. Check one more time to verify
that $i is 100:

PS (8) > $i
100

Using the Suspend feature, you can stop a script at any point and examine or modify
the state of the interpreter. You can even redefine functions in the middle of execu-
tion (although you can’t change the function that’s currently executing). This makes
for a powerful debugging technique, but it can be annoying to use stepping all the
time. This is where having a real debugger makes all the difference. But before we get
to that, there’s one more thing you need to look at: the mechanics of how a break-
point works.
POWERSHELL SCRIPT DEBUGGING FEATURES 645

Creating a breakpoint command

In section 14.3.1, we looked at the $host variable and talked about how you can use
it to write your debugging messages. The $host variable has another method that can
be used for debugging called EnterNestedPrompt(). This is the method we men-
tioned earlier when we looked at the stepping feature on Set-PSDebug. Using this
method, you can start a nested session at any point you want, and that point can be
used approximately like a breakpoint. (Don’t worry, there are real breakpoints—we’ll
get there.) To cause your script to break, you insert a call to EnterNestedPrompt()
at the desired location and, when it’s hit, a new interactive session starts. Let’s try it
out. You’ll execute a loop that counts from 0 to 9. In this loop, when the loop
counted is equal to 4, you’ll call EnterNestedPrompt():

PS (1) > for ($i=0; $i -lt 10; $i++)
>> {
>> "i is $i"
>> if ($i -eq 4) {

When execution gets to this point, you’ll output the string “*break*” and then enter a
nested-prompt level:

>> "*break*"
>> $host.EnterNestedPrompt()
>> }
>> }
>>
i is 0
i is 1
i is 2
i is 3
i is 4

Now $i is equal to 4, so you hit the breakpoint code. As in the stepping case, you can
examine and change the state of the interpreter

break
1>> PS (2) > $i
4
1>> PS (3) > $i=8

and use exit to resume the top-level execution thread:

1>> PS (4) > exit
i is 9
PS (6) >

Let’s see how you can use this feature to create a breakpoint command. Once again,
you’ll take advantage of scriptblocks to add a way to trigger the breakpoint based on a
particular condition:

PS (1) > function bp ([scriptblock] $condition)
>> {
>> if ($condition)
>> {
646 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

>> if (. $condition)
>> {

If the $condition parameter to bp is not null, evaluate it. If it evaluates to $true,
then execute the breakpoint and enter a nested-shell level:

>> $host.UI.WriteLine("*break*")
>> $host.EnterNestedPrompt()
>> }
>> } else {
>> $host.UI.WriteLine("*break*")
>> $host.EnterNestedPrompt()
>> }
>> }
>>
PS (2) > for ($i=0; $i -lt 10; $i++)
>> {
>> . bp {$i -eq 5}

Here you’re inserting a breakpoint that will cause execution to break when $i is equal
to 5. Note that you’re dot-sourcing the bp function. This is because you want it to be
executed in the current scope, allowing you to change the state of the loop variable:

>> "`$i is $i"
>> }
>>
$i is 0
$i is 1
$i is 2
$i is 3
$i is 4
break

You hit the breakpoint. Increment the loop variable so that 5 is never displayed, and
exit the nested-prompt level and resume execution:

1>> PS (3) > $i++
1>> PS (4) > exit
$i is 6
$i is 7
$i is 8
$i is 9
PS (5) >

The loop exits, never having printed 5.
Now that you have a basic idea of how the debugging environment works, let’s

move on to the main event and look at debugging from the ISE.

15.5 THE POWERSHELL V2 DEBUGGER

With PowerShell v2, a powerful new debugger was added to the product. In this sec-
tion, we’ll start with how to use the debugger from the ISE and then move on to what
you can do with command-line debugging.
THE POWERSHELL V2 DEBUGGER 647

15.5.1 The graphical debugger

As you’ve seen, the ISE provides an integrated environment for editing and running
scripts. It’s also the easiest and frequently most effective way to debug scripts. This is
because the integrated debugger makes it easy to see where you are and what’s going
on in your scripts. The major debugging features can be found in the Debug menu,
shown in figure 15.24.

If you’ve used Microsoft Visual Studio, you should notice that the keyboard
shortcuts are the same as the Visual Studio debugger. A description for each of these
menu items is shown in table 15.3.

Table 15.3 Menu items in the ISE Debug menu

Menu item Key Command equivalent Description

Step Over F10 V (Step-Over) Step over the current function call rather
than stepping into the function.

Step Into F11 S (Step-Into) Step the script, stepping into functions
and scripts as they’re encountered.

Step Out Shift-F11 O (Step-Out) Execute script lines until the end of the
current function has been reached.

Run/Continue F5 C (Continue) If no command is running, the contents
of the current editor buffer are exe-
cuted. If the interpreter is paused at a
breakpoint, execution will resume.

Stop
Debugger

F5 Q (Stop) Stop debugging session and the script
being debugged.

Figure 15.24 The debug menu options allow you to set breakpoints and step through your

script, line by line.
648 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Table 15.3 shows the menu item name, the keyboard shortcut if one’s available, and the
description of the corresponding functionality. What’s a bit unusual for a graphical
debugger is that the table also lists command-line equivalents to the menu functional-
ity. In fact, there are two types of command equivalents: an actual cmdlet that can be
called at any time and special single-character shortcut commands that can only be
used while debugging a script. We’ll walk through an example to see how this all works.

Debugging a script

In this example, you’re debugging a trivial script that just outputs numbers. You want
to put a breakpoint on line 4, so you move the cursor to line 4 and press F9. The line
will be highlighted in red, indicating that there’s a breakpoint set on that line.
Remember that the debugger only works on scripts so you have to save the buffer to a
file first. Once that’s done, press F5 to begin (if the script had been modified since the
last save, you’d also be prompted to save it before execution begins). Execution pro-
ceeds, outputting numbers until line 4 in the script is hit and the breakpoint triggers.
At this point, the line where the breakpoint was hit is highlighted in yellow and the
command pane displays the debugging prompt, as shown in figure 15.25.

When the debugging prompt is displayed, that means the special debug
mode–only commands are now available.

Toggle
Breakpoint

F9 Set-PSBreakpoint,
Remove-PSBreakpoint

If there’s no breakpoint on the current
line, then one will be added. If there’s a
breakpoint, then it will be removed.

Remove All
Breakpoints

Ctrl-Shift-F9 Remove-PSBreakpoint All breakpoints that are set in the cur-
rent session (current tab) will be
deleted. Breakpoints in other tabs are
unaffected.

Enable All
Breakpoints

n/a Enable-PSBreakpoint All breakpoints in the current session
(tab) are enabled. If a breakpoint is cur-
rently enabled, it will remain active. If a
breakpoint is disabled, it will be
enabled.

Disable All
Breakpoints

n/a Disable-PSBreakpoint All existing breakpoints in the current
session (tab) are left in place but dis-
abled. They may be re-enabled at a later
time.

List-
Breakpoints

Ctrl-Shift-L Get-PSBreakpoint List all defined breakpoints in the cur-
rent session (tab).

Display Call
Stack

Ctrl-Shift-D Get-PSCallStack After a breakpoint has been hit, this
command will let you see all the func-
tions or scripts that were called to get
you to where you are.

Table 15.3 Menu items in the ISE Debug menu (continued)

Menu item Key Command equivalent Description
THE POWERSHELL V2 DEBUGGER 649

NOTE Earlier we said that because of the way debugging works in
PowerShell, you don’t need a new language. This is definitely
true—but you do need some convenience aliases; otherwise, things are
too verbose to use easily. That’s what you’re seeing here.

For example, to step the next line, you could either type the command s or Step-Over
or use the Debug > Step Over menu item. Regardless of how you enter the command,
the line where you’d hit the breakpoint is executed and then breaks at the next line in
the script. This line is now highlighted in yellow. The previous line is highlighted in red
because it has an actual breakpoint on it, as you can see in figure 15.26.

Command prompt changes to indicate debugging

mode; special debugger commands now active

Breakpoint on line

4 hit: relevant line

highlighted in

editor pane

Output pane

shows output of

script so far

(numbers 1, 2, 3)

and message

indicating

breakpoint has

been hit

E
d

it
o

r

p
a

n
e

O
u

tp
u

t

p
a

n
e

C
o

m
m

a
n

d

p
a

n
e

Figure 15.25 The command pane changes once a breakpoint has been hit. The prompt is pre-

fixed with >> to indicate that you’re debugging and the debugger commands are enabled.

When Step-Over

command issued,

highlight moves to

next statement

Output pane shows

updated output, including

4 from line with

breakpoint, and displays

message indicating

breakpoint was hit

E
d

it
o

r

p
a

n
e

O
u

tp
u

t

p
a

n
e

C
o

m
m

a
n

d

p
a

n
e

Figure 15.26 The command pane changes once a breakpoint has been hit. The prompt is pre-

fixed with >> to indicate that you’re debugging and the debugger commands are enabled.
650 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

The full set of debugger shortcut commands is shown in table 15.4.

Executing other commands in debug mode

If you look at the various tables so far, there’s clearly something missing. Knowing
where you are is great, but you need more for effective debugging. You need to be
able to examine variables, change their values, look at functions, and so on. The solu-
tion turns out to be simple: for the most part, you can just use the same cmdlets
you’ve used all along. To see a variable, use Get-Variable; to change a variable, use
assignment or the Set-Variable command. Debug mode just adds some new com-
mands to the environment; all of the existing commands are still available so you have
the full power of PowerShell available in this environment.

Table 15.4 The special commands that are available in debug mode

Command Full name Description

V Step-Over Step over the current function call rather than stepping
into the function.

S Step-Into Step through the script, stepping into functions and
scripts as they’re encountered.

O Step-Out Execute script lines until the end of the current function
has been reached.

C Continue If no command is running, the contents of the current
editor buffer are executed. If the interpreter is paused at
a breakpoint, execution will resume.

L [<m> [<n>]] List List the portion of the script around the line where
you’re currently stopped. By default, the current line is
displayed, preceded by the 5 previous lines, and then
followed by the 10 subsequent lines. To continue listing
the script, press the Enter key. The List command can
be optionally followed by a number specifying the
number of lines to display before and after the current
line. If two numbers are specified, the first number is
the number of preceding lines and the second is the
number of following lines.

Q Stop Stop execution, which also stops the debugger.

K Get-PSCallStack Display up to the current execution point. This com-
mand isn’t specific to debug mode and may be used
anywhere.

<Enter> Pressing the Enter key on an empty line repeats the last
S, V, or L command entered. This makes it easy to con-
tinue stepping or to list the script.

?, h Display all the special debugger commands in the
output pane.
THE POWERSHELL V2 DEBUGGER 651

Hovering over variables to see their values

Some users don’t want to type a command to look at variables, so like Visual Studio,
the ISE allows you to hover the mouse pointer over a variable to see its value. Simply
place the mouse pointer over the variable you want to see in the editor and its value
will be displayed. Figure 15.27 shows what this looks like.

Note that there is one caveat: if the script isn’t running, then the variable won’t
have a value. Or, more confusingly, if there’s another variable in an active scope with
the same name, you’ll see that value rather than the one you were expecting. This is
one of the tricky aspects of dynamically scoped environments.

NOTE By now you may have noticed that you aren’t passing parame-
ters to the scripts you’re running. In fact, when you run a script by
pressing F5 or using the menu, you have no way to specify parameters
to the script you’re about to run. The workaround is to run the script
from the ISE command line where you can specify parameters.

Because PowerShell is a shell, you also have to be able to debug directly from the
command line, which is our next topic.

15.6 COMMAND-LINE DEBUGGING

Given the nature of the PowerShell environment, you need to support debugging in a
variety of environments. The most effective way to do this is to enable debugging
scripts from the command line. This makes it possible to use the debugger from the
console host as well. As always, these debugging features are surfaced through a set of
cmdlets. The cmdlets are listed in table 15.5.

Figure 15.27 When the mouse pointer is placed over the variable, the variable’s

value is displayed in a tooltip.
652 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Command-line debugging is also important for another reason: there are many more
things you can do using these cmdlets, including writing scripts to debug scripts. In
other words, all of the features you’ve seen in the GUI debugger are available from the
command line, but not all of the command-line features are available from the GUI.

NOTE There is, of course, no deep technical reason why this is so.
Using the ISE object model, it’s possible to backfill many of the miss-
ing features.

In fact, the GUI debugger only surfaces a portion of the functionality of what can be
done with the PowerShell debugger. In the next few sections, we’ll dig into these
capabilities.

15.6.1 Working with breakpoint objects

Let’s begin our discussion by taking a detailed look how breakpoints are imple-
mented. So far you’ve seen a fairly conventional debugger experience, but the intro-
spective nature of PowerShell allows you to do much more when working with
breakpoints. As with most everything else, breakpoints in PowerShell are objects that
you can script against. As always, you’ll use Get-Member to examine these objects:

PS (STA) (42) > Get-PSBreakPoint | Get-Member

 TypeName: System.Management.Automation.LineBreakpoint

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Action Property System.Management.Automation.ScriptBlock Action

{get;}
Column Property System.Int32 Column {get;}
Enabled Property System.Boolean Enabled {get;}
HitCount Property System.Int32 HitCount {get;}
Id Property System.Int32 Id {get;}
Line Property System.Int32 Line {get;}
Script Property System.String Script {get;}

Table 15.5 The PowerShell debugger cmdlets

Cmdlet Description

Get-PSCallStack Gets the current call stack

Enable-PSBreakPoint Enables an existing breakpoint

Disable-PSBreakPoint Disables a breakpoint without removing it

Set-PSBreakPoint Sets a breakpoint

Get-PSBreakPoint Gets the list of breakpoints

Remove-PSBreakPoint Removes an existing breakpoint
COMMAND-LINE DEBUGGING 653

In this output, you see some familiar bits of information: the breakpoint ID and the
line and script where it applies. Much more interesting are things like HitCount and
especially the Action property.

The HitCount property records the number of times a breakpoint has been
hit—not terribly interesting but useful sometimes. The really interesting property is
Action, which holds instances of our old friend the scriptblock. By specifying
actions in scriptblocks, breakpoints can do much more than simply interrupting exe-
cution when the breakpoint is hit. Using scriptblocks allows you to perform arbitrary
actions controlling when or even if the breakpoint fires. Let’s see how this works with
a simple test script:

PS (1) > Get-Content testscript2.ps1
"Starting"
$sum = 0
foreach ($i in 1..10)
{
 $sum += $i
}
"The sum is $sum"

This script loops over the numbers from 1 to 10, summing them up and then print-
ing the result. Now define a breakpoint for this script using the Set-PSBreakPoint
command:

PS (2) > $firstBP = Set-PSBreakpoint -Script testscript2.ps1 -Line 5 `
>> -Action {
>> if ($i -gt 3 -and $i -lt 7)
>> {
>> Write-Host ">>> DEBUG ACTION: i = $i, sum = $sum"
>> }
>> }
>>

This command specifies that a scriptblock will be executed every time you hit line 5
in the test script. In the body of the scriptblock, you’re checking to see if the value of
$i is greater than 3 and less than 7. If so, you’ll display a message. You have to use
Write-Host to display this message because the results of the scriptblock aren’t dis-
played. The Set-PSBreakpoint command returns an instance of a breakpoint
object. Let’s display it as a list so you can see its members:

PS (3) > $firstBP | Format-List

Id : 1
Script : C:\wpia_v2\text\chapter15\code\testscript2.ps1
Line : 5
Column : 0
Enabled : True
HitCount : 0
Action :
 if ($i -gt 3 -and $i -lt 7)
 {
654 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

 Write-Host ">>> DEBUG ACTION: i = $i, sum = $sum"
 }

This code shows the full path to the script and the line in the script that will trigger
the action as well as the action itself. Run the test script to see how it works:

PS (4) > ./testscript2.ps1
Starting
>>> DEBUG ACTION: i = 4, sum = 6
>>> DEBUG ACTION: i = 5, sum = 10
>>> DEBUG ACTION: i = 6, sum = 15
The sum is 55

The output shows the value of $i and $sum as long as $i is between 3 and 7 as
intended.

Before we move on to the next example, remove all of the breakpoints so they
don’t confuse the results in the example:

PS (5) > Get-PSBreakpoint | Remove-PSBreakpoint

This time, instead of just displaying a message, you’re going to use the break key-
word to break the script under specific conditions. Here’s the command to define the
new breakpoint:

PS (6) > $firstBP = Set-PSBreakpoint -Script testscript2.ps1 -Line 5 -
Action {
>> if ($i -eq 4)
>> {
>> Write-Host ">>> DEBUG ACTION: i = $i, sum = $sum"
>> break
>> }
>> }
>>

For this breakpoint, you’ll only fire the action on line 5 of the test script. In the
scriptblock body, you display the message as before and then call break, which will
break the execution of the script:

PS (7) > ./testscript2.ps1
Starting
>>> DEBUG ACTION: i = 4, sum = 6
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on
'C:\wpia_v2\text\chapter15\code\testscript2.ps1:5'

testscript2.ps1:5 $sum += $i

As was the case in the graphical debugger, you have the same set of options available
at the break prompt:

PS (8) > ?
 s, stepInto Single step (step into functions, scripts, etc.)
 v, stepOver Step to next statement (step over functions, scri
COMMAND-LINE DEBUGGING 655

pts, etc.)
 o, stepOut Step out of the current function, script, etc.
 c, continue Continue execution
 q, quit Stop execution and exit the debugger

 k, Get-PSCallStack Display call stack

 l, list List source code for the current script.
 Use "list" to start from the current line, "list <m>"
 to start from line <m>, and "list <m> <n>" to list <n>
 lines starting from line <m>
 <enter> Repeat last command if it was stepInto, stepOver or list
 ?, h Displays this help message

For instructions about how to customize your debugger prompt, type
"help about_prompt".

You’ll use the c command to continue execution:

PS (9) > c
The sum is 55

The completed script displays the sum. And, as before, clean up the breakpoint:

PS (10) > Get-PSBreakpoint | Remove-PSBreakpoint

Now, let’s move on to the next example.

15.6.2 Setting breakpoints on commands

The most common scenario using the debugger involves setting breakpoints on lines
in a file, but it’s also possible to break on a specific command. Define a simple function

PS (15) > function hello { "Hello world!" }

and set a breakpoint on that function:

PS (16) > Set-PSBreakpoint -Command hello

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 hello

This time you won’t associate an action and you’ll allow the default behavior—caus-
ing a break in execution—to occur. Execute the function:

PS (17) > hello
Entering debug mode. Use h or ? for help.

Hit Command breakpoint on 'hello'

hello

When the command is run, you immediately hit the breakpoint. Enter c and allow
the function to complete:

PS (18) > c
Hello world!
656 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

Among other things, the ability to set breakpoints on commands as opposed to spe-
cific lines in a script allows you to debug interactively entered functions. Now let’s
move on to the final example in this section: setting breakpoints on variables.

15.6.3 Setting breakpoints on variable assignment

In the previous examples, the breakpoints were triggered when execution reached a
certain line in the script or you entered a command. You can also cause a break when
variables are read or written. In the following command, you’ll specify an action to
take when the $sum variable is written:

PS (12) > $thirdBP = Set-PSBreakpoint -Variable sum -Mode Write `
>> -Action {
>> if ($sum -gt 10)
>> {
>> Write-Host ">>> VARIABLE sum was set to $sum"
>> }
>> }
>>

For this breakpoint, you’re using -Mode Write to specify that the breakpoint should
only trigger when the variable is written. In practice, this could have been omitted
because Write is the default mode (the other modes are Read and ReadWrite). Then
in the action scriptblock, you’ll use Write-Host as before to display the value of
$sum, but only when it’s greater than 10. Let’s see what this breakpoint looks like:

PS (13) > $ thirdBP | Format-List

Id : 3
Variable : sum
AccessMode : Write
Enabled : True
HitCount : 0
Action :
 if ($sum -gt 10)
 {
 Write-Host ">>> VARIABLE sum was set to $sum"
 }

You see the line, variable, and access mode that will trigger the action and the script-
block to execute when triggered. Run the test script:

PS (14) > ./testscript2.ps1
Starting
>>> VARIABLE sum was set to 15
>>> VARIABLE sum was set to 21
>>> VARIABLE sum was set to 28
>>> VARIABLE sum was set to 36
>>> VARIABLE sum was set to 45
The sum is 55
COMMAND-LINE DEBUGGING 657

You see the output messages from the action scriptblock. One of the nice things is
that a variable-based breakpoint isn’t tied to a specific line number in the script so it
will continue to work even when you edit the script.

Although these examples are by no means exhaustive, they give you a sense of the
capabilities of the PowerShell command-line debugger. You’re able to do much more
sophisticated debugging from the command line. But even for the command line,
there are a number of limitations to the debugging capabilities. We’ll look at these
limitations in the final section in this chapter.

15.6.4 Debugger limitations and issues

The PowerShell debugger, though powerful, does suffer from a number of limita-
tions. Probably the biggest limitation is that remote debugging isn’t currently sup-
ported. Even in an interactive remoting session, the debugger won’t work:

[localhost]: PS (1) > Set-PSBreakpoint -Script `
>> testfile2.ps1 -Line 5
Debugging is not supported on remote sessions.
 + CategoryInfo :
 + FullyQualifiedErrorId : SetPSBreakpoint:RemoteDebuggerNotSuppo
 rted,Microsoft.PowerShell.Commands.SetPSBreakpointCommand

This is, in part, because the remote host environment doesn’t support the required
EnterNestedPrompt() function you saw earlier:

[localhost]: PS (2) > $host.EnterNestedPrompt()
Exception calling "EnterNestedPrompt" with "0" argument(s): "Remote
host method get_Runspace is not implemented."
At line:1 char:24
+ $host.EnterNestedPrompt <<<< ()
 + CategoryInfo : NotSpecified: (:) [], MethodInvocation
 Exception
 + FullyQualifiedErrorId : DotNetMethodException

A corollary to this is that you can’t attach to a running PowerShell instance to debug
it. In fact, of all of the debugging tools we’ve looked at, the only one available in the
remoting environment is tracing using the Set-PSDebug command.

There are some other issues to be aware of as well. The dynamic nature of the
PowerShell language means that code can be created at any time and you aren’t always
able to set breakpoints on this code. This is where the techniques you saw earlier in the
chapter can help. The example breakpoint function can be inserted into dynamic or
anonymous code, allowing you to effectively set a breakpoint in that code.

Finally, because variables are never declared, it’s not possible to specify an instance
of a variable via its declaration; you can only select the target variable by name. Scop-
ing a breakpoint to a particular file or command helps with correctly targeting the
desired variable.
658 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

In practice, the only one of these limitations that’s likely to impact day-to-day
scripting is the limitation on remote debugging. In those scenarios, if tracing is insuf-
ficient you’ll need to replicate the remote environment locally to do the debugging.

At this point, we’ll wrap up our discussion of the PowerShell debugging capabili-
ties. We started with tracing and simulating breakpoints, then looked at using the
integrated debugger in the ISE, and finally spent some time looking at how to use the
command-line debugger. With these simple examples, we’ve only scratched the sur-
face of what can be done with the debugger. The ability to associate actions with
breakpoints allows you to create arbitrarily sophisticated criteria for triggering break-
points, including having breakpoints create other breakpoints dynamically. At the
same time, the nature of PowerShell as a highly dynamic environment can make
debugging some scenarios quite challenging. As always, with PowerShell debugging,
the most effective way to learn it is to use and experiment with its capabilities.

This completes our coverage of the PowerShell ISE and debugger. We said at the
beginning of the chapter that this is a very large topic, so congratulations for making
it all the way through. This also completes our coverage of the PowerShell features. In
the next chapter, we switch from looking at PowerShell on a feature-by-feature basis
and take a holistic approach to applying the things that you’ve learned.

15.7 SUMMARY

This chapter introduced the PowerShell ISE and debugger. We began the chapter by
covering the basic operations and features of the ISE:

• Controlling and customizing ISE pane layout

• Running scripts with F5 and portions of scripts with F8

• Working with the editor

• Working with multiple tabs, including remote PowerShell tabs

Next we looked at how to extend the ISE environment using the ISE object model.
We started with an overview of the types in the object model, then looked at working
with the following:

• Adding and renaming tabs

• Invoking commands in another tab

• Accessing the contents of the output and editor panes

Then we explored adding custom menus to the environment. You followed examples
where you added menu items to insert snippets of code into the editor buffer and a
command to run a syntax check on the current editor buffer.

In the second part of the chapter, we looked at the PowerShell debugger. We
described the tracing and stepping features that were carried over from the first
SUMMARY 659

release of PowerShell. When these features are largely subsumed by the newer debug-
ger, there are still scenarios like debugging remote scripts where they’re useful.

In our work with the debugger, we started by looking at how the debugger is inte-
grated into the ISE and uses the same command-key bindings as the Visual Studio
debugger. You saw how to set breakpoints, look at variables, and step through code.

Finally we ended the chapter by covering the command-line debugger. It offers a
superset of the graphical debugger features, including the ability to have conditional
breakpoints and breakpoints on variables where they’re read or set. We also
explained some of the limitations in the debugger as shipped in v2.

This chapter concludes the first part of book. In part 1 of Windows PowerShell in
Action, our focus was on exploring the features of the PowerShell language and run-
time largely in isolation. In the second part of the book, we look at applying this
knowledge in various technology domains to solve broader problems. The technology
areas that are covered are files, paths, and text (chapter 16), .NET (chapter 17), COM
(chapter 18), WMI and WSMan (chapter 19), and event handling (chapter 20). The
last chapter in the book is devoted to security, covering topics that are extremely
important for PowerShell users who need to be able to write secure scripts.
660 CHAPTER 15 THE POWERSHELL ISE AND DEBUGGER

2
P A R T
Using PowerShell

In the second part of the book, we look at applying your PowerShell knowledge in
various technology domains to solve broader problems. The technology areas that are
covered are files, paths, and text (chapter 16); .NET (chapter 17); COM (chapter 18);
WMI and WSMan (chapter 19); and event handling in chapter 20. The last chapter
(chapter 21) in the book is devoted to security, covering topics that are extremely
important for PowerShell users who need to be able to write secure scripts.

C H A P T E R 1 6

Working with files, text,
and XML
16.1 PowerShell and paths 664 16.4 XML structured text

16.2 File processing 672
16.3 Processing unstructured text 681

processing 693
16.5 Summary 717
Where is human nature so weak as in the bookstore?
 —Henry Ward Beecher

Outside of a dog, a book is man’s best friend. Inside of a dog,
it’s too dark to read.

 —Groucho Marx

In this chapter, we’re going to cover PowerShell’s features for processing text and files.
We’ll look at how PowerShell deals with file paths and concepts behind the provider
model. We’ll revisit regular expressions and take another look at the language features
and cmdlets that are provided for dealing with text. This chapter also covers the fea-
tures that PowerShell offers for dealing with a special kind of text—XML—as strings
and in files. In the process, you’ll see how to use the .NET classes to accomplish tasks
when the native PowerShell language features may not be sufficient.
663

16.1 POWERSHELL AND PATHS

In this section we’ll explore the basic concepts underlying PowerShell’s path processing.
PowerShell does a lot of work to promote a consistent user experience when navigating
through hierarchical namespaces. This consistency allows you to use the same com-
mands to work with the file system, the Registry, and other stores. The core mechanism
that PowerShell uses to accomplish this is the PowerShell provider model. A PowerShell
provider is a software component, loaded through modules or snapins, that’s used to
produce a file system–like experience for other data stores, such as the Registry.

16.1.1 Providers and the core cmdlets

A PowerShell provider is an installable component usually packaged as part of a Pow-
erShell module or snap-in. So far, there’s no way to write a provider in Power-
Shell—they have to be written in a compiled language like C#. That said, the basic
architecture of the provider module aligns with what are called the core cmdlets. These
cmdlets provide the common (or core) activities and are grouped by noun: Item,
ChildItem, Content, and ItemProperty. The Item cmdlets work with an item in
the store. For example, using Get-Item on a file will return information about that
file. The ChildItem cmdlets provide a way to work with items that are children of a
particular item. Using Get-ChildItem on a directory in the file system will return
the files in that directory. If the target is a file, then Get-Content will return the con-
tent of the file. Finally, the ItemProperty cmdlets allow properties on an item to be
manipulated. Once you learn these patterns, you can apply them to any store sur-
faced as a provider.

This may seem like an overly complex arrangement, but it allows the core cmdlets
to work with a wide variety of types of stores, including the Registry and Active
Directory. It’s even possible to write a provider for an XML document (though
PowerShell doesn’t include one at this time). Many of these stores are more complex
than the file system and may allow structures like data elements with both content
and children. (This isn’t possible in the Windows file system, but it does happen in
the Registry.) By learning these core patterns, PowerShell users will have a mental
model that will allow them to use new providers as they’re encountered.

You can get a list of the providers installed in your session by using the Get-
PSProvider cmdlet:

PS (1) > Get-PSProvider

Name Capabilities Drives
---- ------------ ------
WSMan Credentials {WSMan}
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess {C, D, L, M...}
Function ShouldProcess {Function}
Registry ShouldProcess, Transa... {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}
664 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

You’ve worked with most of these providers already. In section 16.1.6 you’ll work
with a Registry provider, and in chapter 21 (section 21.4.3) you’ll use the certificate
provider when you learn script signing.

Providers are the heart of the namespace mechanism, but you don’t usually work
directly with them. Instead, you work through named drives that allow you access to
the provider’s capabilities.

16.1.2 Working with PSDrives

PowerShell providers are typically accessed through named drives. This means that
each provider must have at least one drive associated with it for it to be usable. The
drives that a provider exports needn’t correspond to things like system disk drives
(though the file system provider usually has one drive name exported for each physi-
cal drive on the computer). Their names can also be longer than the single character
permitted in drive letters. You saw an example of both of these things when you used
the WSMan: drive to manage PowerShell remoting in section 13.1.2.

To keep people from mixing up the PowerShell drives with the system drives,
Microsoft calls them PSDrives. Similarly, a path that contains a PSDrive is called a
PSPath, and a path that contains a physical drive is called a provider-specific path. A
PSPath must be translated to the provider-specific path form before it can be pro-
cessed by the system, as you’ll see in the next example.

Another useful feature supported by many providers is the ability to create your
own drive names. That means you can, for example, create a PSDrive as a shortcut to
a common resource. For example, it might be convenient to have a docs: drive that
points to your document directory. You can create this drive using the New-PSDrive
cmdlet:

PS (1) > New-PSDrive -Name docs -PSProvider filesystem `
>> -Root (Resolve-Path ~/*documents)
>>

Name Provider Root Current
 Location
---- -------- ---- --------
docs FileSystem C:\Documents and Settings\brucep

Notice the path used as the argument to the –Root parameter. The string “~/documents”
is passed to the Resolve-Path command. In this string, ~ means the home drive for this
provide. The call to Resolve-Path converts the PSPath to an absolute provider path.

Once the drive has been created, you can cd into it

PS (2) > cd docs:

and then use Get-Location (to see where you are):

PS (3) > Get-Location

Path

docs:\
POWERSHELL AND PATHS 665

You are, at least according to PowerShell, in the docs: drive. Create a file here:

PS (4) > "Hello there!" > junk.txt

Next, try to use cmd.exe to display it (we’ll get to why you’re doing this in a second):

PS (5) > cmd /c type junk.txt
Hello there!

This code displays the context of the file with no problems. Next, display it using
Get-Content with the fully qualified path, including the docs: drive:

PS (6) > Get-Content docs:/junk.txt
Hello there!

This code also works as expected. But when you try to use the full path with cmd.exe

PS (7) > cmd /c type docs:/junk.txt
The syntax of the command is incorrect.

it fails. This is because non-PowerShell applications don’t understand the PowerShell
drive fiction and can’t process PSPaths. But when you “cd’ed” to the location first, you
were able to use cmd.exe to display the file. This worked because when you’re “in”
that drive, the system automatically sets the current directory properly on the child
process object to the provider-specific path before starting the process. This is why
using relative paths from cmd.exe worked. But if you pass in PSPath as an argument,
it fails. To mitigate this issue, use the Resolve-Path cmdlet to get the provider-
specific path. This cmdlet takes the PSPath and translates it into the provider’s native
path representation. Use this cmdlet to pass the translated path to cmd.exe:

PS (7) > cmd /c type (Resolve-Path docs:/junk.txt).ProviderPath
Hello there!

This time, it works. You need to be somewhat careful when dealing with this concept
and think about how things should work with non-PowerShell applications. If you
wanted to open a file with Notepad in the doc: directory, you’d have to do the same
thing you did for cmd.exe and resolve the path first:

notepad (Resolve-Path docs:/junk.txt).ProviderPath

If you frequently use Notepad in PSPaths, then you can create a function in your profile:

function notepad
{
 $args | foreach { notepad.exe (Resolve-Path $_).ProviderPath }
}

You could even create a function to launch an arbitrary executable:

function Start-Program
{
 $cmd, $files = $args
 $cmd = @(Get-Command -type Application $cmd)[0].Definition
 $files | foreach { & $cmd (Resolve-Path $_).ProviderPath }
}

666 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

This function uses PowerShell’s multiple-assignment feature to split the list of argu-
ments into two parts: the command name and the list of files. It then uses Get-
Command to limit the type of command to run to external applications and resolves
the names of the argument files.

Each provider has a home directory

Another feature supported by the PowerShell path mechanism is a shortcut notation
that allows you to easily access the default, or home, directory for that provider. Start
the path with the tilde (~) character, and the remaining path components will be
resolved relative to the provider’s home directory. In the file system, this directory will
be the user’s home directory, giving you easy access to the subdirectories off your
home directory. For example, to cd to the desktop folder, you just have to use this:

cd ~/desktop

This code makes accessing these directories very convenient.
Remember, though, the ~ always refers to the home directory for the current

drive’s associated provider. Consequently, if your current location is somewhere in
the Registry provider, using cd ~/desktop won’t work because the ~ will resolve to
the home directory of the Registry provider, not the file system provider.

While we’re on the topic of paths, let’s look at some additional features Power-
Shell provides for working with paths.

16.1.3 Working with paths that contain wildcards

Another great feature of the PowerShell provider infrastructure is universal support
for wildcards (see chapter 4 for details on wildcard patterns). You can use wildcards
any place you can navigate to, even in places such as the alias: drive. For example, say
you want to find all the aliases that begin with gc. You can do this with wildcards in
the Alias provider:

PS (1) > dir alias:gc*

CommandType Name Definition
----------- ---- ----------
Alias gc Get-Content
Alias gci Get-ChildItem
Alias gcm Get-Command

As you can see, there are three of them.
We might all agree that this is a great feature, but there’s a downside. Suppose you

want to access a path that contains one of the wildcard metacharacters: ?, *, [, and].
In the Windows file system, * and ? aren’t a problem because you can’t use these
characters in a file or directory name. But you can use [and]. Working with files
whose names contain [or] can be quite a challenge because of the way wildcards and
quoting (see chapter 3) work. Square brackets are used a lot in filenames in browser
POWERSHELL AND PATHS 667

caches to avoid collisions by numbering the files. Let’s run some experiments on
some of the files in the Internet Explorer (IE) cache.

16.1.4 Suppressing wildcard processing in paths

In one of the directories used to cache temporary Internet files, say you want to find
all of the files that begin with “thumb*”. It’s easy enough:

PS (2) > dir thumb*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Doc
 uments and Settings\brucepay\Local Settings\Temporary I
 nternet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 9/7/2006 10:34 PM 4201 ThumbnailServe
 r[1].jpg
-a--- 9/7/2006 10:35 PM 3223 ThumbnailServe
 r[2].jpg
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg
-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

You get five files. Now you want to limit the set of files to things that match
“thumb[”. Try this directly using a wildcard pattern:

PS (3) > dir thumb[*
Get-ChildItem : Cannot retrieve the dynamic parameters for
the cmdlet. The specified wildcard pattern is not valid:
thumb[*
At line:1 char:3
+ ls <<<< thumb[*

Dealing with hidden files

By default, the Get-ChildItem cmdlet (and its alias dir) won’t show hidden files.
To see the hidden files, use the -Force parameter. For example, to find the
Application Data directory in your home directory, you might try

PS (1) > dir ~/app*

but nothing is returned. That’s because this directory is hidden. To see the directory,
use -Force as in:

PS (2) > dir ~/app* -Force
Directory:Microsoft.PowerShell.Core\FileSystem::C:\Docum
 ents and Settings\brucepay
Mode LastWriteTime Length Name
---- ------------- ------ ----
d-rh- 12/14/2006 9:13 PM Application Data

Now the directory is visible. You’ll need to use -Force to get into the directory
containing the temporary Internet files.
668 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

Of course, it fails because the [is being treated as part of a wildcard pattern. Clearly
you need to suppress treating [as a wildcard by quoting it. The obvious first step, as
you’ll recall from chapter 4, is to try a single backtick:

PS (4) > dir thumb`[*
Get-ChildItem : Cannot retrieve the dynamic parameters for
the cmdlet. The specified wildcard pattern is not valid:
thumb\[*
At line:1 char:3
+ ls <<<< thumb`[*

This code fails because the single backtick is discarded in the parsing process. In fact,
it takes four backticks to cause the square bracket to be treated as a regular character:

PS (5) > dir thumb````[*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\
 Documents and Settings\brucepay\Local Settings\Temporary
 Internet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg
-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

The reason is that one set of backticks is removed by the interpreter and a second set
is removed by the provider itself. (This second round of backtick removal is so you
can use escaping to represent filenames that contain literal quotes.) Putting single
quotes around the pattern keeps the interpreter from performing quote processing in
the string, simplifying this to needing only two backticks:

PS (8) > ls 'thumb``[*'

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Doc
 uments and Settings\brucepay\Local Settings\Temporary I
 nternet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg
-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

In this particular example, much of the complication arises because you want some of
the metacharacters to be treated as literal characters, whereas the rest still do pattern
matching. Trial and error is usually the only way to get this right.

NOTE As we’ve said before, this stuff is hard. It’s hard to understand
and it’s hard to get right. Unfortunately, no one has come up with a
better mechanism yet. This problem occurs in any language that sup-
ports pattern matching. Patience, practice, and experimentation are the
only ways to figure it out.
POWERSHELL AND PATHS 669

16.1.5 The -LiteralPath parameter

You don’t have to turn to trial and error when you know the name of the file and
want to suppress all pattern-matching behavior. You can accomplish this by using the
-LiteralPath parameter available on most core cmdlets. Say you want to copy a file
from the previous example. If you use the regular path mechanism in Copy-Item

PS (11) > Copy-Item thumb[1].jpg c:\temp\junk.jpg
PS (12) > Get-ChildItem c:\temp\junk.jpg
Get-ChildItem : Cannot find path 'C:\temp\junk.jpg' because
 it does not exist.
At line:1 char:4
+ dir <<<< c:\temp\junk.jpg

the copy fails because the square brackets were treated as pattern-matching metachar-
acters. Now try it using -LiteralPath:

PS (13) > Copy-Item -literalpath thumb[1].jpg c:\temp\junk.jpg
PS (14) > Get-ChildItem c:\temp\junk.jpg

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 junk.jpg

This time it works properly. When you pipe the output of a cmdlet such as Get-
ChildItem into another cmdlet like Remove-Item, the -LiteralPath parameter is
used to couple the cmdlets so that metacharacters in the paths returned by dir don’t
cause problems for Remove-Item. If you want to delete the files we were looking at
earlier, you can use Get-ChildItem to see them:

PS (16) > Get-ChildItem thumb````[*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Doc
 uments and Settings\brucepay\Local Settings\Temporary
 Internet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg
-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

Now pipe the output of Get-ChildItem into Remove-Item

PS (17) > Get-ChildItem thumb````[* | Remove-Item

and verify that they’ve been deleted:

PS (18) > Get-ChildItem thumb````[*

No files are found, so the deletion was successful.
670 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

This essentially covers the issues around working with file paths. From here we
can move on to working with the file contents.

16.1.6 The Registry provider

PowerShell uses paths to access many types of hierarchical information on a Windows
computer. One of the most important (okay, maybe the most important) types of
hierarchical information is the Registry. The Registry is a store of hierarchical config-
uration information, much like the file system. But there’s one significant difference:
in the Registry, a container has two axes: children and properties or, as you’re more
used to calling them from hashtables, keys and values. This is one of the more com-
plex scenarios that the provider model addresses.

In the Registry provider, it’s no longer sufficient to just have the path; you also
need to know whether you’re accessing a name or a property. Let’s take a look. Start
by cd’ing to the PowerShell hive in the Registry:

PS (1) > cd hklm:\software\microsoft\powershell

Use dir to see what’s there:

PS (2) > dir

 Hive: HKEY_LOCAL_MACHINE\software\microsoft\powershell

SKC VC Name Property
--- -- ---- --------
 4 2 1 {Install, PID}

Unfortunately, the default display for a Registry entry is a bit cryptic. We’ll Format-
List to make it a bit more comprehensible:

PS (3) > dir | Format-List

Name : 1
ValueCount : 2
Property : {Install, PID}
SubKeyCount : 4

This code is quite a bit clearer. In this path you find a single item named 1. This item
has two properties, or values, associated with it and four children, or subkeys. Now
cd into the container and run Get-ChildItem again:

PS (4) > cd ./1
PS (5) > Get-ChildItem
 Hive: HKEY_LOCAL_MACHINE\software\microsoft\powershell\1

SKC VC Name Property
--- -- ---- --------
 0 1 0409 {Install}
 0 7 PowerShellEngine {ApplicationBase, PSCompati...
 1 0 PSConfigurationProviders {}
 2 0 ShellIds {}
POWERSHELL AND PATHS 671

You see information about the subkeys. But what about accessing the properties? You
do this using the Get-ItemProperty cmdlet. To get the value of the PowerShell
Product ID property, use the following:

PS (6) > Get-ItemProperty -Path . -Name PID

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \software\microsoft\powershell\1
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \software\microsoft\powershell
PSChildName : 1
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
PID : 89383-100-0001260-04309

Notice that you need to specify both the path and the name of the property to
retrieve. Properties are always relative to a path. By specifying . as the path, the prop-
erty is relative to the current directory. There’s another somewhat annoying thing
about how Get-ItemProperty works. It doesn’t return the value of the property; it
returns a new object that has the property value as a member. So, before you can do
anything with this value, you need to extract it from the containing object:

PS (9) > (Get-ItemProperty -Path . -Name PID).PID
89383-100-0001260-04309

By using the . operator to extract the member’s value, you can get just the value.

NOTE This is another one of those design trade-offs the PowerShell
team encountered as we developed this environment. If we returned
just the value, we’d lose the context for the value (where it came from,
and so on.) And so, in order to preserve this information, the team
ended up forcing people to write what appears to be redundant code. A
better way to handle this might’ve been to return the value with the
context attached as synthetic properties.

16.2 FILE PROCESSING

Let’s recap and see where we are. You know that PowerShell has a provider abstrac-
tion allowing users to work with system data stores as though they were drives. A
provider is an installable software component that surfaces a data store in a form that
can be mounted as a “drive.” These drives are a PowerShell fiction; that is, they have
meaning only to PowerShell as opposed to system drives that have meaning every-
where. Also, unlike the system drives, PowerShell drive names can be longer than
one character.

You’ve already seen some examples of non-file-system providers in earlier chap-
ters, where we worked with the variable: and function: drives. These providers let you
use the New-Item and Remove-Item cmdlets to add and remove variables or func-
tions just as if they were files.
672 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

A key piece to making this provider abstraction is the set of core cmdlets listed in
table 16.1. These cmdlets are the core set of commands for manipulating the system
and correspond to commands found in other shell environments. Because these com-
mands are used so frequently, short aliases—the canonical aliases—are provided for
the commands. By canonical, we mean that they follow a standard form: usually the
first letter or two of the verb followed by the first letter or two of the noun. Two
additional sets of “user portability” aliases are provided to help new users work with
the system. There’s one set for cmd.exe users and one set for UNIX shell users. Note
that these aliases map only the name; they don’t provide exact functional correspon-
dence to either the cmd.exe or UNIX commands.

Online help is available for all of these commands; type

help cmdlet-name

and you’ll receive detailed help on the cmdlets, their parameters, and some simple
examples showing how to use them.

Table 16.1 List of core cmdlets, aliases, and equivalents in other shells

Cmdlet name Canonical Cmd.exe UNIX sh Description

Get-Location gl cd pwd Get the current directory.

Set-Location sl cd, chdir cd, chdir Change the current directory.

Copy-Item cpi copy cp Copy files.

Remove-Item ri del, rd rm, rmdir Remove a file or directory. PowerShell
has no separate command for removing
directories as opposed to files.

Move-Item mi move mv Move a file.

Rename-Item rni ren mv Rename a file.

Set-Item si Set the contents of a file.

Clear-Item cli Clear the contents of a file.

New-Item ni Create a new empty file or directory.
The type of object is controlled by the
-ItemType parameter.

MkDir md mkdir MkDir is implemented as a function in
PowerShell so that users can create
directories without having to specify
-Type directory.

Get-Content gc type cat Send the contents of a file to the out-
put stream.

Set-Content sc Set the contents of a file. UNIX and
cmd.exe have no equivalent. Redirec-
tion is used instead. The difference
between Set-Content and Out-
File is discussed later in this chapter.
FILE PROCESSING 673

NOTE The help command (which is a wrapper function for Get-
Help) also supports an -Online parameter. This parameter will cause
help information retrieved from Microsoft TechNet to be displayed
using the default web browser rather than on the console. The online
information is constantly being updated and corrected, so this is the
best solution for getting help on PowerShell topics.

In the next few sections, we’ll look at some more sophisticated applications of these
cmdlets, including how to deal with binary data. In traditional shell environments,
binary data either required specialized commands or forced you to create new execut-
ables in a language such as C, because the basic shell model couldn’t cope with binary
data. You’ll see how PowerShell can work directly with binary data. But first, let’s take
a minute to look at the PowerShell drive abstraction to simplify working with paths.

16.2.1 Reading and writing files

In PowerShell, files are read using the Get-Content cmdlet. This cmdlet allows you
to work with text files using a variety of character encodings. It also lets you work effi-
ciently with binary files, as you’ll see in a minute. Writing files is a bit more complex,
because you have to choose between Set-Content and Out-File. The difference
here is whether the output goes through the formatting subsystem. We’ll also explain
this later on in this section. It’s important to point out that there are no separate
open/read/close or open/write/close steps to working with files. The pipeline
model allows you to process data, and never have to worry about closing file han-
dles—the system takes care of this for you.

Reading files with the Get-Content cmdlet

The Get-Content cmdlet is the primary way to read files in PowerShell. Actually, it’s
the primary way to read any content available through PowerShell drives. Figure 16.1
shows a subset of the parameters available on the cmdlet.

Get-Content [-Path] <String[]>
[-ReadCount <Int64>]
[-TotalCount <Int64>]
[-Delimiter <String>]
[-Wait]
[-Encoding <FileSystemCmdletProviderEncoding>]

Cmdlet name
Path to object to read

Total number of

objects to read

Encoding to use when

reading while

Switch parameter: if

specified, cmdlet waits

polling input until stopped

Line or record

delimiter

Number of objects to

read in block

Figure 16.1 The Get-Content cmdlet parameters. This cmdlet is used to read

content from a content provider’s store.
674 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

Reading text files is simple. The command

Get-Content myfile.txt

will send the contents of myfile.txt to the output stream. Notice that the command
signature for -Path allows for an array of path names. This is how you concatenate a
collection of files together. Let’s try this. First, create a collection of files:

PS (1) > 1..3 | foreach { "This is file $_" > "file$_.txt"}
PS (2) > dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp\fil
 es

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/6/2006 8:33 PM 34 file1.txt
-a--- 7/6/2006 8:33 PM 34 file2.txt
-a--- 7/6/2006 8:33 PM 34 file3.txt

And now display their contents:

PS (3) > Get-Content file1.txt,file2.txt,file3.txt
This is file 1
This is file 2
This is file 3

or simply

PS (4) > Get-Content *.txt
This is file 1
This is file 2
This is file 3

In this example, the contents of file1.txt, file2.txt, and file3.txt are sent to the output
stream in order. For cmd.exe users, this is equivalent to

copy file1.txt+file2.txt+file3.txt con

Let’s try this in cmd.exe:

C:\Temp\files>copy file1.txt+file2.txt+file3.txt con
file1.txt
 T h i s i s f i l e 1
 file2.txt
 h i s i s f i l e 2
 file2.txt
 h i s i s f i l e 3
 1 file(s) copied.

The output looks funny because the files were written in Unicode. You need to tell
the copy command to write in ASCII, and try it again:

C:\Temp\files>copy /a file1.txt+file2.txt+file3.txt con
file1.txt
This is file 1
FILE PROCESSING 675

file2.txt
This is file 2
file2.txt
This is file 3
 1 file(s) copied.

By default, PowerShell uses Unicode for text, but you can override this. You’ll see
how to do this in the section on writing files. In the meantime, let’s see how to work
with binary files.

Example: the Get-HexDump function

Let’s look at an example that uses some of these features to deal with nontext files.
You’re going to write a function that can be used to dump out a binary file. You’ll
call this function Get-HexDump. It takes the name of the file to display, the number
of bytes to display per line, and the total number of bytes as parameters. You want
the output of this function to look like the following:

PS (130) > Get-HexDump "$env:windir/Soap Bubbles.bmp" -w 12 -t 100
42 4d ba 01 01 00 00 00 00 00 ba 01 BM
00 00 28 00 00 00 00 01 00 00 00 01
00 00 01 00 08 00 00 00 00 00 00 00
01 00 12 0b 00 00 12 0b 00 00 61 00a.
00 00 61 00 00 00 6b 10 10 00 73 10 ..a...k...s.
10 00 73 18 18 00 7b 21 21 00 84 29 ..s.........
29 00 84 31 31 00 6b 08 08 00 8c 39 ...11.k....9
31 00 84 31 29 00 8c 31 31 00 7b 18 1..1...11...
18 00 8c 39 ...9

In this example, you’re using Get-HexDump to dump out the contents of one of the
bitmap files in the Windows installation directory. You’ve specified that it display 12
bytes per line and stop after the first 100 bytes. The first part of the display is the
value of the byte in hexadecimal, and the portion on the right side is the character
equivalent. Only values that correspond to letters or numbers are displayed. Non-
printable characters are shown as dots. The following listing shows the code for this
function.

function Get-HexDump ($path = $(throw "path must be specified"),
$width=10, $total=-1)
{
 $OFS=""
 Get-Content -Encoding byte $path -ReadCount $width `
 -TotalCount $total | %{
 $record = $_
 if (($record -eq 0).count -ne $width)
 {
 $hex = $record | %{
 " " + ("{0:x}" -f $_).PadLeft(2,"0")}
 $char = $record | %{
 if ([char]::IsLetterOrDigit($_))
 { [char] $_ } else { "." }}

Listing 16.1 Get-HexDump

Set $OFS to
empty

b

Skip record if
length is zero

c

Format datad
676 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

 "$hex $char"
 }
 }
}

As required, the function takes a mandatory path parameter and optional parameters
for the number of bytes per line and the total number of bytes to display. You’re going
to be converting arrays to strings and you don’t want any spaces added, so you’ll set
the output field separator character B to be empty.

The Get-Content cmdlet does all of the hard work. It reads the file in binary mode
(indicated by setting encoding to byte), reads up to a maximum of -TotalCount bytes,
and writes them into the pipeline in records of length specified by -ReadCount. The
first thing you do in the foreach scriptblock is save the record that was passed in,
because you’ll be using nested scriptblocks that will cause $_ to be overwritten.

If the record is all zeros c, you’re not going to bother displaying it. It might be a
better design to make this optional, but we’ll leave it as is for this example. For dis-
play purposes, you’re converting the record of bytes d into two-digit hexadecimal
numbers. You use the format operator to format the string in hexadecimal and then
the PadLeft() method on strings to pad it out to two characters. Finally, you prefix
the whole thing with a space. The variable $hex ends up with a collection of these
formatted strings.

Now you need to build the character equivalent of the record. You’ll use the
methods on the [char] class to decide whether you should display the character or a
dot (.). Notice that even when you’re displaying the character, you’re still casting it
into a [char]. This is necessary because the record contains a byte value, which, if
directly converted into a string, will be formatted as a number instead of as a charac-
ter. Finally, you’ll output the completed record, taking advantage of string expansion
to build the output string (which is why you set $OFS to "").

This example illustrates the basic technique for getting at the binary data in a file.
The technique has a variety of applications beyond simply displaying binary data, of
course. Once you reach the data, you can determine a variety of characteristics about
the content of that file. In the next section, we’ll look at an example and examine the
content of a binary file to double-check on the type of that file.

Example: the Get-MagicNumber function

If you looked closely at the output from the BMP file earlier, you might have noticed
that the first two characters in the file were BP. In fact, the first few bytes in a file are
often used as a “magic number” that identifies the type of the file. You’ll write a short
function called Get-MagicNumber that displays the first four bytes of a file so you
can investigate these magic numbers. Here’s what you want the output to look like.
First, try this on a BMP file:

PS (1) > Get-MagicNumber $env:windir/Zapotec.bmp
424d 3225 'BM2.'
FILE PROCESSING 677

and then on an EXE:

PS (2) > Get-MagicNumber $env:windir/explorer.exe
4d5a 9000 'MZ..'

This utility dumps the header bytes of the executable. The first two bytes identify this
file as an MS-DOS executable.

NOTE As you can see, the ASCII representation of the header bytes
(0x5A4D) is MZ. These are the initials of Mark Zbikowski, one of the
original architects of MS-DOS.

The code for Get-MagicNumber is shown in the following listing.

function Get-MagicNumber ($path)
{
 $OFS=""
 $mn = Get-Content -Encoding byte $path -read 4 -total 4
 $hex1 = ("{0:x}" -f ($mn[0]*256+$mn[1])).PadLeft(4, "0")
 $hex2 = ("{0:x}" -f ($mn[2]*256+$mn[3])).PadLeft(4, "0")
 [string] $chars = $mn| %{ if ([char]::IsLetterOrDigit($_))
 { [char] $_ } else { "." }}
 "{0} {1} '{2}'" -f $hex1, $hex2, $chars
}

There’s not much that’s new in this function. Again, you set the output field separator
string to be empty. You extract the first four bytes as two pairs of numbers formatted
in hex and also as characters if they correspond to printable characters. Finally, you
format the output as desired.

From these examples, you see that Get-Content allows you to explore any type of
file on a system, not just text files. For now, though, let’s return to text files and look
at another parameter on Get-Content: -Delimiter. When reading a text file, the
default line delimiter is the newline character.

NOTE The end-of-line sequence on Windows is generally a two-
character sequence: carriage return followed by newline. The .NET I/O
routines hide this detail and let us just pretend it’s a newline. In fact,
the runtime will treat newline by itself, carriage return by itself, and the
carriage return/newline sequence all as end-of-line sequences.

This parameter lets you change that. With this new knowledge, let’s return to the word-
counting problem from earlier. If you set the delimiter to be the space character instead
of a newline, you can split the file as you read it. Let’s use this in an example that operates
on one of the About help files included with PowerShell. Here’s the command:

Get-Content $pshome/en-us/about_Assignment_Operators.help.txt `
 -Delimiter " " |
 foreach { $_ -replace "[^\w]+"} |
 where { $_ -notmatch "^[`t]*`$"} |

Listing 16.2 Get-MagicNumber
678 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

 group |
 sort -Descending count |
 select -First 10 |
 ft -auto name, count

The -Delimiter parameter is used to split the file on space boundaries instead of
newlines. You’re using the same group, sort, and format operations as before, but this
time you’re sorting in descending order so you can use the Select-Object cmdlet
instead of array indexing to extract the top 10 words. You’re also doing more sophisti-
cated filtering. You’re using a foreach filter to get rid of the characters that aren’t legal
in a word. This is accomplished with the -replace operator and the regular expres-
sion "[^\w]+". The \w pattern is a metacharacter that matches any legal character in
a word. Putting it in the square brackets prefixed with the caret says it should match
any character that isn’t valid in a word. The where filter is used to discard any empty
lines that may be in the text or that may have been created by the foreach filter.

At this point, you should have a pretty good handle on reading files and process-
ing their contents. It’s time to look at the various ways to write files.

16.2.2 Writing files

There are two major ways to write files in PowerShell—by setting file content with
the Set-Content cmdlet and by writing files using the Out-File cmdlet. The big
difference is that Out-File, like all the output cmdlets, tries to format the output.
Set-Content, on the other hand, simply writes the output. If its input objects aren’t
already strings, it will convert them to strings by calling the ToString() method.
This isn’t usually what you want for objects, but it’s exactly what you want if your
data is already formatted or if you’re working with binary data.

The other thing you need to be concerned with is how the files are encoded when
they’re written. In an earlier example, you saw that, by default, text files are written in
Unicode. Let’s rerun this example, changing the encoding to ASCII instead:

PS (48) > 1..3 | %{ "This is file $_" |
>> Set-Content -Encoding ascii file$_.txt }
>>

The -Encoding parameter is used to set how the files will be written. In this example,
the files are written using ASCII encoding. Now let’s rerun the cmd.exe copy exam-
ple that didn’t work earlier:

PS (49) > cmd /c copy file1.txt+file2.txt+file3.txt con
file1.txt
This is file 1
file2.txt
This is file 2
file3.txt
This is file 3
 1 file(s) copied.

This time it works fine, because the encoding matches what cmd.exe expected. In
the next section, we’ll look at using -Encoding to write binary files.
FILE PROCESSING 679

16.2.3 All together now—reading and writing

Our next topic involves combining reading and writing operations with binary files.
First, you’ll set up paths to two files: a source bitmap file

$src = "$env:windir/Soap Bubbles.bmp"

and a destination in a temporary file:

$dest = "$env:temp/new_bitmap.bmp"

Next, copy the contents from one file to the other:

Get-Content -Encoding byte -read 10kb $src |
 Set-Content -Encoding byte $dest

Now let’s define a (not very good) checksum function that simply adds up all the
bytes in the file:

function Get-CheckSum ($path)
{
 $sum=0
 Get-Content -Encoding byte -read 10kb $path | %{
 foreach ($byte in $_) { $sum += $byte }
 }
 $sum
}

Use this function to verify that the file you copied is the same as the original file (note
that this is a fairly slow function and takes awhile to run):

PS (5) > Get-CheckSum $src
268589
PS (6) > Get-CheckSum $dest
268589

The numbers come out the same, so you have some confidence that the copied file
matches the original.

16.2.4 Performance caveats with Get-Content

PowerShell makes file processing easy, but the pipeline processor (at least as of version
2) is rather slow and this makes certain types of processing on large files problematic.
For example, a user at Microsoft had a script that processed a large file to remove the
first three lines from the file. This was done by using the following series of steps:

$lines = Get-Content $file -ReadCount 0
$lines = $lines | select -Skip 3
$lines | Set-Content temp.txt
move temp.txt $file -Force

This script read in all the lines the file, used select to skip the first three lines, wrote
the result to a temporary file, and then did a forced rename to replace the original file.
On the target file, this simple process was taking well over a minute due to pipeline
processor overhead, and it had to be run on a very large number of files. Although
680 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

there wasn’t much that could be done in the pipeline to speed things up, a
workaround was available: use the raw .NET I/O classes. The workaround looked
something like this:

function Skip3 ($file, $encoding = [System.Text.Encoding]::Unicode)
{

 $input = Resolve-Path $file
 $output = Join-Path (Split-Path -Parent $input) out.txt

[io.file]::WriteAllLines($output,
 [io.file]::ReadAllLines($input)[3..$text.length], $encoding)

}

In this function, the .NET methods are used to read and write the file, and array index-
ing is used to strip of the first three lines. This script ran in less than a second for each
file, making the intended task feasible. This type of workaround should be the excep-
tion rather than the rule. PowerShell is fast enough for most typical applications. It is
nice, however, to know that faster techniques are available directly from PowerShell (at
the cost of some complexity) instead of having to switch to a different tool.

This wraps up our coverage of the file system provider. In the next section we’ll
look another useful provider: the Registry provider.

16.3 PROCESSING UNSTRUCTURED TEXT

Although PowerShell is an object-based shell, it still has to deal with text. In chapter
4, we covered the operators (-match, -replace, -like, -split, -join) that Power-
Shell provides for working with text. We showed you how to concatenate two strings
together using the plus operator. In this section, we’ll cover some of the more
advanced string processing operations. We’ll discuss techniques for splitting and join-
ing strings using the [string] and [regex] members and using filters to extract sta-
tistical information from a body of text.

16.3.1 Using System.String to work with text

One common scenario for scripting is processing log files. This requires breaking the
log strings into pieces to extract relevant bits of information. PowerShell v2 address
this by using the -split operator, but in PowerShell v1, if you needed to split a
string into pieces, you had to use the Split()method on the [string] class. This is
still fairly simple to do:

PS (1) > "Hello there world".Split()
Hello
there
world

The Split() method with no arguments splits on spaces. In this example, it pro-
duces an array of three elements.

PS (2) > "Hello there world".Split().length
3

PROCESSING UNSTRUCTURED TEXT 681

You can verify this with the Length property. In fact, it splits on any of the characters
that fall into the WhiteSpace character class. This includes tabs, so it works properly
on a string containing both tabs and spaces:

PS (3) > "Hello`there world".Split()
Hello
there
world

In the revised example, you still get three fields, even though space is used in one
place and tab in another.

And while the default is to split on a whitespace character, you can specify a string
of characters to use split fields:

PS (4) > "First,Second;Third".Split(',;')
First
Second
Third

Here you specified the comma and the semicolon as valid characters to split the field.
There is, however, an issue; the default behavior for “split this” isn’t necessarily

what you want. The reason why is that it splits on each separator character. This
means that if you have multiple spaces between words in a string, you’ll get multiple
empty elements in the result array. For example:

PS (5) > "Hello there world".Split().length
6

In this example, you end up with six elements in the array because there are three
spaces between “there” and “world.” Now let’s continue on paralleling the features of
the -split operator.

Using SplitStringOptions

The -split operator allows you to specify a number of options that are used to con-
trol the splitting process. Let’s see how you can do the same thing using the Split()
method. You can get a list of all of the method overloads by using the Overload-
Definitions member on the PSMethod object for Split:

PS (6) > "hello".split.OverloadDefinitions
string[] Split(Params char[] separator)
string[] Split(char[] separator, int count)
string[] Split(char[] separator, System.StringSplitOptions options)
string[] Split(char[] separator, int count, System.StringSplitOptions
 options)
string[] Split(string[] separator, System.StringSplitOptions options)
string[] Split(string[] separator, int count, System.StringSplitOptio
ns options)

The methods that take the options argument look promising. Let’s see what the
SplitStringOptions are. Do so by trying to cast a string into these options:
682 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

PS (8) > [StringSplitOptions] "abc"
Cannot convert value "abc" to type "System.StringSplitOptions"
due to invalid enumeration values. Specify one of the following
enumeration values and try again. The possible enumeration values
 are "None, RemoveEmptyEntries".
At line:1 char:21
+ [StringSplitOptions] <<<< "abc"

The error message tells you the legitimate values for the enumeration. If you look up
this class in the online documentation on MSDN, you’ll see that this option tells the
Split() method to discard empty array elements. This sounds just like what you
need, so let’s try it:

PS (9) > "Hello there world".split(" ",
>> [StringSplitOptions]::RemoveEmptyEntries)
>>
Hello
there
world

It works as desired. Next you can apply this technique to a larger problem.

Analyzing word use in a document

Given a body of text, say you want to find the number of words in the text as well as
the number of unique words and then display the 10 most common words in the
text. For our purposes, we’ll use one of the PowerShell help text files: about_
Assignment_operators.help.txt. This isn’t a particularly large file (about 17 KB) so
you can load it into memory using the Get-Content (gc) cmdlet:

PS (10) > $s = gc $PSHOME/en-US/about_Assignment_operators.help.txt
PS (11) > $s.length
747

The variable $s now contains the text of the file as a collection of lines (747 lines, to
be exact). This is usually what you want, because it lets you process a file one line at
time. But, in this example, you actually want to process this file as a single string. To
do so, you could use the -join operator, but let’s use the String.Join() method
instead. You’ll join all of the lines, adding an additional space between each line:

PS (12) > $s = [string]::join(" ", $s)
PS (13) > $s.length
22010

Now $s contains a single string containing the whole text of the file. You verify this
by checking the length rather than displaying it. Next, split it into an array of words:

PS (14) > $words = $s.Split(" `t",
>> [stringsplitoptions]::RemoveEmptyEntries)
>>
PS (15) > $words.length
3316
PROCESSING UNSTRUCTURED TEXT 683

So the text of the file has 3,316 words in it. You need to find out how many unique
words there are. You have a couple ways of doing this. The easiest approach is to use
the Sort-Object cmdlet with the -Unique parameter. This code will sort the list of
words and then remove all the duplicates:

PS (16) > $uniq = $words | sort -Unique
PS (17) > $uniq.count
604

The help topic contains 604 unique words. Using the Sort-Object cmdlet is fast
and simple, but it doesn’t cover everything you wanted to do, because it doesn’t give
the frequency of use. Let’s look at another approach: using the ForEach-Object
cmdlet and a hash table.

16.3.2 Using hashtables to count unique words

In the previous example, you used the -Unique parameter on Sort-Object to gener-
ate a list of unique words. Now you’ll take advantage of the set-like behavior of
hashtables to do the same thing, but in addition you’ll be able to count the number of
occurrences of each word.

NOTE In mathematics, a set is a collection of unique elements. This is
how the keys work in a hashtable. Each key in a hashtable occurs
exactly once. Attempting to add a key more than once will result in an
error. In PowerShell, assigning a new value to an existing key replaces
the old value associated with that key. The key itself remains unique.
This turns out to be a powerful technique, because it’s a way of build-
ing index tables for collections of objects based on arbitrary property
values. These index tables let you run database-like operations on
object collections. See appendix B for an example of how you can use
this technique to implement a SQL-like join operation on two collec-
tions of objects.

Once again, you split the document into a stream of words. Each word in the stream
will be used as the hashtable key, and you’ll keep the count of the words in the value.
Here’s the script:

PS (18) > $words | % {$h=@{}} {$h[$_] += 1}

It’s not much longer than the previous example. The code uses the % alias for
ForEach-Object to keep it short. In the begin clause in ForEach-Object, you’re
initializing the variable $h to hold the resulting hashtable. Then, in the process script-
block, you increment the hashtable entry indexed by the word. You’re taking advan-
tage of the way arithmetic works in PowerShell. If the key doesn’t exist yet, the
hashtable returns $null. When $null is added to a number, it’s treated as 0. This
allows the expression

$h[$_] += 1
684 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

to work. Initially, the hashtable member for a given key doesn’t exist. The += operator
retrieves $null from the table, converts it to 0, adds 1, and then assigns the value
back to the hashtable entry.

Let’s verify that the script produces the same answer for the number of words as
you found with the Sort-Object -Unique solution:

PS (19) > $h.keys.count
604

You have 604, the same as before.
Now you have a hashtable containing the unique words and the number of times

each word is used. But hashtables aren’t stored in any particular order, so you need to
sort it. You’ll use a scriptblock parameter to specify the sorting criteria. Tell it to sort
the list of keys based on the frequency stored in the hashtable entry for that key:

PS (20) > $frequency = $h.keys | sort {$h[$_]}

The words in the sorted list are ordered from least frequent to most frequent. This
means that $frequency[0] contains the least frequently used word:

PS (21) > $frequency[0]
avoid

The last entry in frequency contains the most commonly used word. If you remem-
ber from chapter 3, you can use negative indexing to get the last element of the list:

PS (22) > $frequency[-1]
the

It comes as no surprise that the most frequent word is “the,” and it’s used 344 times:

PS (23) > $h["The"]
344

The next most frequent word is “to,” which is used 138 times:

PS (24) > $h[$frequency[-2]]
138
PS (25) > $frequency[-2]
to

Here are the top 10 most frequently used words in the about_Assignment_opera-
tors help text:

PS (26) > -1..-10 | %{ $frequency[$_]+" "+$h[$frequency[$_]]}
the 344
to 138
a 124
$a 116
value 102
C:\PS> 85
of 80
PROCESSING UNSTRUCTURED TEXT 685

= 74
variable 57
Operator 53

PowerShell includes a cmdlet that’s also useful for this kind of task: Group-Object.
This cmdlet groups its input objects into collections sorted by the specified property.
This means that you can achieve the same type of ordering with the following:

PS (27) > $grouped = $words | group | sort count

Once again, you see that the most frequently used word is “the”:

PS (28) > $grouped[-1]

Count Name Group
----- ---- -----
 344 the {the, the, the, the...}

You can display the 10 most frequent words with this:

PS (29) > $grouped[-1..-10]

Count Name Group
----- ---- -----
 344 the {the, the, the, the...}
 138 to {to, to, to, to...}
 124 a {a, a, a, a...}
 116 $a {$a, $a, $a, $a...}
 102 value {value, value, value, value...}
 85 C:\PS> {C:\PS>, C:\PS>, C:\PS>, C:\PS>...}
 80 of {of, of, of, of...}
 74 = {=, =, =, =...}
 57 variable {variable, variable, variable, var...
 53 Operator {Operator, operator, operator, ope...

The code creates a nicely formatted display courtesy of the formatting and output
subsystem built into PowerShell.

In this section, you learned how to split strings using the methods on the
[string] class. You even saw how to split strings on a sequence of characters. But in
the world of unstructured text, you’ll quickly run into examples where simple splits
aren’t enough. As is so often the case, regular expressions come to the rescue. In the
next couple of sections, you’ll see how you can do more sophisticated string process-
ing using the [regex] class.

16.3.3 Using regular expressions to manipulate text

In the previous section, we looked at basic string processing using members on the
[string] class. Although this class offers a lot of potential, there are times when you
need to use more powerful tools. This is where regular expressions come in. As we
discussed in chapter 4, regular expressions are a domain-specific language (DSL) for
matching and manipulating text. We covered a number of examples using regular
686 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

expressions with the -match and -replace operators. This time, you’re going to
work with the regular expression class itself.

Splitting strings with regular expressions

As mentioned in chapter 3, there’s a type accelerator, [regex], for the regular expres-
sion type. The [regex] type also has a Split() method, but it’s much more power-
ful because it uses a regular expression to decide where to split strings instead of a
single character:

PS (1) > $s = "Hello-1-there-22-World!"
PS (2) > [regex]::split($s,'-[0-9]+-')
Hello
there
World!
PS (3) > [regex]::split($s,'-[0-9]+-').count
3

In this example, the fields are separated by a sequence of digits bound on either side
by a dash. This pattern couldn’t be specified with simple character-based split
operations.

When working with the .NET regular expression library, the [regex] class isn’t
the only class that you’ll run into. You’ll see this in the next example, when we look
at using regular expressions to tokenize a string.

Tokenizing text with regular expressions

Tokenization, or the process of breaking a body of text into a stream of individual
symbols, is a common activity in text processing. In chapter 2 we talked a lot about
how the PowerShell interpreter has to tokenize a script before it can be executed, and
you saw this in action in chapters 14 and 15. In the next example, we’re going to look
at how you can write a simple tokenizer for basic arithmetic expressions you might
find in a programming language. First, you need to define the valid tokens in these
expressions. You want to allow numbers made up of one or more digits; allow num-
bers made up of any of the operators +, -, *, or /; and also allow sequences of spaces.
Here’s what the regular expression to match these elements looks like:

PS (4) > $pat = [regex] "[0-9]+|\+|\-|*|/| +"

This is a pretty simple pattern using only the alternation operator | and the quantifier
+, which matches one or more instances. Because you used the [regex] cast in the
assignment, $pat contains a regular expression object. You can use this object directly
against an input string by calling its Match() method:

PS (5) > $m = $pat.match("11+2 * 35 -4")

The Match() method returns a Match object (the full type name is Sys-
tem.Text.RegularExpressions.Match). You can use the Get-Member cmdlet to
PROCESSING UNSTRUCTURED TEXT 687

explore the full set of members on this object at your leisure, but for now we’re
interested in only three members. The first member is the Success property. This
will be true if the pattern matched. The second interesting member is the Value
property, which will contain the matched value. The final member we’re interested in
is the NextMatch() method. Calling this method will step the regular expression
engine to the next match in the string, and is the key to tokenizing an entire expres-
sion. You can use this method in a while loop to extract the tokens from the source
string one at a time. In the example, you keep looping as long the Match object’s
Success property is true. Then you display the Value property and call Next-
Match()to step to the next token:

PS (6) > while ($m.Success)
>> {
>> $m.value
>> $m = $m.NextMatch()
>> }
>>
11
+
2

*

35

-
4

In the output, you see each token, one per line in the order in which they appeared in
the original string.

You now have a powerful collection of techniques for processing strings. The next
step is to apply these techniques to processing files. Of course, you also need to spend
some time finding, reading, writing, and copying files. In the next section, we’ll
review the basic file abstractions in PowerShell and then look at file processing.

16.3.4 Searching files with the Select-String cmdlet

You encountered the Select-String cmdlet earlier, but we haven’t looked at it in
great detail. We’ll fix that in this section.

The Select-String cmdlet allows you to search through collections of strings
or collections of files. It’s similar to the grep command on UNIX-derived systems
and the findstr command on Windows. Figure 16.2 shows the parameters on this
cmdlet.

You might ask why this cmdlet is needed—doesn’t the base language do every-
thing it does? The answer is yes, but searching through files is such a common opera-
tion that having a cmdlet optimized for this purpose makes sense. Let’s look at some
688 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

examples. First, you’ll search through all of the “about_*” topics in the PowerShell
installation directory to see if the phrase “wildcard description” is there:

PS (1) > Select-String "wildcard description" $pshome/en-US/about*.txt

C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_wildcards.help
.txt:42: Wildcard Description Example Match
 No match

You see that there’s exactly one match, but notice the uppercase letters in the match-
ing string. Now rerun the search using the -CaseSensitive parameter:

PS (2) > Select-String -case "wildcard description" `
>> $pshome/en-US/about*.txt
>>

This time nothing was found. If you alter the case in the pattern to match the target
string, then it works again:

PS (3) > Select-String -case "Wildcard Description" `
>> $pshome/en-US/about*.txt
>>

C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_wildcards.help
.txt:42: Wildcard Description Example Match
 No match

Select-String [-Pattern] <String[]>
-InputObject <PSObject>
[-Path] <String[]>
[-AllMatches]
[-CaseSensitive]
[-Context <Int32[]>]
[-Encoding <String>]
[-Exclude <WildcardPattern[]>]
[-Include <WildcardPattern[]>]
[-List]
[-NotMatch]
[-SimpleMatch]
[-Quiet]

Cmdlet name

Pattern to search for

If specified, search

case-sensitively

Return true if at least one match

in file or string being searched
Use simple string match

instead of regular expression

when searching

Search for files or strings

(only one can be specified)Include all matches

in line in result

object Matches

property (v2 only)

Include lines around

match in output (v2 only)

Character encoding

scheme to use; required

only if correct encoding isn’t

auto-detected (v2 only)

Only return first

match in file

Return items that weren’t

matched (v2 only)

Filter collection of files

to search using

wildcards to select files

to include or exclude

Figure 16.2 The Select-String cmdlet is a powerful tool for extracting information from

unstructured text. Parameters marked “v2 only” were introduced in PowerShell v2.
PROCESSING UNSTRUCTURED TEXT 689

Searching through files this way can sometimes produce more results than you really
need. We’ll show you how to control what’s returned next.

Using the -List and -Quiet parameters

Now let’s try out the -List parameter. Normally Select-String will find all
matches in a file. The -List switch limits the search to only the first match in a file:

PS (4) > Select-String -List wildcard $pshome/en-US/about*.txt

C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_aliases.help.txt:147: Property parameter of
Format-List with

a wildcard character (*) to display
C:\Windows\System32\WindowsPowerShell\v1.0\en-

US\about_Comment_Based_Help.help.txt:377: Accept wildcard
characters?
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_Comparison_Operators.help.txt:90: Description: Match using
the wildcard character (*).
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_Language_Keywords.help.txt:339: switch
[-regex|-wildcard|-exact][-casesensitive] (pipeline)
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_operators.help.txt:47: the like operators
(-like, -notlike), which find patterns using wildcard
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_parameters.help.txt:53: wildcard character (*) with
the Parameter parameter to find information
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_pipelines.help.txt:272: Accept wildcard characters?
true
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_properties.help.txt:112: more properties and their values.
Or, you can use the wildcard
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_remote_troubleshooting.help.txt:140: Enable the policy and
specify the IPv4 and IPv6 filters. Wildcards (*) are
C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_Switch.help.txt:65:
switch [-regex|-wildcard|-exact][-casesensitive] (pipeline)
C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_wildcards.help.txt:2: about_Wildcards

In the result, you see exactly one match per file. Try using the -Quiet switch:

PS (5) > Select-String -Quiet wildcard $pshome/en-US/about*.txt
True

This switch returns $true if any of the files contained a match and $false if none of
them did. You can also combine the two switches so that the cmdlet returns the first
match in the set of files:
690 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

PS (6) > Select-String -Quiet -List wildcard $pshome/en-US/about*.txt

C:\Windows\System32\WindowsPowerShell\v1.0\en-
US\about_aliases.help.txt:147: Property parameter of
Format-List with

 a wildcard character (*) to display

Searching a tree of files

If you want to search a more complex set of files, you can pipe the output of Get-
ChildItem into the cmdlet and it will search all of these files. Let’s search all the log
files in the system32 subdirectory:

PS (7) > Get-ChildItem -rec -Filter *.log $env:windir\system32 |
>> Select-String -List fail | Format-Table path
>>

Path

C:\WINDOWS\system32\CCM\Logs\ScanWrapper.LOG
C:\WINDOWS\system32\CCM\Logs\UpdateScan.log
C:\WINDOWS\system32\CCM\Logs\packages\RMSSP1_Client_RTW.log
C:\WINDOWS\system32\CCM\Logs\packages\RMSSP1_Client_RTW_BC_In...
C:\WINDOWS\system32\wbem\Logs\wbemcore.log
C:\WINDOWS\system32\wbem\Logs\wbemess.log
C:\WINDOWS\system32\wbem\Logs\wmiadap.log
C:\WINDOWS\system32\wbem\Logs\wmiprov.log

Notice that you’re only displaying the path. The output of Select-String is objects,
as shown:

PS (3) > Select-String wildcard $PSHOME/en-US/about*.txt |
>> Get-Member -type property
>>

 TypeName: Microsoft.PowerShell.Commands.MatchInfo

Name MemberType Definition
---- ---------- ----------
Context Property Microsoft.PowerShell.Commands.MatchInfo...
Filename Property System.String Filename {get;}
IgnoreCase Property System.Boolean IgnoreCase {get;set;}
Line Property System.String Line {get;set;}
LineNumber Property System.Int32 LineNumber {get;set;}
Matches Property System.Text.RegularExpressions.Match[] ...
Path Property System.String Path {get;set;}
Pattern Property System.String Pattern {get;set;}

With these fields, there are many things you can do by selecting specific members.
For example, the filename can be used to open the file in an editor and the Line
number can be used to set the line in the file to the matching item. In the next sec-
tion, we’ll look at some of the more exotic properties on the MatchInfo object.
PROCESSING UNSTRUCTURED TEXT 691

Searching with contexts

In the output from Get-Member, you can see that there’s a context property. This
property allows you to have Select-String include the lines before and after the
matching line:

PS (1) > Get-Help Select-String |
>> Out-String -Stream |
>> Select-String syntax -Context 3
>>

 Finds text in strings and files.

> SYNTAX
 Select-String [-Path] <string[]> [-Pattern] <string[]> [-All
 Matches] [-CaseSensitive] [-Context <Int32[]>] [-Encoding
<string>] [-Exclude <string[]>] [-Include <string[]>] [-List]
]

This code gets the lines you want but it also gets the lines before the target that you
don’t want. You can solve this issue by specifying two numbers to the parameter. The
first number is the length of the prefix context and the second is the suffix context. So
to get what you want, you just have to specify a prefix context of 0. The result looks
like this:

PS (2) > Get-Help Select-String |
>> Out-String -Stream |
>> Select-String syntax -Context 0,3
>>

> SYNTAX
 Select-String [-Path] <string[]> [-Pattern] <string[]>
 [-All Matches] [-CaseSensitive] [-Context <Int32[]>]
 [-Encoding <string>] [-Exclude <string[]>]
 [-Include <string[]>] [-List]

Getting all matches in the line

Another property on the MatchInfo object is the Matches property. This property is
used when the -AllMatches switch is specified to the cmdlet. It causes all matches in
the line to be returned instead of just the first match. You’ll use this switch to perform
the same type of tokenization that you did with regular expressions in section 16.2.2.
You’ll pipe the expression string into Select-String with the -AllMatches switch
and the same regular expression you used earlier:

PS (12) > "1 + 2 *3" |
>> Select-String -AllMatches "[0-9]+|\+|\-|*|/| +" |
>> foreach { $_.Matches } | Format-Table -AutoSize
>>
692 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

Groups Success Captures Index Length Value
------ ------- -------- ----- ------ -----
{1} True {1} 0 1 1
{ } True { } 1 1
{+} True {+} 2 1 +
{ } True { } 3 1
{2} True {2} 4 1 2
{ } True { } 5 1
{*} True {*} 6 1 *
{3} True {3} 7 1 3

You used the foreach cmdlet to isolate the Matches property and then formatted
the output as a table. You can see each of the extracted tokens in the Value field in
the Matches object. Using this mechanism, you can effectively and efficiently process
things like large log files where the output is essentially formatted as a table.

So far in this chapter, we’ve looked at manipulating text with PowerShell opera-
tors, .NET methods, and finally the Select-String cmdlet. All of this text has been
unstructured text where there’s no rigorously defined layout for that text. As a conse-
quence, you’ve had to work fairly hard to extract the information you want out of
this text. There are, however, large bodies of structured text, where the format is well
defined in the form of XML documents. In the next section, we’ll show you how to
work with XML in PowerShell.

16.4 XML STRUCTURED TEXT PROCESSING

XML (Extensible Markup Language) is becoming increasingly important in the com-
puting world. XML is being used for everything from configuration files to log files to
databases. PowerShell uses XML for its type and configuration files as well as for the
help files. For PowerShell to be effective, it has to be able to process XML documents
effectively. Let’s look at how XML is used and supported in PowerShell.

NOTE This section assumes you possess some basic knowledge of
XML markup.

We’ll look at the XML object type, as well as the mechanism that .NET provides for
searching XML documents.

16.4.1 Using XML as objects

PowerShell supports XML documents as a core data type. This means that you can
access the elements of an XML document as though they were properties on an
object. For example, let’s create a simple XML object. Start with a string that defines a
top-level node called top. This node contains three descendants: a, b, and c, each of
which has a value. Let’s turn this string into an object:

PS (1) > $d = [xml] "<top><a>onetwo<c>3</c></top>"
XML STRUCTURED TEXT PROCESSING 693

The [xml] cast takes the string and converts it into an XML object of type Sys-
tem.XML.XmlDocument. This object is then adapted by PowerShell so you can treat it
like a regular object. Let’s try this out. First, display the object:

PS (2) > $d

top

top

As you expect, the object displays one top-level property corresponding to the top-
level node in the document. Now let’s see what properties this node contains:

PS (4) > $d.top

a b c
- - -
one two 3

There are three properties that correspond to the descendants of top. You can use
conventional property notation to look at the value of an individual member:

PS (5) > $d.top.a
One

Modifying this node is as simple as assigning a new value to the node. Let’s assign the
string “Four” to the node a:

PS (6) > $d.top.a = "Four"
PS (7) > $d.top.a
Four

You can see that it’s been changed. But there’s a limitation: you can only use an actual
string as the node value. The XML object adapter won’t automatically convert nonstring
objects to strings in an assignment, so you get an error when you try it, as seen here:

PS (8) > $d.top.a = 4
Cannot set "a" because only strings can be used as values to
set XmlNode properties.
At line:1 char:8
+ $d.top.a <<<< = 4

All of the normal type conversions apply, of course. The node c contains a string
value that’s a number:

PS (8) > $d.top.c.gettype().FullName
System.String

You can add this field to an integer, which will cause it to be converted into an integer:

PS (9) > 2 + $d.top.c
5

Because you can’t simply assign to elements in an XML document, we’ll dig a little
deeper into the [xml] object and show how you can add elements.
694 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

16.4.2 Adding elements to an XML object

Let’s add an element d to this document. To do so, you need to use the methods on
the XML document object. First, you have to create the new element:

PS (10) > $el= $d.CreateElement("d")

In text, what you’ve created looks like <d></d>. The tags are there, but they’re empty.
Let’s set the element text, the “inner text,” to a value and then show the element:

PS (11) > $el.set_InnerText("Hello")

#text

Hello

Notice that you’re using the property setter method here. This is because the XML
adapter hides the basic properties on the XmlNode object. The other way to set this
would be to use the PSBase member as you did with the hashtable example earlier in
this chapter:

PS (12) > $ne = $d.CreateElement("e")
PS (13) > $ne.InnerText = "World"
PS (14) > $d.top.AppendChild($ne)

#text

World

Take a look at the revised object:

PS (15) > $d.top

a : one
b : two
c : 3
d : Hello
e : World

The document now has five members instead of the original three. But what does the
string look like? It’d be great if you could simply cast the document back to a string
and see what it looks like:

PS (16) > [string] $d
System.Xml.XmlDocument

Unfortunately, as you can see, it isn’t that simple. Instead, save the document as a file
and display it:

PS (17) > $d.save("c:\temp\new.xml")
PS (18) > type c:\temp\new.xml
<top>
 <a>one
 two
 <c>3</c>
XML STRUCTURED TEXT PROCESSING 695

 <d>Hello</d>
 <e>World</e>
</top>

The result is a nicely readable text file. Now that you know how to add children to a
node, how can you add attributes? The pattern is basically the same as with elements.
First, create an attribute object:

PS (19) > $attr = $d.CreateAttribute("BuiltBy")

Next, set the value of the text for that object:

PS (20) > $attr.Value = "Windows PowerShell"

And finally add it to the top-level document:

PS (21) > $d.DocumentElement.SetAttributeNode($attr)

#text

Windows PowerShell

Let’s look at the top node once again:

PS (22) > $d.top

BuiltBy : Windows PowerShell
a : one
b : two
c : 3
d : Hello
e : World

The attribute has been added.

XML and formatting

Although PowerShell’s XML support is good, there are some issues. The PowerShell
formatting code has a bug: trying to display an XML node that has multiple children
with the same name causes an error to be generated by the formatter. For example,
the statement

[xml] $x =
 "<root><item>1</item><item>2</item></root>"; $x.Root

will result in an error. This can be annoying when you’re trying to explore a
document. By accessing the Item property on the Root node as follows

[xml] $x =
 "<root><item>1</item><item>2</item></root>" ; $x.Root.Item

you’ll be able to see the elements without error. Also, for experienced .NET XML
and XPath users, there are times when the XML adapter hides properties on an Xml-
696 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

It’s time to save the document:

PS (23) > $d.save("c:\temp\new.xml")

Then retrieve the file. You can see how the attribute has been added to the top node
in the document:

PS (24) > type c:\temp\new.xml
<top BuiltBy="Windows PowerShell">
 <a>one
 two
 <c>3</c>
 <d>Hello</d>
</top>

You’ve constructed, edited, and saved XML documents, but you haven’t loaded an
existing document yet, so that’s the next step.

16.4.3 Loading and saving XML files

At the end of the previous section, you saved an XML document to a file:

PS (1) > $nd = [xml] (Get-Content -Read 10kb c:\temp\new.xml)

Here’s what you’re doing with this code. You use the Get-Content cmdlet to read the
file using a large read-count size. When you have the text, you cast the whole thing
into an XML document.

TIP By default, Get-Content reads one record at a time. This process
can be quite slow. When processing large files, you should use the
-ReadCount parameter to specify a block size of –1. Doing so will
cause the entire file to be loaded and processed at once, which is much
faster. Alternatively, here’s another way to load an XML document
using the .NET methods:
$nd = [xml]"<root></root>").Load("C:\temp\new.xml")

Note that this does require that the full path to the file be specified.

(continued)

Document or XmlNode object that the .NET programmer expects to find. In these
scenarios, the PSBase property is the workaround that lets you access the raw .NET
object.
Finally, some XPath users may get confused by PowerShell’s use of the property
operator . to navigate an XML document. XPath uses / instead. Despite these
issues, for the nonexpert user or for “quick and dirty” scenarios, the XML adapter
provides significant benefit in terms of reducing the complexity of working with
XML.
XML STRUCTURED TEXT PROCESSING 697

Let’s verify that the document was read properly by dumping out the top-level node
and then the child nodes:

PS (2) > $nd

top

top

PS (3) > $nd.top

BuiltBy : Windows PowerShell
a : one
b : two
c : 3
d : Hello

All is as it should be. Even the attribute is there.
Although this is a simple approach and the one you’ll probably use most often, it’s

not necessarily the most efficient approach because it requires loading the entire doc-
ument into memory. For very large documents or collections of many documents,
loading all the text into memory may become a problem. In the next section, we’ll look
at some alternative approaches that, though more complex, are more memory efficient.

Using the XmlReader class

Our previously discussed method for loading an XML file is simple but not especially
efficient. It requires that you load the file into memory, make a copy of the file while
turning it into a single string, and create an XML document representing the entire file
using the XML Document Object Model (DOM) representation. The DOM is what
allows you to treat an XML document as a hierarchy of objects, but to do so it con-
sumes a lot of memory. A much more space-efficient way to process XML documents
is to use the System.Xml.XmlReader class. This class streams through the document
one element at a time instead of loading the whole thing into memory. You’ll write a
function that will use the XML reader to stream through a document and output it
properly indented—an XML pretty-printer, if you will. Here’s what you want the out-
put of this function to look like when it dumps its built-in default document:

PS (1) > Format-XmlDocument
<top BuiltBy = "Windows PowerShell">
 <a>
 one

 two

 <c>
 3
 </c>
 <d>
698 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

 Hello
 </d>
</top>

Now let’s test our function on a more complex document where there are more attri-
butes and more nesting. The following listing shows how to create this document.

@'
<top BuiltBy = "Windows PowerShell">

 one

 <b pronounced="bee">
 two

 <c one="1" two="2" three="3">
 <one>
 1
 </one>
 <two>
 2
 </two>
 <three>
 3
 </three>
 </c>
 <d>
 Hello there world
 </d>
</top>
'@ > c:\temp\fancy.xml

When you run the function in listing 16.3, you see

PS (2) > Format-XmlDocument c:\temp\fancy.xml
<top BuiltBy = "Windows PowerShell">

 one

 <b pronounced = "bee">
 two

 <c one = "1"two = "2"three = "3">
 <one>
 1
 </one>
 <two>
 2
 </two>
 <three>
 3
 </three>
 </c>

Listing 16.3 Creating the text XML document
XML STRUCTURED TEXT PROCESSING 699

 <d>
 Hello there world
 </d>
</top>

which is close to the original document. The code for the Format-XmlDocument
function is shown in the next listing.

function global:Format-XmlDocument ($doc="$PWD\fancy.xml")
{
 $settings = New-Object System.Xml.XmlReaderSettings
 $doc = (Resolve-Path $doc).ProviderPath
 $reader = [System.Xml.XmlReader]::create($doc, $settings)
 $indent=0
 function indent ($s) { " "*$indent+$s }
 while ($reader.Read())
 {
 if ($reader.NodeType -eq [Xml.XmlNodeType]::Element)
 {
 $close = $(if ($reader.IsEmptyElement) { "/>" } else { ">" })
 if ($reader.HasAttributes)
 {
 $s = indent "<$($reader.Name) "
 [void] $reader.MoveToFirstAttribute()
 do
 {
 $s += "$($reader.Name) = `"$($reader.Value)`" "
 }
 while ($reader.MoveToNextAttribute())
 "sclose"
 }
 else
 {
 indent "<$($reader.Name)$close"
 }
 if ($close -ne '/>') {$indent++}
 }
 elseif ($reader.NodeType -eq [Xml.XmlNodeType]::EndElement)
 {
 $indent--
 indent "</$($reader.Name)>"
 }
 elseif ($reader.NodeType -eq [Xml.XmlNodeType]::Text)
 {
 indent $reader.Value
 }
 }
 $reader.close()
}

Format-XmlDocument is a complex function, so it’s worthwhile to take it one piece
at a time. Let’s start with the basic function declaration, where it takes an optional

Listing 16.4 The Format-XmlDocument function

Create settings
object

b

Define formatting
functionc Process

element nodes
d

Increase
indent level

e

Format text
elementf
700 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

argument that names a file. Next you create the settings object B you need to pass in
when you create the XML reader object. You also need to resolve the path to the doc-
ument, because the XML reader object requires an absolute path (see chapter 17 for
an explanation of why this is). Now you can create the XmlReader object itself. The
XML reader will stream through the document, reading only as much as it needs, as
opposed to reading the entire document into memory.

You want to display the levels of the document indented, so you initialize an
indent level counter and a local function c to display the indented string. Now
you’ll read through all of the nodes in the document. You’ll choose different behavior
based on the type of the node. An element node d is the beginning of an XML ele-
ment. If the element has attributes, then you’ll add them to the string to display.
You’ll use the MoveToFirstAttribute() and MoveToNextAttribute() methods
to move through the attributes. (Note that this pattern parallels the enumerator pat-
tern you saw in chapter 5 with the $foreach and $switch enumerators.) If there are
no attributes, just display the element name. At each new element, increase e the
indent level if it’s not an empty element tag. If it’s the end of an element, decrease the
indent level and display the closing tag. If it’s a text element, just display the value of
the element f. Finally, close the reader. You always want to close a handle received
from a .NET method. It’ll eventually be discarded during garbage collection, but it’s
possible to run out of handles before you run out of memory.

This example illustrates the basic techniques for using an XML reader object to
walk through an arbitrary document.

But where are the pipelines, you ask? Neither of these last two examples has taken
advantage of PowerShell’s pipelining capability. In the next section, we’ll remedy this
omission.

16.4.4 Processing XML documents in a pipeline

Pipelining is one of the signature characteristics of shell environments in general and
PowerShell in particular. Because the previous examples didn’t take advantage of this
feature, we’ll look at how it can be applied. You’re going to write a function that scans
all the PowerShell help files, both the text about topics and the XML files.

NOTE PowerShell v1 didn’t have a way to search help, so this exam-
ple is useful as well as illustrative. In PowerShell v2, the Get-Help
cmdlet was enhanced to search all help using wildcards.

For example, let’s search for all the help topics that mention the word “scriptblock”:

PS (1) > Search-Help scriptblock
about_Display
about_Types
Get-Process
Group-Object
Measure-Command
Select-Object
XML STRUCTURED TEXT PROCESSING 701

Trace-Command
ForEach-Object
Where-Object

This tool provides a simple, fast way to search for all the help topics that contain a
particular pattern. The source for the function is shown in this listing.

function Search-Help
{
 param ($pattern = $(throw "you must specify a pattern"))

 Select-String -List $pattern $PSHome\about*.txt |
 %{$_.filename -replace '\..*$'}

 dir $PShome*dll-help.*xml |
 foreach { [xml] (get-content -read -1 $_) } |
 foreach{$_.helpitems.command} |
 where {$_.get_Innertext() -match $pattern} |
 foreach {$_.details.name.trim()}
}

The Search-Help function takes one parameter to use as the pattern for which
you’re searching. Listing 16.5 uses the throw keyword described in chapter 14 to gen-
erate an error if the parameter wasn’t provided.

First, you search all the text files in the PowerShell installation directory and
return one line for each matching file. Then you pipe this line into ForEach-Object
(or, more commonly, its alias foreach) to extract the base name of the file using the
-replace operator and a regular expression. This operation will list the filenames in
a form that you can type back into Get-Help.

Next, you get a list of the XML help files and turn each file into an XML object.
You specify a read count of -1 so the whole file is read at once. You extract the com-
mand elements from the XML document and then see if the text of the command
contains the pattern you’re looking for. If it does, then you emit the name of the
command, trimming off unnecessary spaces.

As well as being a handy way to search help, this function is a nice illustration of
using the divide-and-conquer strategy when writing scripts in PowerShell. Each step
in the pipeline brings you incrementally closer to the final solution.

Now that you know how to manually navigate through an XML document, let’s
look at some of the .NET Framework’s features that make navigation a bit easier and
more efficient.

16.4.5 Processing XML with XPath

The support for XML in the .NET Framework is extensive so we can’t possibly cover
all of it in this book. There is, however, one more useful thing that we want to cover:

Listing 16.5 Search-Help
702 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

the XML Path Language, also known as XPath. This is a path-based pattern language,
which means it’s like the collision between paths, wildcards, and regular expressions.
It’s useful because it gives you a fast, concise way to select pieces of information from
an XML document.

In PowerShell v1, you had to work with the raw .NET classes to be able to use
XPath. PowerShell v2 introduced a new cmdlet, Select-Xml, that makes XPath
much more accessible. In this section, we’ll look at how XPath expressions work and
use them to extract information from documents. We’ll start with a short overview of
the XPath fundamentals.

XPath basics

XPath is another domain-specific language, this time for specifying patterns that
allow you to concisely extract information from XML documents. You’ve already seen
patterns for working with hierarchies in the file system in the form of file path and
wildcards. You’ve worked with text-oriented pattern languages like regular expres-
sions. XPath combines these two concepts into a single mechanism for accessing data
in an XML document. An XPath expression can be used to extract nodes, content, or
attributes from a document. It also allows calculations to be used in the expressions to
get even greater flexibility. Table 16.2 shows the basic patterns in this language and
the corresponding commands you’d use in the file system.

Things get a bit more complex because XML allows for multiple nodes with the same
name and allows attributes on nodes. Next, we’ll set up a test document and explore
these more complex patterns.

Setting up the test document

You’ll work through a couple of examples using XPath, but first you need a document
to process. The following script fragment creates a string you’ll use for the examples.
It’s a fragment of a bookstore inventory database. Each record in the database has the

Table 16.2 Examples of basic XPath patterns

XPath expression Description Equivalent file operation

/ Gets all of the nodes under the document root dir /

. Selects the current node Get-Item .

.. Selects the parent node Get-Item ..

A Selects all of the children under node a dir a

/a/b/c Gets all nodes under path /a/b/c dir /a/b/c

//b Gets all elements with the name b anywhere in
the document

dir -rec -Filter b
XML STRUCTURED TEXT PROCESSING 703

name of the author, the book title, and the number of books in stock. Save this string
in a variable called $inventory, as shown in this listing.

$inventory = @"
 <bookstore>
 <book genre="Autobiography">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 <stock>3</stock>
 </book>
 <book genre="Novel">
 <title>Moby Dick</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 <stock>10</stock>
 </book>
 <book genre="Philosophy">
 <title>Discourse on Method</title>
 <author>
 <first-name>Rene</first-name>
 <last-name>Descartes</last-name>
 </author>
 <price>9.99</price>
 <stock>1</stock>
 </book>
 <book genre="Computers">
 <title>Windows PowerShell in Action</title>
 <author>
 <first-name>Bruce</first-name>
 <last-name>Payette</last-name>
 </author>
 <price>39.99</price>
 <stock>5</stock>
 </book>
 </bookstore>
"@

Now that you’ve created your test document, let’s see what you can do with it.

The Select-Xml cmdlet

PowerShell v2 introduced the Select-Xml cmdlet, which allows you to do XPath
queries without resorting to the raw .NET Framework. The syntax for this cmdlet is
shown in figure 16.3.

Listing 16.6 Creating the bookstore inventory
704 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

You’re going to use this cmdlet in most of the examples in this section. Let’s start with
something very simple, getting the bookstore node at the root of the document:

PS (1) > Select-Xml -Content $inventory -XPath /bookstore

Node Path Pattern
---- ---- -------
bookstore InputStream /bookstore

Unfortunately, the output doesn’t look very promising. The node object you’re after is
mixed in with the context of the query: where the processed text came from and what
the query was. To extract the node object, you just have to reference it as a property:

PS (2) > (Select-Xml -Content $inventory -XPath /bookstore).Node

book

{book, book, book, book}

This output shows that there are four child nodes under bookstore. So extend your
query to get these child items in a similar manner to how you could get the contents
of a directory in the file system:

PS (3) > Select-Xml -Content $inventory -XPath /bookstore/book

Node Path Pattern
---- ---- -------
book InputStream /bookstore/book
book InputStream /bookstore/book
book InputStream /bookstore/book
book InputStream /bookstore/book

And here’s the nested-node issue again. Again you have to use the . operator to
retrieve the actual content. This works for one node

PS (4) > (Select-Xml -Content $inventory `
>> -XPath /bookstore/book)[0].Node
>>

Select-XML
-Content <string[]>
[-Path] <string[]>
[-Xml] <XmlNode[]>
[-Xpath] <string>
[-Namespace <hashtable>]

Cmdlet name

Xpath pattern

to search for Optionally used to specify

XML name space to search

Search for files, strings, or XML objects

(only one of these can be specified);

if string is specified as first positional

argument, it’s treated as file path,

not content

Figure 16.3 The Select-Xml cmdlet parameters. This cmdlet allows you to perform

XPath queries on XML documents stored in files or strings.
XML STRUCTURED TEXT PROCESSING 705

genre : Autobiography
title : The Autobiography of Benjamin Franklin
author : author
price : 8.99
stock : 3

but it won’t work for the entire collection. For each of the nodes, you need to extract
the Node property, and so you apply the foreach cmdlet:

PS (5) > Select-Xml -Content $inventory -XPath /bookstore/book |
>> foreach { $_.node }
>>

genre : Autobiography
title : The Autobiography of Benjamin Franklin
author : author
price : 8.99
stock : 3

genre : Novel
title : Moby Dick
author : author
price : 11.99
stock : 10

genre : Philosophy
title : Discourse on Method
author : author
price : 9.99
stock : 1

genre : Computers
title : Windows PowerShell in Action
author : author
price : 39.99
stock : 5

This time you see the properties of all four nodes. If you want to extract just the title
nodes, add title to the end of the path:

PS (6) > Select-Xml -Content $inventory -XPath /bookstore/book |
>> foreach { $_.node.title }
>>
The Autobiography of Benjamin Franklin
Moby Dick
Discourse on Method
Windows PowerShell in Action
PS (7) > Select-Xml -Content $inventory `
>> -XPath /bookstore/book/title |
>> foreach { $_.node }
>>

#text

The Autobiography of Benjamin Franklin
706 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

Moby Dick
Discourse on Method
Windows PowerShell in Action

At this point, using foreach all the time is getting tedious, so let’s define a filter to
simplify this:

PS (8) > filter node { $_.node }

This filter will make the examples a little less messy.
Now let’s look at some more advanced examples. So far, you’ve returned the

entire set of nodes, but when querying for some information, you usually just want to
get part of that information. You can do this quite easily with the Where-Object
cmdlet:

PS (9) > Select-Xml -Content $inventory -XPath /bookstore/book |
>> node | where { [double] ($_.price) -lt 10}
>>

genre : Autobiography
title : The Autobiography of Benjamin Franklin
author : author
price : 8.99
stock : 3

genre : Philosophy
title : Discourse on Method
author : author
price : 9.99
stock : 1

This example retrieves all the books priced less than $10. XPath has built-in function-
ality that’s similar to the Where-Object cmdlet: predicate expressions. These expres-
sions appear in the path surrounded by square brackets and can contain simple logical
expression. Nodes where the expression evaluates to true are returned. Here’s an
example that uses a predicate expression in the XPath path to do the same thing you
did with the Where-Object cmdlet:

PS (10) > Select-Xml -Content $inventory `
>> -XPath '/bookstore/book[price < 10]' |
>> node
>>

genre : Autobiography
title : The Autobiography of Benjamin Franklin
author : author
price : 8.99
stock : 3

genre : Philosophy
title : Discourse on Method
author : author
price : 9.99
stock : 1
XML STRUCTURED TEXT PROCESSING 707

You get the same result in both cases. Notice that in the predicate expression you were
able to reference price directly as opposed to [double] ($_.price) the way you
did in the switch case. Because the expression is being executed by the XPath engine,
it can make these optimizations, simplifying the reference to the price item and treat-
ing it as a number automatically.

In the previous example, the price item was actually a path relative to the current
node. You can use things like .. to reference the parent node. Let’s write our expres-
sion so that it returns only the titles of the books whose price is less than $10:

PS (11) > Select-Xml -Content $inventory `
>> -XPath '/bookstore/book/title[../price < 10]' |
>> node
>>

#text

The Autobiography of Benjamin Franklin
Discourse on Method

The path selects the title node but filters on the path ../price, which is a sibling
to the title node.

As we discussed earlier, elements are all that an XML document can contain.
Another major item is the attribute. XPath allows an attribute to be referenced
instead of an element by prefixing the name with @, as you see here:

PS (12) > Select-Xml -Content $inventory -XPath '//@genre' | node

#text

Autobiography
Novel
Philosophy
Computers

This example shows the genre attribute for each of the book nodes. You can also use
attributes in predicate expressions in the path:

PS (13) > Select-Xml -Content $inventory `
>> -XPath '//book[@genre = "Novel"]' |
>> node
>>

genre : Novel
title : Moby Dick
author : author
price : 11.99
stock : 10

This example uses the @genre attribute in the node to only return books in the Novel
genre. Note that, unlike the PowerShell relational operators, XPath operators are case
sensitive. If you specify novel for the genre instead of Novel

PS (14) > Select-Xml -Content $inventory `
>> -XPath '//book[@genre = "novel"]' |
708 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

>> node
>>

nothing is retrieved, whereas doing the same thing with the Where-Object cmdlet
works just fine:

PS (15) > Select-Xml -Content $inventory `
>> -XPath '//book' | node |
>> where {$_.genre -eq 'novel' }
>>

genre : Novel
title : Moby Dick
author : author
price : 11.99
stock : 10

This should make it clear that XPath is its own language and doesn’t necessarily
behave the same way as the equivalent expression in PowerShell.

Now let’s do some processing on the data in the document instead of just retriev-
ing the node. In this example, you’ll calculate the total value of the inventory, which
is the sum of the product of multiplying the price node and the stock node:

PS (16) > Select-Xml -Content $inventory `
>> -XPath '//book' | node |
>> foreach {[double] $_.price * $_.stock } |
>> Measure-Object -Sum | foreach { $_.sum }
>>
356.81

This code uses XPath to extract the relevant nodes and then uses PowerShell to per-
form the calculations.

The examples in this section illustrate the basic mechanism for using XPath to
extract data from documents. They’re far from comprehensive, though. There’s a lot
more to learn about the details of the XPath language—the functions it supports,
how to do calculations, and so forth—but this level of detail is probably not needed
for most scenarios because PowerShell can do all of these things in a much more
flexible way.

In this section, we introduced XPath as a well-known, standard way of accessing
documents. It’s an effective tool, but it involves learning an entirely separate language
for expression queries. Microsoft addressed this multilanguage issue (for SQL as well
as XML) by introducing a .NET feature called the Language Integrated Query
(LINQ). The flavor of LINQ for XML is called XLinq and is a new API for working
with XML. We’ll briefly touch on this in the next section.

16.4.6 A hint of XLinq

XPath is a domain-specific language (DSL) for querying XML documents—which
means that you must learn new syntax and semantics to use it. With XLinq, you just
have to learn a few new methods and not a new syntax.
XML STRUCTURED TEXT PROCESSING 709

Because the XLinq library isn’t automatically loaded when PowerShell starts,
you’ll use Add-Type to add the necessary assemblies:

PS (17) > Add-Type -AssemblyName System.Core
PS (18) > Add-Type -AssemblyName System.Xml.Linq

You’re ready to try out a query. Let’s re-implement the previous example where you
calculated the value of the inventory using XLinq. First, you have to create an
instance of an XDocument document, which is the class that XLinq uses to represent a
document instead of the XmlDocument, which is what the built-in XML support uses.
Even so, as is the case with [xml], you can just cast your inventory string into an
XDocument instance:

PS (19) > $xldoc = [System.Xml.Linq.XDocument] $inventory

Now that you have the document, you can run the query. As before, you need to
retrieve all of the book elements that are descendants of the root node. To do so, all
you have to do is call the Descendants() method on the document and pass in the
name of the elements you want to retrieve. Then you have to extract the properties
from the nodes that are returned. XLinq isn’t natively supported in PowerShell, so
you can’t use the simple property references as you did in the XPath case. Instead,
you have to call the Element() method on the node, passing in the name of the ele-
ment to retrieve:

PS (20) > $xldoc.Descendants("book") |
>> foreach {
>> [double] $_.Element("price").value *
>> $_.Element("stock").value } |
>> Measure-Object -Sum | foreach { $_sum }
>>
356.81

Once you have the elements, the rest is basically the same: you cast the element strings
into numbers, multiply them, and then use Measure-Object to sum the results.

We’ve looked at how to use the XML facilities in the .NET Framework to create
and process XML documents. As the XML format is used more frequently in the com-
puter industry, these features will become critical. We’ve only scratched the surface of
what’s available in the .NET Framework. We’ve covered some of the XML classes and
a little of the XPath query language. We haven’t discussed how to use the Extensible
Stylesheet Language Transformations (XSLT) language, XML schemas, or any of a num-
ber of XML-related standards and tools. That said, most of these tools are directly
available from within the PowerShell environment. The interactive nature of the
PowerShell environment makes it an ideal place to explore, experiment, and learn
more about XML. In the next section, we’ll show you how to generate XML docu-
ments from PowerShell objects automatically by using the built-in cmdlets.
710 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

16.4.7 Rendering objects as XML

Up to this point, you’ve been working with XML as objects. Now you’re going to
switch it around and render objects into XML using cmdlets. PowerShell provides two
cmdlets for rendering objects as XML, each with slightly different purposes. The
ConvertTo-Xml renders objects with relatively simple but verbose format. This cmd-
let is useful for interoperating between PowerShell and other environments. Conver-
sions using Export-Clixml are much more complex but also more compact and are
intended for efficiently passing data between instances of PowerShell. We’ll start with
the simpler of the two: ConvertTo-Xml.

The ConvertTo-Xml cmdlet

The ConvertTo-Xml cmdlet does a fairly simple and direct rendering of PowerShell
objects into XML. Its primary value is to facilitate interoperability between Power-
Shell and other environments (including non-Windows environments). Because the
encoding used is simple, it can be easily consumed by other applications. The signa-
ture for this command is shown in figure 16.4.

As you see in the figure, the cmdlet takes an object as an argument or (more
commonly) as pipeline input and generates an XML document from it. Let’s use it to
produce XML from a list of Windows services. You’ll get the list using the Get-
Service cmdlet, but you’ll limit the number of services you’ll work with to three
for brevity’s sake:

PS (1) > (Get-Service)[0..2]

Status Name DisplayName
------ ---- -----------
Stopped AdtAgent Operations Manager Audit Forwarding...
Running AeLookupSvc Application Experience
Stopped ALG Application Layer Gateway Service

ConvertTo-XML
[-InputObject] <psobject>
[-As <string>]
[-Depth <int>]
[-NoTypeInformation]

Cmdlet name

Depth of subproperties

to include in output

document; default is 2 Output document won’t

include information about

type of object converted

Object to convert to

XML document
How output will be written:

String, Stream, or

Document (default)

Figure 16.4 The ConvertTo-Xml cmdlet parameters. This cmdlet facilitates

interoperation between PowerShell and other applications by using a simple

XML encoding.
XML STRUCTURED TEXT PROCESSING 711

In this output, you see the normal PowerShell presentation for ServiceController
objects. Convert them into XML:

PS (2) > $doc = (Get-Service)[0..2] | ConvertTo-Xml

Look at the resulting XML document:

PS (3) > $doc

xml Objects
--- -------
version="1.0" Objects

The collection of objects is rendered into an XML document with the top node
Object, which, in turn, contains a collection of Object elements as shown:

PS (4) > $doc.Objects.Object

Type Property
---- --------
System.ServiceProcess.ServiceCo... {Name, RequiredServices, CanPau...
System.ServiceProcess.ServiceCo... {Name, RequiredServices, CanPau...
System.ServiceProcess.ServiceCo... {Name, RequiredServices, CanPau...

Here you see that each Object element has the type and properties of the source object
included in the output document. But this representation doesn’t show the document
format effectively, so use the -As parameter to display the document as a single string:

PS (5) > $services[0] | ConvertTo-Xml -As string
<?xml version="1.0"?>
<Objects>
 <Object Type="System.ServiceProcess.ServiceController">
 <Property Name="Name" Type="System.String">AdtAgent</Property>
 <Property Name="RequiredServices"
 Type="System.ServiceProcess.ServiceController[]">
 <Property Type="System.ServiceProcess.ServiceController">
 System.ServiceProcess.ServiceController</Property>
 <Property Type="System.ServiceProcess.ServiceController">
 System.ServiceProcess.ServiceController</Property>
 </Property>
 <Property Name="CanPauseAndContinue" Type="System.Boolean">
 False</Property>
 <Property Name="CanShutdown" Type="System.Boolean">
 False</Property>
 <Property Name="CanStop" Type="System.Boolean">False</Property>
 <Property Name="DisplayName" Type="System.String">
 Operations Manager Audit Forwarding Service</Property>
 <Property Name="DependentServices"
 Type="System.ServiceProcess.ServiceController[]" />
 <Property Name="MachineName" Type="System.String">.</Property>
 <Property Name="ServiceName" Type="System.String">
 AdtAgent</Property>
 <Property Name="ServicesDependedOn"
 Type="System.ServiceProcess.ServiceController[]">
 <Property Type="System.ServiceProcess.ServiceController">
712 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

 System.ServiceProcess.ServiceController</Property>
 <Property Type="System.ServiceProcess.ServiceController">
 System.ServiceProcess.ServiceController</Property>
 </Property>
 <Property Name="ServiceHandle"
 Type="System.Runtime.InteropServices.SafeHandle" />
 <Property Name="Status"
 Type="System.ServiceProcess.ServiceControllerStatus">
 Stopped</Property>
 <Property Name="ServiceType"
 Type="System.ServiceProcess.ServiceType">
 Win32OwnProcess</Property>
 <Property Name="Site" Type="System.ComponentModel.ISite" />
 <Property Name="Container" Type="System.ComponentModel.IContainer" />
</Object>

Now the structure of the saved data is much clearer. The type name of the original
object is included as an attribute on the Object tab. The child elements of Object
are a collection of Property objects with the property name and type as attributes
and the value as the element content.

One thing we didn’t mention yet was the “serialization” depth. The default depth
is 2. You see this in the RequiredServices property, whose content is two addi-
tional nested properties. You can override the default depth using the -Depth param-
eter on the cmdlet.

NOTE You might be tempted to set the depth to a larger value to pre-
serve more information, but be aware that the size of the document can
explode with deep nesting. For example, saving the process table with
the default depth of 2 produces a 700 KB file, which is already quite
large. Increasing the depth to 3 explodes the file to 7 MB—a tenfold
increase in size!

The other parameter on the cmdlet that we haven’t talked about is -NoType-
Information. When you specify this parameter, no type information is included in
the generated document. Let’s see how the resulting document looks without the type
information by rerunning the example with -NoTypeInformation:

PS (6) > $services[0] | ConvertTo-Xml -NoTypeInformation -As string
<?xml version="1.0"?>
<Objects>
 <Object>
 <Property Name="Name">AdtAgent</Property>
 <Property Name="RequiredServices">
 <Property>System.ServiceProcess.ServiceController</Property>
 <Property>System.ServiceProcess.ServiceController</Property>
 </Property>
 <Property Name="CanPauseAndContinue">False</Property>
 <Property Name="CanShutdown">False</Property>
 <Property Name="CanStop">False</Property>
 <Property Name="DisplayName">Operations Manager Audit Forwarding
XML STRUCTURED TEXT PROCESSING 713

Service</Property>
 <Property Name="DependentServices" />
 <Property Name="MachineName">.</Property>
 <Property Name="ServiceName">AdtAgent</Property>
 <Property Name="ServicesDependedOn">
 <Property>System.ServiceProcess.ServiceController</Property>
 <Property>System.ServiceProcess.ServiceController</Property>
 </Property>
 <Property Name="ServiceHandle" />
 <Property Name="Status">Stopped</Property>
 <Property Name="ServiceType">Win32OwnProcess</Property>
 <Property Name="Site" />
 <Property Name="Container" />
 </Object>
</Objects>
PS (7) >

This simplifies the output even further. It makes sense if the target consumer for the
generated document isn’t a .NET-based application and therefore wouldn’t be able to
do much with the type names.

The ConvertTo-XML cmdlet is useful for interoperation with non-PowerShell
applications, but for PowerShell-to-PowerShell communication, too much informa-
tion is lost. For the PowerShell-to-PowerShell scenario, a much better solution is to
use the Export-Clixml and Import-Clixml cmdlets. We’ll cover these next.

The Import-Clixml and Export-Clixml cmdlets

The next two cmdlets we’re going to cover are Import-Clixml and Export-Clixml.
These cmdlets provide a way to save and restore collections of objects from the Pow-
erShell environment with higher fidelity (less data loss) than the ConvertTo-Xml
cmdlet. The signature for Export-Clixml is shown in figure 16.5.

The encoding these cmdlets use is essentially what PowerShell remoting uses to
send objects between hosts, as discussed in chapter 12 (section 12.6.5).

Export-Clixml
-InputObject <PSObject>
[-Path] <String>
[-Depth <Int32>]
[-Force]
[-NoClobber]
[-Encoding <String>]

Cmdlet name

Specifes depth of

subproperties to include

in output document;

default is 1

Object to convert to

XML documentPath to write

output file to

Force overwriting

existing files even if

they’re marked

read-only

Don’t overwrite

(clobber) existing file

even if it’s writable

Character encoding to use when writing

the file: ASCII, UTF8 (default), UTF7,

UTF32, Unicode, BigEndianUnicode,

Default, or OEM

Figure 16.5 The Export-Clixml cmdlet is used to export or serialize PowerShell objects

to a file using an encoding similar to the remoting protocol object encoding.
714 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

To recap our discussion, we mentioned that there’s only a small set of types that
serialize with fidelity and that other types are shredded into property bags. With the
*-Clixml cmdlets, you can see what the encoding looks like. Let’s try this out. First,
create a collection of objects: a hashtable, a string, and some numbers:

PS (1) > $data = @{a=1;b=2;c=3},"Hi there", 3.5

Now serialize them to a file using the Export-Clixml cmdlet:

PS (2) > $data | Export-Clixml out.xml

Let’s see what the file looks like:

PS (3) > type out.xml
<Objs Version="1.1.0.1"
 xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="0">
 <TN RefId="0">
 <T>System.Collections.Hashtable</T>
 <T>System.Object</T>
 </TN>
 <DCT>
 <En>
 <S N="Key">a</S>
 <I32 N="Value">1</I32>
 </En>
 <En>
 <S N="Key">b</S>
 <I32 N="Value">2</I32>
 </En>
 <En>
 <S N="Key">c</S>
 <I32 N="Value">3</I32>
 </En>
 </DCT>
 </Obj>
 <S>Hi there</S>
 <Db>3.5</Db>
</Objs>

This first part identifies the schema for the CLIXML object representation:

<Objs Version="1.1.0.1"
 xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="0">
 <TN RefId="0">
 <T>System.Collections.Hashtable</T>
 <T>System.Object</T>
 </TN>
 <DCT>

Here are the key-value pair encodings:

 <En>
 <S N="Key">a</S>
XML STRUCTURED TEXT PROCESSING 715

 <I32 N="Value">1</I32>
 </En>
 <En>
 <S N="Key">b</S>
 <I32 N="Value">2</I32>
 </En>
 <En>
 <S N="Key">c</S>
 <I32 N="Value">3</I32>
 </En>

Now encode the string element

 <S>Hi there</S>

and the double-precision number:

 <Db>3.5</Db>

Import these objects back into the session using Import-Clixml

PS (5) > $new_data = Import-Clixml out.xml

and compare the old and new collections:

PS (6) > $new_data

Name Value
---- -----
a 1
b 2
c 3
Hi there
3.5

PS (7) > $data

Name Value
---- -----
a 1
b 2
c 3
Hi there
3.5

They match, member for member.
These cmdlets provide a simple way to save and restore collections of objects, but

they have limitations. They can only load and save a fixed number of primitive types.
Any other type is “shredded,” which means it’s broken apart into a property bag com-
posed of these primitive types. This allows any type to be serialized but with some
loss of fidelity. In other words, objects can’t be restored to exactly the same type they
were originally. This approach is necessary because there can be an infinite number of
object types, not all of which may be available when the file is read back. Sometimes
716 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

you don’t have the original type definition. Other times, there’s no way to re-create
the original object, even with the type information, because the type doesn’t support
this operation. By restricting the set of types that are serialized with fidelity, the
Clixml format can always recover objects regardless of the availability of the original
type information.

There’s also another limitation on how objects are serialized. An object has prop-
erties. Those properties are also objects that have their own properties, and so on.
This chain of properties that have properties is called the serialization depth. For some
of the complex objects in the system, such as the Process object, serializing through
all the levels of the object results in a huge XML file. To constrain this, the serializer
only traverses to a certain depth. The default depth is 2. You can override this default
either on the command line using the -Depth parameter or by placing a <Serial-
izationDepth> element in the type’s description file. If you look at $PSHome/
types.ps1xml, you can see some examples of where this has been done.

16.5 SUMMARY

In this chapter, we covered the kind of tasks that are the traditional domain of script-
ing languages and shells: paths, files and text processing. You learned about the
following:

• Basic text processing—how to split and join strings using the [string]::
Split() and [string]::Join() methods to augment the -split and -join
operators.

• More advanced text processing with the [regex] class. You saw how to use this
class to conduct more advanced text operations such as tokenizing a string.

• The core cmdlets and how they correspond to the commands in other shell
environments.

• How to set up shortcuts to long or specialized paths in the file system using
New-PSDrive. For example
New-PSDrive AppData FileSystem "$Home\Application Data"

creates a drive named AppData mapped to the root of the current user’s Appli-
cation Data directory.

• How to read and write files in PowerShell using Get-Content and Set-
Content, and how to deal with character encodings in text files.

• How to work with binary files. You wrote a of couple handy utility functions in
the process.

• Using the Select-String cmdlet to efficiently search through collections of
files.

• The basic support in PowerShell for XML documents in the form of the XML
object adapter. PowerShell provides a shortcut for creating an XML document
SUMMARY 717

with the [xml] type accelerator. For example: [$xml]"<docroot>...</doc-
root>".

• How to construct XML documents by adding elements to an existing document
using the CreateElement() method.

• Using the XmlReader class to search XML documents without loading the
whole document into memory.

• Building utility functions for searching and formatting XML documents.

• Examples of processing XML documents using PowerShell pipelines.

• Extracting content from XML documents using the XPath language.

• How to save and restore collections of objects using ConvertTo-Xml, Import-
Clixml, and Export-Clixml.

In this chapter, in working with paths, files, and text, you used a number of the .NET
Framework features do your work. In the next chapter, we’ll build on this knowledge.
The main focus of chapter 17 is how to use more of the .NET Framework to do some
of the things that aren’t built into PowerShell as cmdlets, including how to write a
graphical front end to your scripts.
718 CHAPTER 16 WORKING WITH FILES, TEXT, AND XML

C H A P T E R 1 7

Extending your reach
with .NET

17.1 Using .NET from PowerShell 720
17.2 PowerShell and the internet 740

17.3 PowerShell and graphical user
interfaces 743

17.4 Summary 759
I love it when a plan comes together!
 —Col. John “Hannibal” Smith, The A-Team

When we started the design work on PowerShell, our focus was almost exclusively on
cmdlets. The plan was to have lots of cmdlets and everything would be done through
them. Unfortunately, as Robert Burns observed, “The best laid plans of mice and
men often go awry,” and we found that we didn’t have the resources to get all the
required cmdlets completed in time. Without these cmdlets, we wouldn’t have ade-
quate coverage for all of our core scenarios. How to solve this, we asked? “Let’s just
depend on .NET,” was the answer. We decided to make it easier to work directly with
the .NET Framework. That way, although it might not be as easy to do everything the
way we wanted, at least it would be possible.

In retrospect, this may have been one of the best things to happen to PowerShell.
Not only did we backfill our original scenarios, but the set of problem domains (such
719

as creating graphical user interfaces) in which we found PowerShell to be applicable
greatly exceeded our original expectations.

In this chapter, we’ll show you how to effectively apply the .NET Framework to
extend the reach of your scripts. We’ll also look at some considerations in Power-
Shell’s support for .NET and how they might lead to problems.

17.1 USING .NET FROM POWERSHELL

As we discussed in chapter 1, everything in .NET is encapsulated in types: as classes,
interfaces, structures, or primitive types such as integers. Consequently, solving prob-
lems using the .NET Framework requires finding the right types to build the solution.
We’ve covered a number of commonly used types in previous chapters, but there are
many more useful types available to PowerShell users.

In this section, we’ll show you how to find and inspect the types that are loaded
into PowerShell by default. We’ll also look at how to make additional types available
by loading .NET libraries or assemblies, extending what you can do even further.
Along the way, you’ll build some handy tools for exploring the framework and its
types. We’ll explain how to create instances of the types you discover, and address
some of the potentially problematic areas in .NET.

17.1.1 .NET basics

Let’s start with a review of the .NET type system. The basic arrangement of entities in
.NET is as follows: members (properties, methods, and so on) are contained in types
(classes, structs, and interfaces). These types are, in turn, grouped into namespaces.

NOTE Keep in mind that the .NET type system was designed to allow
programmers to construct arbitrarily sophisticated applications. As a
consequence, it’s fairly complex. But the designers of this system did an
excellent job of not requiring you to know everything in order to do
anything. The type system, like PowerShell, was designed to support
progressive discovery where what you need to know scales with the
complexity of what you’re trying to do. Simple things remain simple
and the level of complexity scales reasonably with the complexity of the
application. As a side note, PowerShell is an excellent way to learn and
explore the .NET Framework.

Let’s see how this exploration works by looking at one specific type: System.Collec-
tions.ArrayList. This type has an Add() method that exists on instances of the
class ArrayList. This class lives in the namespace System.Collections. Another
example is the IEnumerable interface, which is also in System.Collections. This
interface defines, but doesn’t implement, a single method, GetEnumerator().

The arrangement of types into class and namespaces is called logical type contain-
ment. You also need to understand physical type containment. In other words, where
720 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

do these collections of types live on a computer? This organization is done through
the assemblies we mentioned earlier. An assembly is just a file stored somewhere so
that the program loader can find them when needed. Each assembly contains the def-
initions for one or more types. Because a set of types is contained in an assembly,
clearly the set of assemblies that are loaded determines the complete set of types avail-
able to you. PowerShell loads most of the assemblies you’ll need for day-to-day work
by default when it starts, but sometimes (like when you want to do GUI program-
ming) you’ll have to load additional assemblies.

17.1.2 Working with assemblies

As we mentioned, the physical partitioning of the .NET Framework is based on indi-
vidual assemblies. Assemblies are a refinement of the dynamic link library (DLL) facil-
ity that has been part of Microsoft Windows from the beginning. (In Unix, the
equivalent concept is called shared libraries.) Let’s review the benefits and liabilities of
dynamic linking.

The pros and cons of dynamic linking

The DLL mechanism allows the system to dynamically load required DLLs when the
program starts up (and sometimes while it’s running). This feature works because
each executable has a list of the necessary DLLs compiled into it. The traditional pur-
pose of this feature was to cut down on the size of programs—instead of “statically”
linking a library to an executable, all executables could share one copy of that code.
The ability to share makes the executables smaller and also allows them to be ser-
viced. By serviced, we mean that a bug in the DLL could be fixed for all programs that
used that DLL simply by replacing one file. But all is not sweetness and light, as they
say. A fix intended to address a specific problem in one program could unintention-
ally cause another program to fail. Another problem is our old friend from section
10.3.1: versioning. How can you manage change over time? If you add new things to
a DLL, you may break existing programs. To avoid this risk, the traditional approach
involves introducing a new version of the DLL. But now this forces the developer to
decide which version of the DLL to use. Should they use the latest version? What if it
isn’t on all machines yet? And what if someone installs a malicious copy of the DLL to
introduce a virus?

Versioning and assemblies

With .NET, Microsoft tried to solve some of these problems with assemblies. In
effect, an assembly is just a DLL with additional metadata in the form of an assembly
manifest.

NOTE This isn’t the same manifest we talked about in chapter 10 when
we covered module manifests, though the goal is similar. In both cases,
version information is added. A PowerShell module manifest adds
USING .NET FROM POWERSHELL 721

another layer of versioning information on top of the assembly. This
extra layer allows a group of assemblies to be versioned as a unit even
though the component assemblies have their own version numbers.

This assembly manifest lists the contents of the DLL as well as the name of the DLL.
The full (or strong) name for an assembly is a complex beast and warrants some dis-
cussion. To try to solve some of the identity and versioning problems we mentioned,
.NET introduced the idea of a strong name. As well as the assembly filename, a strong
name uses public key cryptography to add information that will allow you to validate
the identity of the DLL author. When a .NET program is linked against a strong-
named assembly, it will run only if exactly the same assembly it was linked against is
present. Simply replacing the file won’t work, because the strong name will be wrong.

One more thing that’s included in the strong name is the version number. The
result is that when the DLL is loaded, the correct version must always be loaded even
if later versions are available. But it also means that to service the assembly to fix bugs,
you can’t change the version number of the assembly because the version number is
part of the strong name. So you end up with two versions of an assembly with the
same version number. The net effect of all of this is that .NET didn’t really solve the
versioning problem; it just moved things around a bit.

The default PowerShell assemblies

Now let’s talk about how PowerShell finds types and assemblies. All compiled pro-
grams contain a list of assemblies needed for the program to execute. This list (the
manifest mentioned earlier) is created as part of the linking phase when the program
is compiled. When the program executes, the referenced assemblies are loaded auto-
matically as needed. When the system tries to locate a required assembly, the loader
performs a process called probing to find that assembly. It looks in a number of places
automatically; the most important one is the global assembly cache (GAC). If an
assembly has been installed in the GAC, you don’t have to care where it actually
is—the system will find it for you as long as you know its name.

Because the PowerShell interpreter is a compiled program, it also contains a list of
required assemblies. Through the automatic loading mechanism, all of these assem-
blies and the types they contain are available to PowerShell scripts by default. Section
17.1.3 shows you how to view this default list.

Dynamic assembly loading

Automatic loading only applies to compiled programs like Notepad.exe or Power-
Shell.exe because it depends on the required assembly list contained in the execut-
able. PowerShell scripts are interpreted and have no compile or “static” link phase, so
if you want to make sure that an assembly you need is loaded, you have to explicitly
load it. In chapter 10, you saw how to do this with module manifests; you add the list
of required assemblies to the RequiredAssemblies manifest element. In effect,
722 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

module manifests are the dynamic equivalent to the static manifest found in an
assembly. But with simple scripts you don’t have a manifest, so in this case you’ll use
the Add-Type cmdlet—the “Swiss Army cmdlet” for dealing with assemblies and
compiled code. Given the versatility of this cmdlet, we’ll discuss it in pieces. The syn-
tax for the first Add-Type feature we’re going to cover is shown in figure 17.1.

When used with this parameter set, Add-Type lets you dynamically load assem-
blies by name. You can even use wildcards in the assembly name (but an error is gen-
erated if more than one assembly filename matches the pattern). For example, to load
the Windows Forms assembly (winforms) that’s in System.Windows.Forms,
instead of the full name, you can use the following:

Add-Type -AssemblyName System*forms

This works because Add-Type has a fixed list of short names that correspond to spe-
cific versions of the .NET Framework assemblies. Add-Type will only allow you to use
the short name for assemblies that are on this list. If it’s not on the list, you have to
use the strong name for the assembly. For winforms, the strong name looks like this,

"System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"

which is a little bit unwieldy. Still, as long as you stick to the assemblies Microsoft
ships with Windows, you can use the short names and wildcard. If you choose a non-
Windows assembly, you have to use the full name.

Loading assemblies the hard way

Because Add-Type wasn’t part of PowerShell v1, users had to come up with an alter-
nate way to load assemblies. This technique involved using .NET methods directly.
Remember that whole “not easy but possible” discussion from the introduction to
this chapter? This is an example of the not-quite-so-easy part.

To load new assemblies without Add-Type, you’ll have to use methods from the
System.Reflection.Assembly class. Here’s an example:

PS (2) > [system.reflection.assembly]::LoadWithPartialName(
>> "System.Windows.Forms") | fl
>>

Add-Type
-AssemblyName <assemblyNameList>
[-PassThru]

Cmdlet name

Name of assembly or

assemblies to load
If specified, cmdlet returns

all types in assembly

Figure 17.1 The Add-Type parameters allow you to load new assemblies into the

PowerShell process at runtime.
USING .NET FROM POWERSHELL 723

CodeBase : file:///C:/WINDOWS/assembly/GAC_MSIL/Sy
 stem.Windows.Forms/2.0.0.0__b77a5c56193
 4e089/System.Windows.Forms.dll
EntryPoint :
EscapedCodeBase : file:///C:/WINDOWS/assembly/GAC_MSIL/Sy
 stem.Windows.Forms/2.0.0.0__b77a5c56193
 4e089/System.Windows.Forms.dll
FullName : System.Windows.Forms, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c5
 61934e089
GlobalAssemblyCache : True
HostContext : 0
ImageFileMachine :
ImageRuntimeVersion : v2.0.50727
Location : C:\WINDOWS\assembly\GAC_MSIL\System.Win
 dows.Forms\2.0.0.0__b77a5c561934e089\Sy
 stem.Windows.Forms.dll
ManifestModule : System.Windows.Forms.dll
MetadataToken :
PortableExecutableKind :
ReflectionOnly : False

This not only loads the assembly, it also returns an instance of System.Reflec-
tion.Assembly that has a great deal of information about the assembly. Take a look
at the FullName property. You load the assembly using its partial name. The Full-
Name property shows the strong name for this assembly:

System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

As we discussed earlier, the strong name includes the namespace of the assembly, the
version number, the culture for this assembly, and the public key used to sign the
assembly. You can load a specific version of an assembly with the full name:

PS (5) > [System.Reflection.Assembly]::Load (
>> "System.Windows.Forms, Version=2.0.0.0, Culture=neutral," +
>> "PublicKeyToken=b77a5c561934e089")
>>

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_MSIL\System.Win...

Keep in mind that you didn’t load the assembly again. Once an assembly has been
loaded into a process, it can’t be unloaded, so all this did was verify that the assembly
was loaded.

For assemblies that have been added to the GAC, you don’t need the path to the
assembly. But if the assembly you’re loading hasn’t been added to the GAC, you’ll
need the full path to the DLL. If you look at the output from the Load() method,
you can see where this file is stored. Let’s “load” it one more time using the filename:

PS (6) > $name = "C:\WINDOWS\assembly\GAC_MSIL\" +
>> "System.Windows.Forms\2.0.0.0__b77a5c561934e089\" +
724 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

>> "System.Windows.Forms.dll"
>>
PS (7) > [System.Reflection.Assembly]::LoadFrom($name)

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_MSIL\System.Win...

At this point, we’ve covered the most important aspects of assembly loading as they
apply to PowerShell.

NOTE This is another “tip of the iceberg” topic where we’ve only cov-
ered the minimum necessary. For more details read the Microsoft
Developer Network documentation at http://msdn.microsoft.com.

You should now have a good understanding of how to find and load assemblies, but
your ultimate goal is to use the types these assemblies contain to solve problems. Our
next step toward helping you achieve this goal is to demonstrate how you can view
the contents of an assembly.

17.1.3 Finding types

There are a lot of types with a lot of members loaded into the PowerShell process.
Fortunately, to get the list of what’s available, you simply ask the system to tell you.
To start, you need to get a list of all the assemblies that are loaded. The following
function provides a convenient way to do this:

function Get-Assembly
{
 [System.AppDomain]::CurrentDomain.GetAssemblies()
}

The AppDomain class used in this function is .NET’s way of encapsulating an isolated
execution environment. It’s similar in some ways to PowerShell sessions but even
more isolated. For example, each AppDomain can have its own set of assemblies
whereas PSSessions all share the same assemblies. The static CurrentDomain prop-
erty lets you access the domain you’re executing in and GetAssemblies() gives you
the list of assemblies currently loaded into the AppDomain.

NOTE At times it might seem like you’re building the software equiv-
alent of a matryoshka, the famous Russian nesting dolls. The operating
system contains processes, processes contain AppDomains, AppDomains
contain PSSessions, and so on. Each layer provides its own set of fea-
tures and boundaries.

Once you have the list of assemblies, you can use the GetTypes() and GetExported-
Types() methods on each assembly object to get all the types in that assembly. The
GetExportedTypes() method gives you all the public types, which is usually what
USING .NET FROM POWERSHELL 725

you want. GetTypes() returns both public and private types, which is primarily useful
for exploring how things are organized below the public façade. We’ll wrap GetEx-
portedTypes() in a function as well:

function Get-Type ($Pattern=".")
{
 Get-Assembly | foreach{ $_.GetExportedTypes() } |
 where {$_ -match $Pattern}
}

This function will get the full names of all of the public types in each assembly and
match them against the pattern provided in the function argument (which defaults to
matching everything). Let’s use this function to find all the types that have the
namespace prefix System.Timers:

PS (1) > Get-Type ^system\.timers | %{ $_.FullName }
System.Timers.ElapsedEventArgs
System.Timers.ElapsedEventHandler
System.Timers.Timer
System.Timers.TimersDescriptionAttribute

In this example, you searched through all the assemblies and found the four types
that matched the regular expression you specified. (There are enough types loaded in
PowerShell that this might take a while to run.)

Once you know how to get all the types, we’ll explore the members of those types.
You want to see all the methods defined on all the types in the System.Timers
namespace that have the word “begin” in their name. To make this task easier, you’ll
define a couple of filters. Here’s what you want the output to look like:

PS (1) > Get-Type ^system\.timers | Select-Member begin |
>> Show-Member -method
>>
[System.Timers.ElapsedEventHandler]:: System.IAsyncResult
BeginInvoke(System.Object, System.Timers.ElapsedEventArgs,
System.AsyncCallback, System.Object)
[System.Timers.Timer]:: Void BeginInit()

In the output, you see that two methods match your requirements—the Begin-
Invoke() method on System.Timers.ElapsedEventHandler and BeginInit()
on System.Timers.Timer.

Let’s look at the filters you used in this example. The first is a filter that will dump
all the members whose names match a regular expression. The code for this filter is as
follows:

filter Select-Member ($Pattern = ".")
{
 $_.GetMembers() | where {$_ -match $Pattern }
}

726 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

Remembering that the body of a filter is applied once to each inbound pipeline
object, you can see that this code gets the list of members on each type and filters
them according to the provided pattern.

Here, a second filter deals with the presentation of the results, because the default
presentation for the member information isn’t all that it might be:

filter Show-Member ([switch] $Method)
{
 if (!$Method -or $_.MemberType -match "method")
 {
 "[{0}]:: {1}" -f $_.declaringtype, $_
 }
}

Again, the operation of this filter is straightforward. If -Method is specified, only
methods will be displayed. The member to be displayed will be formatted into a
string displaying the type containing the method and the name of the method.

Now you can load assemblies and find out what types are in those assemblies. The
next step (and our next topic) is to create instances of those types so you can finally
start applying what you’ve learned to getting this done.

17.1.4 Creating instances of types

Now that you can find types, you generally need to create instances of these types to
use their properties and methods (although there are some types such as [Sys-
tem.Math] that only have static members and so don’t require instantiation). For
example, before you can search using the [regex] type, you need to create an
instance of that type from a pattern string. As you saw in earlier chapters, you can use
the New-Object cmdlet to create instances of types in PowerShell. Figure 17.2 shows
the signature for this cmdlet.

This cmdlet takes the name of the type to create, a list of parameters to pass to the
type’s constructor, and a hashtable of property name/values to set on the object once
it has been constructed.

The New-Object -Property parameter

Version 2 of PowerShell added the -Property parameter, which allows individual
properties to be set on the object after it has been constructed. In many cases, doing

New-Object [-TypeName] <String> [[-ArgumentList] <Object[]>] [-Property <hashtable>]

Cmdlet name Name of type to create Arguments to type’s

constructor

Hashtable of values to set

on constructed object

Figure 17.2 The New-Object cmdlet parameters
USING .NET FROM POWERSHELL 727

so can greatly simplify the code needed to completely initialize an object. For a simple
example, let’s create a Timer object:

PS (1) > New-Object System.Timers.Timer -Property @{
>> AutoReset = $true
>> Interval = 500
>> Enabled = $true
>> }
>>

AutoReset : True
Enabled : True
Interval : 500
Site :
SynchronizingObject :
Container :

In this example, you’re creating the object and then setting three proper-
ties—AutoReset, Interval, and Enabled—in a single statement. Without -Prop-
erty, you’d have to create an intermediate variable and use four statements. You’ll see
more interesting uses for this technique when we look at building graphical user
interfaces in section 17.3. But first, some more cautions...

A word of caution about using New-Object

Although the signature for the New-Object cmdlet is pretty simple, it can be more
difficult to use than you might think. People who are accustomed to programming in
languages such as C# have a tendency to use this cmdlet like the new operator in those
languages. As a consequence, they tend to write expressions like this:

New-Object string($x,1,3)

Unfortunately, writing the expression this way obscures the fact that it’s a cmdlet,
making things confusing. It’ll work fine, but it looks too much like a function call in
other programming languages, and that leads people to misinterpret what’s happen-
ing. As you saw in figure 17.2, the syntax for New-Object is

New-Object [-TypeName] <String> [[-ArgumentList] <Object[]>]

so the previous example could be written like this:

New-Object -TypeName string -ArgumentList $x,1,3

The comma notation indicates an argument that’s passed as an array. This is equiva-
lent to

$constructor_arguments= $x,1,3
New-Object string $constructor_arguments

Note that you’re not wrapping $constructor_arguments in yet another array. If
you want to pass an array as a single value, you need to do it yourself and write it in
parentheses with the unary comma operator, as discussed in chapter 3.
728 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

New-Object cmdlet examples

Let’s work through a couple of examples using New-Object. In the first example,
you’re going to construct a new string object from a portion of a char array. You need
to specify the offset into the source array and the number of characters to copy.
Doing so looks like

PS (1) > New-Object string ([char[]] "Hello"),1,4
ello

In this example, the type to instantiate was string and you passed three arguments to
the string constructor: the source array, the start index, and the length to copy. This
code created a new string object starting from the second character (remember, origin
0 for array indexing) and copied four characters. This example may seem a bit silly,
but it illustrates how complex the punctuation can get even in simple examples. If you
put the char array into a variable first, the resulting command becomes simpler:

PS (2) > $str = [char[]] "Hello"
PS (3) > New-Object string $str,1,4
ello

A much trickier example is the one where you want to pass the char array as the only
argument to the constructor. In this situation, you need to wrap the char array in a
nested array using the unary comma operator:

PS (4) > New-Object string (,$str)
Hello

In this example, you’ve created a string by copying all the characters from the char
array, starting from the beginning.

You now know how to discover existing types and created instances of those types,
but you haven’t created any new .NET types of your own. (Chapter 11, section
11.4.3 showed how to create objects with New-Module but that’s quite a different
thing.) There are some situations where you do need to create your own types, usu-
ally to facilitate interoperation with existing .NET classes or the operating system. In
the next section, you’ll see how to do this using the Add-Type cmdlet.

17.1.5 Defining new types with Add-Type

PowerShell is a “.NET language” in that it works with and consumes the types. But it
(still, even in v2!) has no native way to create new types. There are no “class” or “type”
keywords in the language to create a new type. This is where the Add-Type cmdlet
comes in.

NOTE A common question is why the PowerShell team didn’t add
some sort of native mechanism to create .NET types in v2. It’s because
a) we were incredibly busy and b) we didn’t want to screw up. With
the Dynamic Language Runtime (DLR) on the verge of becoming part
of .NET (and it is as of .NET 4.0) the way to create types was in flux.
USING .NET FROM POWERSHELL 729

Because we had to ship well before .NET 4 was out, we decided to wait
one more release and let the dust settle. We’re keeping our fingers
crossed that we’ll finally get native type definition capabilities into v3
(actually fingers, toes, eyes, and any other anatomical protuberances
that come to mind).

In addition to providing a mechanism for loading assemblies, the Add-Type cmdlet
provides a workaround of sorts for this inability to create new types. In fact Add-Type
offers a variety of ways to create types. We’ll cover each mechanism in the following
subsections.

Creating singleton member definitions

The first approach for creating types with the Add-Type cmdlet is to define a single
member, typically a method. The signature for this use is shown in figure 17.3.

With this signature, you’re creating a member whose name is specified by the
-Name parameter and whose source code is specified by the -MemberDefinition
parameter. Because the member definition is just a string, you also have to specify the
language used to define the member. You can do so with the -Language parameter,
which supports four languages in v2, selected by passing in one of the following strings:
“CSharp”, “CSharpVersion3”, “VisualBasic”, or “JScript”. These are the four base lan-
guages shipped by Microsoft with .NET. If nothing is specified, v2 defaults to C#.

Because types in .NET are organized by namespaces, you can use the -Namespace
parameter to put the member into a specific namespace.

Next, you have to specify what the member definition depends on. The point of
this variant is that you only need to write a fragment of a source file, so you can’t
specify the dependencies in the source. Instead, you do it through the -Using-
Namespace parameter.

Add-Type
[-Name] <string>
[-MemberDefinition] <string[]>
[-Namespace <string>]
[-UsingNamespace <string[]>]
[-Language <SourceLanguage>]
[-CodeDomProvider <CodeDomProvider>]
[-CompilerParameters <CompilerParameters>]
[-OutputAssembly <Filename>]
[-OutputType <OutputAssemblyType>]
[-ReferencedAssemblies <string[]>]
[-IgnoreWarnings]
[-PassThru]

Pass generated assembly object

through to output stream

Code generator to

use when compiling

Name of output

assembly file to

create

Type of output file

(library, console app,

or Windows app)
Additional assemblies

to reference when

compiling

Parameters to pass

to the compiler

Ignore any compile

time warnings

Name of class

to create
Namespaces to include

when compiling

Properties and

methods to create

Compiler to use

(e.g. C#, VB)

Namespace

to place class in

Figure 17.3 This signature for the Add-Type cmdlet allows you to create type members

without having to include all the other details needed to build the containing class.
730 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

The remaining parameters are common across all the variations of the cmdlet and
allow you to specify additional assemblies that the member depends on (all of the
PowerShell assemblies are included by default so they never need to be explicitly
added). You can also choose to ignore any compiler warnings using the -Ignore-
Warnings parameter.

Let’s try out what you’ve learned so far. First, you need a method definition. The
following string defines a C# method that takes an array of integers as its argument,
sums them up, and then returns the result:

PS (1) > $sumMethod = @'
>> static public int Sum(int[] na)
>> {
>> int result = 0;
>> if (na == null || na.Length == 0)
>> {
>> return 0;
>> }
>> foreach (int n in na)
>> {
>> result += n;
>> }
>> return result;
>> }
>> '@
>>

Let’s use Add-Type to compile this method as part of the class Utils:

PS (2) > Add-Type -Name Utils -MemberDefinition $sumMethod

Try to run it:

PS (3) > [utils]::Sum((1..10))
Unable to find type [utils]: make sure that the assembly containing
this type is loaded.
At line:1 char:8
+ [utils] <<<< ::Sum((1..10))
 + CategoryInfo : InvalidOperation: (utils:String) [],
RuntimeException
 + FullyQualifiedErrorId : TypeNotFound

You get an error! So what happened here? Why did you not find the type? Well, as it
turns out, -Namespace has a somewhat unwieldy default value, resulting in the type
name:

'Microsoft.PowerShell.Commands.AddType.AutoGeneratedTypes'

By properly specifying this full type name, you’re able to call the new method:

PS (4) > `
[Microsoft.PowerShell.Commands.AddType.AutoGeneratedTypes.Utils]::Sum(
(1..10))
55
USING .NET FROM POWERSHELL 731

Note that the preceding command is a one-line expression but it wraps here. Even so,
this approach is a bit awkward. Fix this by recompiling the member, specifying WPIA
as the namespace for the class:

PS (5) > Add-Type -Name Utils -MemberDefinition $sumMethod `
>> -Namespace WPIA
>>

Now it’s much easier to run:

PS (6) > [WPIA.Utils]::Sum((1..100))
5050

As an experiment, let’s try this method on floating-point numbers:

PS (7) > [WPIA.Utils]::Sum((3.14,2,33.6))
39

Note that, even though the arguments are floating-point numbers, you still got an
integer back. Because there’s no overload for floating-point arguments, the array was
coerced to integers and passed to the integer Sum() function. To fix this, you can cre-
ate a new overload that takes doubles. In fact, you can just use the -replace operator
to change 'int' to 'double' in the original code and then recompile:

PS (8) > $fsumMethod = $sumMethod -replace 'int','double'

Now let’s compile the new overload:

PS (9) > Add-Type -Name Utils -MemberDefinition $fsumMethod `
>> -Namespace WPIA
>>
Add-Type : Cannot add type. The type name 'WPIA.Utils' already exists
.
At line:1 char:9
+ Add-Type <<<< -Name Utils -MemberDefinition $fsumMethod `
 + CategoryInfo : InvalidOperation: (WPIA.Utils:String)
 [Add-Type], Exception
 + FullyQualifiedErrorId : TYPE_ALREADY_EXISTS,Microsoft.
PowerShell.Commands.AddTypeCommand

This resulted in an error because once a type is defined, .NET doesn’t allow new
methods to be added to that type. (This is one of the reasons the PowerShell extended
type system exists: to support this scenario.) So to add this new method, change the
class name from Utils to Utils2 and rerun the command:

PS (10) > Add-Type -Name Utils2 -MemberDefinition $fsumMethod `
>> -Namespace WPIA
>>
PS (11) > [WPIA.Utils2]::Sum((3.14,2,33.6))
38.74

This time the compile was successful and you were able to run the method. Try
rerunning the command that compiled the original integer method:

PS (12) > Add-Type -Name Utils -MemberDefinition $sumMethod
PS (13) >
732 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

And, somewhat unexpectedly, it compiles without error. The reason is that Add-Type
records the code that defined the method originally. If it sees the same source code
again, it knows not to recompile and just exits with success. But if you change the
method definition even slightly

PS (14) > $sumMethod = @'
>> static public int Sum(int[] na)
>> {
>> int result = 0;
>> if (na != null && na.Length > 0)
>> {
>> foreach (int n in na)
>> {
>> result += n;
>> }
>> }
>> return result;
>> }
>> '@
>>

and try to compile it again

PS (15) > Add-Type -Name Utils -MemberDefinition $sumMethod
Add-Type : Cannot add type. The type name 'Microsoft.PowerShell.
Commands.AddType.AutoGeneratedTypes.Utils' already exists.
At line:1 char:9
+ Add-Type <<<< -Name Utils -MemberDefinition $sumMethod
 + CategoryInfo : InvalidOperation: (Microsoft.Power...a
 tedTypes.Utils:String) [Add-Type], Exception
 + FullyQualifiedErrorId : TYPE_ALREADY_EXISTS,
 Microsoft.PowerShe ll.Commands.AddTypeCommand

you get the same error as when you tried to add the floating-point version. In .NET,
once a method has been defined, it can’t be redefined or removed.

From this example, it would seem that this is a pretty awkward way to define a
type. In practice, this variant is primarily intended to address Platform Invoke
(P/Invoke) scenarios. P/Invoke is the powerful mechanism that .NET uses to interop-
erate with the native Windows system calls.

NOTE At this point, we’re crossing into programmer territory. This
kind of stuff is great for enabling complex scenarios in PowerShell
scripts but is definitely not something most programmers (let alone IT
pros) will do every day. But at least you should be aware that the capa-
bility exists. If you find that you do need to do this kind of thing, there
are a number of excellent resources, including the P/Invoke wiki at
http://pinvoke.net/, which provides a list of the P/Invoke signatures for
each API.

Let’s take a look at an example showing what you can do with P/Invoke.
USING .NET FROM POWERSHELL 733

Being able to run scripts in a hidden window is a fairly standard automation
requirement. This is because it keeps users from inadvertently stopping a script by
closing the console window before the script can finish. Out of the box, neither
PowerShell nor the .NET [System.Console] class has built-in ways of minimizing,
maximizing, or hiding a console window.

NOTE Yes, Microsoft added the -WindowStyle parameter to Power-
Shell.exe for the purpose of using hidden windows. The Start-
Process cmdlet also has a -WindowStyle parameter allowing new
processes to be launched with hidden windows. But these features
don’t allow a script to show the console, read input from a user, and
then hide it again after the information has been received and the pro-
cessing can start.

Interoperation using Add-Type and P/Invoke

Let’s see how you can use Add-Type and P/Invoke to add these features to your ses-
sion. First you need to know what functions to import. In this case you need Get-
ConsoleWindow()to get the console handle and ShowWindow()to change the state
of the window. Here are the commands to add these functions to your session:

PS (1) > Add-Type -Name ConsoleUtils -Namespace WPIA `
>> -MemberDefinition @'
>> [DllImport("Kernel32.dll")]
>> public static extern IntPtr GetConsoleWindow();
>> [DllImport("user32.dll")]
>> public static extern bool ShowWindow(IntPtr hWnd, Int32 nCmdShow);
>> '@
>>

This code is importing the two functions—GetConsoleWindow() from Kernel32.dll
and ShowWindow() from user32.dll—into a class called [WPIA.ConsoleUtils].

Next, you need to know what values you should pass to ShowWindow() to accom-
plish what you want. You’ll define a hashtable to hold these values for convenience:

PS (2) > $ConsoleMode = @{
>> HIDDEN = 0;
>> NORMAL = 1;
>> MINIMIZED = 2;
>> MAXIMIZED = 3;
>> SHOW = 5
>> RESTORE = 9
>> }
>>

Now you’re ready to call your APIs. Use GetConsoleWindow() to get the console
window handle

PS (3) > $hWnd = [WPIA.ConsoleUtils]::GetConsoleWindow()
734 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

and display the value you get back:

PS (4) > $hWnd
22877126

Let’s maximize the console with ShowWindow(), passing in the value from the $Con-
soleMode needed to do this:

PS (5) > [WPIA.ConsoleUtils]::ShowWindow($hWnd, $ConsoleMode.MAXIMIZED)
True

The method call should succeed and return true, and the console window will be
maximized. With the following lines, you step through each option in sequence,
waiting 2 seconds between each call:

PS (6) > Start-Sleep 2
PS (7) > [WPIA.ConsoleUtils]::ShowWindow($hWnd, $ConsoleMode.NORMAL)
True
PS (8) > Start-Sleep 2
PS (9) > [WPIA.ConsoleUtils]::ShowWindow($hWnd, $ConsoleMode.MINIMIZED)
True
PS (10) > Start-Sleep 2
PS (11) > [WPIA.ConsoleUtils]::ShowWindow($hWnd, $ConsoleMode.RESTORE)
True
PS (12) > Start-Sleep 2
PS (13) > [WPIA.ConsoleUtils]::ShowWindow($hWnd, $ConsoleMode.HIDDEN)
True
PS (14) > Start-Sleep 2
PS (15) > [WPIA.ConsoleUtils]::ShowWindow($hWnd, $ConsoleMode.SHOW)
False
PS (16) >

This sequence will cause the console to be restored to normal, then minimized,
restored, hidden, and then shown again. (This sequence is more fun to run than
describe—trust me.)

CAUTION These examples work with the console APIs—which means
that they’re only appropriate to run from a console application like
PowerShell.exe. Running them in a graphical application like the
ISE may produce unexpected results up to and including causing the
application to crash. Using P/Invoke means that you’re poking holes in
the .NET safety layer and interacting directly with the Win32 layer.
This is powerful stuff, but it requires working without a safety net. The
worst-case scenario involves crashing or hanging your process, so when
playing with P/Invoke, save early and save often.

Now that we’ve got member definitions out of the way, we’ll look at the -Type-
Definition variant next.
USING .NET FROM POWERSHELL 735

The -TypeDefinition parameter set

This parameter set is designed to allow for larger pieces of inline code than just a cou-
ple of member definitions. Looking at the parameter set in figure 17.4, this time you
have the -TypeDefinition parameter instead of the -Name, -MemberDefinition,
-Namespace, and -UsingNamespace parameters.

With this variation, you have to provide the full definition of the class, including
the namespace and any using statements that are required. You’ll rewrite the previous
examples for use with -TypeDefinition. The code to do so looks like the following:

PS (1) > $utils = @'
>> using System;
>> using System.Runtime.InteropServices;
>>
>> namespace WPIA {
>> public static class Utils
>> {
>> static public int Sum(int[] na)
>> {
>> int result = 0;
>> if (na == null || na.Length == 0)
>> return 0;
>> foreach (int n in na)
>> {
>> result += n;
>> }
>> return result;
>> }
>>
>> static public double Sum(double[] na)
>> {
>> double result = 0;
>> if (na == null || na.Length == 0)
>> return 0;
>> foreach (double n in na)

Pass generated assembly

object through to output stream

Add-Type
[-TypeDefinition] <string>
[-Language <targetLanguage>]
[-CodeDomProvider <CodeDomProvider>]
[-CompilerParameters <paramList>]
[-OutputAssembly <string>]
[-OutputType <type>]
[-ReferencedAssemblies <listOfAssemblies>]
[-IgnoreWarnings]
[-PassThru]

Source language

being used

Name of output

assembly file to create

Type of output file

(library, console app,

or Windows app)
Additional

assemblies to

reference when

compiling

Parameters to pass

to compiler

Ignore any compile-

time warnings

Source text to compile

Code document object

model to use for compiling

Figure 17.4 The Add-Type type definition parameter set allows you to define a

complete class or classes.
736 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

>> {
>> result += n;
>> }
>> return result;
>> }
>> }
>>
>> public static class ConsoleUtils
>> {
>> [DllImport("Kernel32.dll")]
>> public static extern IntPtr GetConsoleWindow();
>> [DllImport("user32.dll")]
>> public static extern bool ShowWindow(
>> IntPtr hWnd, Int32 nCmdShow);
>> }
>> }
>> '@
>>

This source text defines the two classes you created previously: WPIA.Utils and
WPIA.ConsoleUtils. Now you can compile everything with a single command:

PS (14) > Add-Type -TypeDefinition $utils

In fact, because this is the default parameter set, it simply becomes

PS (15) > Add-Type $utils
PS (16) >

Next, let’s look at the final parameter set for Add-Type with the -Path parameter.

The -Path parameter set

The last parameter set for Add-Type is the -Path parameter set. This parameter set is
much like -TypeDefinition except that instead of including the code to compile
inline in the script, you’ll load the file specified by -Path. This parameter set is
shown in figure 17.5.

This parameter set is even simpler than the one for -TypeDefinition. Because
you’re reading the code from a file, you can use the file’s extension to determine what

Add-Type
[-Path] <pathsToSrcFiles>
[-CompilerParameters <paramlist>]
[-OutputAssembly <string>]
[-OutputType <type>]
[-ReferencedAssemblies <listOfAssemblies>]
[-IgnoreWarnings]
[-PassThru]

Pass generated assembly object

through to output stream

Path to file(s) to

compile

Name of output

assembly file to create

Type of output file

(library, console app,

or Windows app)

Additional

assemblies to

reference when

compiling

Parameters to pass

to the compiler

Ignore any compile-

time warnings

Figure 17.5 The Add-Type -Path parameter set reads the input source from a file.

It uses the file extension to select the source language.
USING .NET FROM POWERSHELL 737

language to expect. If you write the code you saved in the $utils variable earlier to a
file, you can try using -Path:

PS (4) > $utils > wpia.utils.cs
PS (5) > Add-Type -Path wpia.utils.cs
Add-Type : Cannot add type. The type name 'WPIA.Utils' already exists
.
At line:1 char:9
+ Add-Type <<<< -Path wpia.utils.cs
 + CategoryInfo : InvalidOperation: (WPIA.Utils:String)
 [Add-Type], Exception
 + FullyQualifiedErrorId : TYPE_ALREADY_EXISTS,Microsoft.PowerShe
 ll.Commands.AddTypeCommand

You get an error because, although the text is the same, it comes from a different
source, resulting in a “type already exists” error. You can, however, load it into a new
PowerShell process:

PS (7) > powershell 'Add-Type -Path wpia.utils.cs; [WPIA.Utils]::Sum(
>> (1..10))'
55

The other thing you can do is have the file compiled into an assembly on disk instead
of in memory. You do this with the -OutputAssembly parameter:

PS (8) > Add-Type -Path wpiautils.cs -OutputAssembly wpiautils.dll `
>> -OutputType library

This time you didn’t get the error because the assembly wasn’t being loaded. You can
use the dir command to see what was produced:

PS (9) > dir wpiautils.*

 Directory: C:\Users\brucepay

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/1/2010 6:50 PM 1564 wpiautils.cs
-a--- 8/1/2010 6:50 PM 3584 wpiautils.dll
-a--- 8/1/2010 6:50 PM 13824 wpiautils.pdb

Notice that, as well as the wpiautils.dll file, you also have the file wpiautils.pdb,
which contains debugging information. This file is created because the default
parameters that are passed to the compiler include the /debug flag.

You used the -Path parameter to load and compile the source file but you can
also use it to load an already compiled DLL:

PS (10) > powershell '
>> Add-Type -Path $PWD\wpiautils.dll
>> [WPIA.Utils]::Sum((1..10))
>> '
>>
55
PS (11) >
738 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

Again you did it in a child process to avoid getting the type-collision error. The DLL
loads, the Sum() method is called, and you see the sum 55 displayed on the console.

TIP In section 17.1.2, you used -AssemblyName to load assemblies
into the process. You might expect that you’d also use this parameter to
load assemblies by path. But that assumptions isn’t correct. You have
to use -Path to load an assembly by path (or Import-Module).
Remembering this may save you some frustration.

To recap, you’ve loaded assemblies, found and instantiated existing types, and used
Add-Type to define new ones. There’s one last piece you need to look at to complete
our picture of types: generic types. Because generic types are used frequently in the
.NET Framework, you’ll need to know something about them.

17.1.6 Working with generic types

With version 2.0 of .NET, a feature was added to the CLR type system called generic
types (or simply generics). Generics introduce the idea of a type parameter. Instead of
passing objects as arguments when creating an instance of type, generics also require
you to pass in type parameters that are used to determine the final types of some part
of the object. This concept is rather confusing if you haven’t encountered it before. As
usual, an example should make things clearer.

Generics are easiest to understand when you talk about creating collections.
Before the introduction of generics, if you wanted to create a collection class either
you had to write a new version of the class for each type of object you wanted it to
store or you had to allow it to hold any type of object, which meant that you had to
do your own error checking. With generics, you can write a collection that can be
constrained to only contain integers or strings or hashtables.

In PowerShell v1, though it was reasonably easy to work with existing instances of
generic types, it was difficult to express generic type names or create new instances of
these types. This issue was fixed in PowerShell v2, and you can now create generic
types naturally. Let’s look at some examples.

Creating instances of generic types

We’ll start by creating a list, specifically a list of integers. To do this, you need to
know the base type of the collection and the type parameter you need to pass when
creating an instance of the collection. The base type you’re going to use is Sys-
tem.Collections.Generic.List, which takes a single type argument. To create an
instance of the collection, you pass the “closed” type name to New-Object. By closed,
I mean that a concrete type has been specified as the type parameter. For a collection
of integer, this looks like

$ilist = New-Object System.Collections.Generic.List[int]
USING .NET FROM POWERSHELL 739

where the name in the square brackets is the type parameter. You can use other types
as well. To create a list of strings, you’d write

$slist = New-Object System.Collections.Generic.List[string]

You can even use generics in the type parameter:

$nlist = New-Object `
System.Collections.Generic.List[System.Collections.Generic.List[int]]

This example defines a list of lists of integers. In general, nested generic types are dis-
couraged as they quickly become difficult to understand.

So far, we’ve only dealt with a single type parameter, but generics can take as
many type parameters as are needed. For example, a generic Dictionary, which is
similar to our old friend the hashtable, takes two type parameters: the type of the key
and the type of the value. This looks like

$stoi = New-Object 'System.Collections.Generic.Dictionary[string,int]'

Notice that this time we had to put quotes around the type name; otherwise the
comma between the two type parameters would cause the type name to be treated as
two separate parameters.

With all this time we’ve spent playing the .NET trivia challenge game, we’re sure
heads are buzzing and coffee is being desperately sought. In the remainder of this
chapter, we’ll look at how you can apply some of the things you’ve learned to build
more interesting applications.

17.2 POWERSHELL AND THE INTERNET

In this section, we’re going to put the network back into .NET. As you’d expect from a
modern programming environment, .NET (and consequently PowerShell) has a com-
prehensive set of types for doing network programming.

NOTE The .NET Framework has good networking capabilities, but I
suspect that the name came out of the marketing frenzy during the first
internet bubble: .NET 1.0 was released in 2001. At that time, people
were calling everything dot-something.

In this section, we’ll look at a couple of useful examples of network programming
with the .NET networking classes.

17.2.1 Retrieving a web page

The most common networking task in the internet age is to download a web page.
Here’s how to do that in PowerShell using the [System.Net.WebClient] type. This
is a type that provides common methods for sending data to and receiving data from
websites (or anything else that can be addressed with a URL). In this example, you’ll
740 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

use this type to download data from the MSDN blog home page. Figure 17.6 shows
the chunk of HTML you’re targeting.

First you need to create an instance of System.Net.WebClient:

PS (1) > $wc = New-Object System.Net.WebClient

And you’re ready to go. Let’s take a look at what’s happening on the MSDN blog site.
Download the page into a variable:

PS (2) > $page = $wc.DownloadString("http://blogs.msdn.com")
PS (3) > $page.Length
46757

Checking the length, it’s a bit long to look at as text. Let’s simplify things and get rid
of the HTML tags:

PS (4) > $page = $page -replace "\<[^<]*\>"
PS (5) > $page.Length
10930

You used a regular expression to remove anything enclosed in < and >. Doing so has
shortened things a lot, but it’s still a bit long. Let’s get rid of unnecessary spaces:

PS (6) > $page = $page -replace " +", " "
PS (7) > $page.Length
7816

Split it into a collection of lines, getting rid of empty lines:

PS (8) > $lines = $page -split "`n" | where {$_ -match '[a-z]'}
427

Now you have something pretty short. Let’s use the Select-String cmdlet with the
-Context option to extract the text you’re interested in:

PS (10) > $lines | Select-String -Context 0,2 'Spotlight.*WP7'

> Spotlight on WP7
 The Windows Phone Developer Tools Beta is now available. Start
building great games and applications for Windows Phone 7.
 Search > Windows Phone 7

And there you go—a readable chunk of text. Note that the only new part was using
the WebClient class. Everything else was just basic application of PowerShell opera-
tors and cmdlets.

Figure 17.6 This is a fragment of the MSDN blog

home page. You’re going to use PowerShell to

identify and capture this text.
POWERSHELL AND THE INTERNET 741

NOTE There are much better ways to scrape text out of an HTML
page. For example, the HTML Agility pack on CodePlex (http://
htmlagilitypack.codeplex.com/) is a managed code library that provides
an HTML processing experience similar to the way you handled XML
in chapter 16.

Now let’s see what else you can do with the WebClient class.

17.2.2 Processing an RSS feed

Let’s explore RSS feeds. These are feeds that let you see the most recent postings in a
blog formatted in XML. As you saw in the previous chapter, XML is easy to work with
in PowerShell. The following example shows a function that downloads an RSS feed
and prints out the feed titles and links:

function Get-RSS ($url)
{
 $wc = New-Object System.Net.WebClient
 $xml = [xml]$wc.DownloadString($url)
 $xml.rss.channel.item | Select-Object title,link
}

Let’s use it to read the PowerShell team blog’s RSS feed:

PS (2) > Get-RSS http://blogs.msdn.com/powershell/rss.aspx |
>> Select-Object -First 3
>>

title link
----- ----
Intel vPro PowerShell Module http://blogs.msdn.com/b/powersh...
PowerShell V2.0 Book Available ... http://blogs.msdn.com/b/powersh...
Improving Parameter Set Design http://blogs.msdn.com/b/powersh...

You downloaded the feed, then displayed the title and links for the first three items.
Let’s use this function in something a bit more useful. Listing 17.1 shows a new

function that will display a menu of the most recent articles in an RSS feed. You can
select an item from the menu and it will be displayed using the default browser.

function Get-RSSMenu (
 $url="http://blogs.msdn.com/powershell/rss.aspx",
 $number=3
)
{
 $entries = Get-RSS $url | Select-Object -First $number
 $links = @()
 $entries | foreach {$i=0} {
 "$i - " + $_.title
 $links += $_.link

Listing 17.1 The Get-RSSMenu() function

Download
the RSS
data
742 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

 $i++
 }
 while (1)
 {
 $val = Read-Host "Enter a number [0-$($i-1)] or q to quit"
 if ($val -eq "q") { return }
 $val = [int] $val
 if ($val -ge 0 -and $val -le $i)
 {
 $link = $links[$val]
 "Opening $link`n"
 Start-Process $link
 }
 }
}

By default, this function downloads the RSS feed for the PowerShell blog and shows
a menu of entries and links containing the three most recent entries. (You can over-
ride both the blog and the number of items to show.) Here’s what the function looks
like when you run it:

PS (1) > Get-RSSMenu
0 - Kudos to NetApp for Data ONTAP PowerShell ToolKit
1 - Export and Import PowerShell ISE Opened Files
2 - Save All PowerShell ISE files
Enter a number [0-2] or q to quit: 0
Opening http://blogs.msdn.com/b/powershell/archive/2010/06/16/kudos-t
o-netapp-for-data-ontap-powershell-toolkit.aspx

Enter a number [0-2] or q to quit: q
PS (2) >

The menu shows the three most recent items from the blog. When you select an item
number and press Enter, the Start-Process cmdlet is used to launch the URL using
the current default browser.

With this example, we’ve begun to move into the area of user interface creation.
We’ll continue on this path and show you how to build “real” graphical interfaces for
your scripts.

17.3 POWERSHELL AND GRAPHICAL USER INTERFACES

The full name of the PowerShell package is Windows PowerShell. In this section, we’ll
look at the Windows part of the name. (PowerShell is part of the Windows product
group. But you can do GUI programming with PowerShell, as you’ll see in this section.)

One of the earliest successful scripting environments was something called Tool
Command Language/Tool Kit (TCL/TK). TCL was intended to be a standard scripting
language that could be used to automate systems. (This sounds familiar!) Its biggest suc-
cess was TK, which was (and still is) a toolkit for building graphical applications with
scripts. The ability to write a basic graphical application with a few dozen lines of code

Prompt user
for link
number

Open the link with
default browser
POWERSHELL AND GRAPHICAL USER INTERFACES 743

was wildly popular. The same kind of thing can be done in PowerShell using the .NET
Windows Forms (WinForms) library or Windows Presentation Foundation (WPF).

NOTE We’re going to look at both WinForms and WPF in this chap-
ter because the framework used in a particular scenario will depend on
a number of criteria. First and foremost, WPF can’t be used with
PowerShell v1 because v1 doesn’t support the STA threading model. If
you need to write a UI that works in both versions, WinForms is your
only choice. Second, the tools you have available will influence your
choice. There are now GUI designers that support using WinForms
with PowerShell. This may make WinForms the better, easier, and
faster way to do things. WPF, on the other hand, makes it much easier
to create rich, modern UIs. It also supports clean separation of business
logic and presentation, allowing the look of the application to be
changed without requiring changes to the underlying scripts. You’ll see
more of these details as we look at each framework. Finally, WinForms
has been part of .NET since the beginning, whereas WPF was added
with .NET 3.0. If you need your GUI to run on a .NET 2.0–only sys-
tem, then you should look at using WinForms.

Each of these libraries provides a framework and collection of utility classes for build-
ing graphical application user interfaces. Let’s see what you can do with these librar-
ies. We’ll begin by looking at WinForms.

17.3.1 PowerShell and WinForms

The core concepts in WinForms are controls, containers, properties, and events. A
control is an element in a user interface—buttons, list boxes, and so on. Most con-
trols, like buttons, are visible controls that you interact with directly, but there are
some controls, such as timers, that aren’t visible but still play a role in the overall
user experience. Controls have to be laid out and organized to present a GUI. This
is where containers come in. Containers include things such as top-level forms, pan-
els, splitter panels, tabbed panels, and so on. Within a container, you can also spec-
ify a layout manager. The layout manager determines how the controls are laid out
within the panel. (In TCL/TK, these were called geometry managers.) Properties are
just regular properties, except that they’re used to set the visual appearance of a con-
trol. You use them to set things such as the foreground and background colors or
the font of a control.

The final piece in the WinForms architecture is the event. Events are used to define
the behavior of a control both for specific actions, such as when a user clicks on the Do
It button, as well as when the container is moved or resized and the control has to take
some action. Like everything else in .NET (and PowerShell), events are represented as
objects. For WinForms, the most common type of event is System.EventHandler.
For PowerShell, anywhere an instance of System.EventHandler is required, you can
744 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

use a scriptblock. (There is a lot more to handling events than we’ll cover here. Chapter
20 is devoted to this topic.) If you want a particular action to occur when a button is
clicked, you attach a scriptblock to the button click event.

These concepts are best illustrated through an example.

“Hello world” for winforms

We’ll now look at the simplest WinForms example. This is the example you saw in
chapter 1:

Add-Type -AssemblyName System.Windows.Forms
$form = New-Object System.Windows.Forms.Form
$form.Text = "My First Form"
$button = New-Object System.Windows.Forms.Button
$button.Text="Push Me!"
$button.Dock="fill"
$button.add_Click({ $form.close()})
$form.controls.add($button)
$form.Add_Shown({ $form.Activate()})
$form.ShowDialog()

Because it’s short enough to type at the command line, let’s go through the code
interactively. First you have to load the winforms assembly—it’s not loaded into
PowerShell by default:

PS (1) > Add-Type -AssemblyName System.Windows.Forms

All applications have to have a top-level form, so you’ll create one and save it in the
variable $form:

PS (2) > $form = New-Object System.Windows.Forms.Form

EventHandler arguments

For an event handler to do its job, it requires information about the event that caused it
to be invoked. You saw a similar pattern with ForEach-Object and Where-Object,
where the value that the scriptblock operated on was passed using the automatic vari-
able $_. The EventHandler integration in PowerShell follows the same basic pat-
tern. In .NET, when an EventHandler is invoked, it’s passed two arguments: the
object that fired the event and any arguments that are specific to that event. The signa-
ture of the method that’s used to invoke an event handler looks like this:

void Invoke(System.Object, System.EventArgs)

These values are made available to the scriptblock handling the event using the auto-
matic variables $this and $_. The variable $this contains a reference to the object
that generated the event, and $_ holds any event-specific arguments that might
have been passed. In practice, you don’t need these variables most of the time
because of the way variables in PowerShell work. With global, script, and module
scopes, you can usually access the objects directly. Still, it’s good to be aware of
them in case you need them. (See appendix B for an example showing their use.)
POWERSHELL AND GRAPHICAL USER INTERFACES 745

Set the Text property on the form so that the title bar will display “My First Form”:

PS (3) > $form.Text = "My First Form"

Next create a button and set the text to display in the button to “Push Me!”:

PS (4) > $button = New-Object System.Windows.Forms.Button
PS (5) > $button.text="Push Me!"

You’ll use the Dock property on the button control to tell the form layout manager
that you want the button to fill the entire form.

PS (6) > $button.Dock="fill"

Now you need to add a behavior to the button. When you click the button, you want
the form to close. You add this behavior by binding a scriptblock to the Click event
on the button. Events are bound using special methods that take the form
add_<eventName>:

PS (7) > $button.add_Click({$form.close()})

Be careful to match up all the parentheses and braces. In the scriptblock you’re add-
ing, you’ll call the Close() method on the form, which will “end” the application.

NOTE If you’ve programmed with WinForms in other languages such
as C# or Visual Basic, you may be curious about how the event binding
works. (If not, feel free to skip this note.) The add_Click() function
corresponds to the Click event described in the MSDN documenta-
tion. PowerShell doesn’t support the “+=” notation for adding events
so you have to use the raw add_Click() method. In general, events
require an instance of System.Delegate. The Click event in particu-
lar requires a subclass of System.Delegate called System.Event-
Handler. Although scriptblocks aren’t derived from that type,
PowerShell knows how to automatically convert a scriptblock into an
EventHandler object so it all works seamlessly. We’ll talk about other
event types later in this chapter.

Now you need to add your button to the form. Do so by calling the Add() method
on the Controls member of the form:

PS (8) > $form.Controls.add($button)

When the form is first displayed, you want to make it the active form. That’s what
the next line does; it sets up an event handler that will activate the form when it’s first
shown:

PS (9) > $form.Add_Shown({$form.Activate()})

You want to show the form you’ve built. There are two methods you could call. The
first—Show()—displays the form and returns immediately. Unfortunately, this
746 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

means that the form closes immediately as
well. This is because the form is running
on the same thread as the command. When
the command ends, so does the form.The
way to get around this issue is to use the
ShowDialog() method. This method
shows the form and then waits until the
form is closed—which is what you want to
do here. You call this method and Power-
Shell will seem to freeze:

PS (9) > $form.ShowDialog()

Then, on the desktop, a form that looks
like figure 17.7 will appear.

When you locate the window, you can
resize it and move it around and everything
works fine. Finally, click the “Push Me!”
button, causing the form to disappear, and control will return to the PowerShell ses-
sion. You’ll see something like

Cancel
PS (10) >

The word Cancel is the return value from the ShowDialog() methods. Dialogs usu-
ally return a result such as Cancel or OK. Because you called ShowDialog(), you get a
dialog reply.

Building a simple dialog box

Now let’s look at something a bit more sophisticated. Because you’re displaying the
form like a dialog box, let’s make it look more like a normal Windows dialog box. To
do so, you’ll build a form with three elements this time—a label and two buttons, OK
and Cancel. The form will look like the image shown in figure 17.8.

Figure 17.7 This is what the My First

Form Windows Form looks like. It con-

sists of a single button control that fills

the form when it’s resized.

Figure 17.8 The dialog

box created by the

Get-OkCancel()
function displays a simple

message and two buttons.
POWERSHELL AND GRAPHICAL USER INTERFACES 747

The code for this function is shown in the following listing.

function Get-OkCancel
{
 [CmdletBinding()] param ($question=
 "Is the answer to Life the Universe and Everything 42?")

 function New-Point ($x,$y)
 {New-Object System.Drawing.Point $x,$y}

 Add-Type -AssemblyName System.Drawing,System.Windows.Forms

 $form = New-Object Windows.Forms.Form
 $form.Text = "Pick OK or Cancel"
 $form.Size = New-Point 400 200

 $label = New-Object Windows.Forms.Label
 $label.Text = $question
 $label.Location = New-Point 50 50
 $label.Size = New-Point 350 50
 $label.Anchor="top"

 $ok = New-Object Windows.Forms.Button
 $ok.text="OK"
 $ok.Location = New-Point 50 120
 $ok.Anchor="bottom,left"
 $ok.add_click({
 $form.DialogResult = "OK"
 $form.close()
 })

 $cancel = New-Object Windows.Forms.Button
 $cancel.text="Cancel"
 $cancel.Location = New-Point 275 120
 $cancel.Anchor="bottom,right"
 $cancel.add_click({
 $form.DialogResult = "Cancel"
 $form.close()
 })

 $form.controls.addRange(($label,$ok,$cancel))
 $form.Add_Shown({$form.Activate()})
 $form.ShowDialog()
}

This function takes one parameter B—the question to ask—with a default. When
setting the size and location of controls on the form, you need to use System.Draw-
ing.Point objects, so you create a local helper function c to simplify things.

In addition to System.Windows.Forms, you need to load the System.Drawing
assembly d to get the Point type mentioned earlier.

Listing 17.2 The Get-OkCancel() WinForms example

Define
parameters

b

Point helper
function

c

Load the
required
assembliesdCreate form

and controlse

Add
controlsf
748 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

NOTE In the PowerShell ISE, all of these assemblies are loaded by
default. This is hardly surprising because the ISE is a graphical user
interface. You may, however, wonder why you don’t just load every-
thing into the console host by default. The issue has to do with size and
startup time. The more assemblies you load by default, the longer it
takes to start PowerShell.exe. Having more assemblies also means
that each running instance of PowerShell.exe becomes substantially
larger. Finally, when a process on Windows is allowed to go idle (i.e.,
isn’t used for a period of time) the image is paged to disk and the mem-
ory it was using is freed for other programs. This is why when you
return to that process it takes a long time to respond, and the bigger it
is, the longer it takes to page back in.

Once you have the prerequisites out of the way, you create the top-level Form e and
set the Caption and Size of this form.

Next you create a Label, setting the size of the control and the Location where it
should be placed on the parent form. You also set the Anchor property to Top; this
tells the layout manager to keep the label control “anchored” to the top of the form.
No matter what the size of the form is, the label will always stay the same distance
from the top of the form.

Then you create the OK button, setting the caption and location. Again, you’re
using the Anchor property to tell the layout manager to maintain the button’s posi-
tion relative to the bottom and left edges of the form when resizing the form. You
also defined the click handler scriptblock. Doing so sets the DialogResult property
to OK. When the form is closed, this is the value that will be returned from the call to
ShowDialog().

Finally, you define the Cancel button, this time anchoring it to the lower right of
the form and adding a click handler that will cause ShowDialog() to return Cancel
when the form is closed.

The last step is to add all the controls to the form and call ShowDialog()f. As
before, the window may be hidden on your desktop when it appears.

There are a couple of things to note about this example. The first is that figuring
out the size and location for each control is annoying. Calculation or a lot of trial and
error is needed to get it right.

NOTE The forms editor in an IDE such as Visual Studio makes these
types of chores much easier. If you look at the kind of code produced
by a forms editor, you’ll see it generates something that looks a lot like
our example: object instantiations and a lot of property assignments.

The second thing to notice is that a lot of the code is almost identical. The definition
for each of the buttons is the same except for the label and the anchor position.
POWERSHELL AND GRAPHICAL USER INTERFACES 749

Fortunately, you have a high-level scripting language you can use to build a library of
functions to simplify this.

We’ll also look at using smarter layout managers that try to get rid of a lot of the
manual positioning. In the next section, we’ll introduce a winforms module called
WPIAForms that addresses these issues.

17.3.2 Creating a winforms module

There are a lot of elements in building a Windows Forms application that are
repeated over and over. If you’re working in an environment such as Visual Studio,
the environment takes care of generating the boilerplate code. But if you’re building a
form using Notepad, you need to be a bit more clever to avoid unnecessary work.
Let’s build a module containing a number of convenience functions that make it eas-
ier to work with WinForms. We’ll call this module WPIAForms. If this module is
placed somewhere in your module path, then you can use it by including the line

Import-Module WPIAForms

at the beginning of your script. The code for this module is shown in the following
listing.

Add-Type -Assembly System.Drawing, System.Windows.Forms

function New-Size
{
 param (
 [Parameter(mandatory=$true)] $x,
 [Parameter(mandatory=$true)] $y
)
 New-Object System.Drawing.Size $x,$y
}

function New-Control
{
 param (
 [Parameter(mandatory=$true)]
 [string]
 $ControlName,
 [hashtable] $Properties = @{}
)

 $private:events = @{}
 $private:controls = $null

 foreach ($pn in "Events", "Controls")
 {
 if ($v = $Properties.$pn)
 {
 Set-Variable private:$pn $v

Listing 17.3 The WPIAForms.psm1 module

Load required
assembliesb

Create Size
objectsc

Create
controlsd

Extract events, controls
from hashtable

e

750 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

 $Properties.Remove($pn)
 }
 }

 $private:control = if ($Properties.Count) {
 New-Object "System.Windows.Forms.$ControlName" `
 -Property $Properties }
 else {
 New-Object "System.Windows.Forms.$ControlName" }

 if ($controls) {
 [void] $control.Controls.AddRange(@(& $controls)) }

 foreach ($private:en in $events.keys)
 {
 $method = "add_$en"
 $control.$method.Invoke($events[$en])
 }

 if ($control -eq "form") {
 $c.add_Shown({ $this.Activate() }) }

 $control
}

The first thing a winforms module should do is make sure that the necessary assem-
blies are loaded B. (Remember that trying to load an assembly multiple times is
harmless.)

Next you define a convenience function c for creating Size objects. Like many
helper functions, it simply hides the long type names used to construct the objects.

Then you come to the heart of the module: the New-Control function d. This
function is used to construct all the controls for your user interface. It takes as argu-
ments the name of the winforms control class to instantiate and a hashtable contain-
ing three types of entries:

• Simple properties to set on the control

• An Events hashtable specifying which control events you want to handle

• A scriptblock used to create the child controls for this form

The function iterates over the keys in the hashtable e), looking to extract the Con-
trols and Events members because they aren’t simple properties on the object
you’re creating. The scriptblock in the Controls member will be evaluated and any
control objects it returns will be added as children of the current control. The Events
member requires more complex processing. It’s also a hashtable but, in this case, the
keys are the names of control events and the values are the scriptblocks to bind to
those events.

Once the two special members have been extracted, the function passes the
cleaned-up hashtable to the -Property parameter on New-Object f to initialize
the control. Unfortunately there’s an annoying limitation on -Property: if the value

Construct
control object

f

Add child
controlsg

Bind event
handlersh

Ensure form
is visible

i

Return configured
control

j

POWERSHELL AND GRAPHICAL USER INTERFACES 751

passed to New-Object is either $null or empty, it will error out. This necessitates
wrapping the call to New-Object in an if statement so -Property only gets used
when the hashtable is not empty.

Now that the control object exists, add any child controls that were extracted g
and bind any event handlers that were specified h. One additional event handler is
added to ensure that the window is visible i. Finally, the completely configured
control object is returned j.

Although there doesn’t seem to be much to this library, it can significantly clarify
the structure of the application you’re building. Try it out by re-implementing the
one-button example and see what it looks like. The result is shown in figure 17.9.

The resulting code isn’t actually shorter but the hierarchical structure of the form
is much more obvious. The top-level form is created using New-Control and sets the
title to “Hi” and the size of the form to 100 x 60. The Controls member scriptblock
creates the child controls for the form. In this case you’re adding a Button object and
again you use New-Control to create the object, set the Text and Dock properties,
and define the Click event handler. Notice that at no point did you have to write
any conditional loops—instead of describing how to build the form, you’ve simply
declared what you want. In effect, you’ve created a simple domain-specific language
(DSL) for defining WinForms-based user interfaces.

NOTE When PowerShell v1 was released, the only way to build a GUI
with PowerShell was through script code. There were no GUI builder
tools available with support for the PowerShell language at that time.
Things have changed considerably as PowerShell has become more
popular. By the time v2 was released, there were a number of GUI
builders on the market that supported building WinForms UIs in
PowerShell, including SAPIEN Technologies PrimalForms and iTrip-
oli’s Admin Script Editor (which has an integrated PowerShell forms
designer). Both of these tools provide sophisticated PowerShell author-
ing environments as well as (or with) the forms designer. GUI builders
eliminate most of the manual layout and UI construction code.

Figure 17.9 An example using

the WPIAForms module. Both

the code and the resulting

window are shown here.
752 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

Let’s see where you’ve ended up. In the previous example, you invented a rather lim-
ited DSL for building GUIs in a declarative way. Clearly the ability to separate user
interface structure from the implementation logic is compelling, so it would be nice if,
rather than inventing your own language, you could use an existing GUI definition
language. In practice, this is exactly what the Windows Presentation Foundation
(WPF) is. Therefore, we’re going to spend some time seeing how WPF can simplify
building UIs in PowerShell.

17.3.3 PowerShell and Windows Presentation Foundation

In this section, you’ll learn how to use WPF from PowerShell to construct GUIs. WPF
is a modern, markup-based approach to declaratively constructing a user interface,
much more in tune with the web than the older code-based WinForms approach.

WPF takes a different approach to constructing a GUI compared to WinForms.
With WPF the UI is written declaratively using an XML-based markup language
called XAML (Extensible Application Markup Language). The approach used in WPF
is similar to the DSL you wrote as well as to the way HTML works: you describe the
basic components and the framework handles all of the construction details. An
important aspect of the design of WPF is that the UI description is decoupled from the
UI logic. This separation of appearance and behavior aligns with well-established best
practices for UI design (such as coders write code and design specialists do design).

NOTE If you want to see what happens when this rule is broken, take
a look at some of the very early websites that were created. These stand
as excellent testaments to the fact that, with very few exceptions, pro-
grammers aren’t designers.

In the next section, you’ll see how this all works by building a simple GUI front end
to some PowerShell commands. We’ll only cover a fraction of the features of
WPF—just enough to accomplish our goal of quickly building a simple UI. First
you’ll have to satisfy a few prerequisites before you can use WPF from PowerShell.

WPF preconditions

Although WPF has been around as long as PowerShell, in PowerShell v1, you weren’t
able to use WPF without a lot of tricks. This is because WPF can only be called from
an STA-mode thread (yes, here it is again.) With PowerShell v2 and the -sta param-
eter, this limitation ceases to be an impediment. (And in the ISE, which is a WPF
application, you always run in STA mode so, by default, everything will just work.)

The other thing you need to do to use WPF in your scripts is to load the WPF
assemblies, PresentationCore and PresentationFramework, using Add-Type.
With these prerequisites out of the way, you can start working on our example
project.
POWERSHELL AND GRAPHICAL USER INTERFACES 753

Building a file search tool

The goal of this exercise is to create a GUI front end to the Get-ChildItem and
Select-String cmdlets using WPF. You want novice users to be able to execute a file
search without having to be experts in PowerShell. A screen shot of the desired UI is
shown in figure 17.10.

In this form, the user can specify the path to search (defaulting to the current
directory), the extension of the files to search, and the pattern to use when searching
the file text. By default, regular expressions will be used in the text search, but an
option is provided to suppress this. There are also options to indicate that subfolders
should be searched as well and that only the first match in each file may be returned.
At the bottom of the dialog box, there are buttons to run or cancel the search. There’s
also a button that will display the command to be run before executing it—a very
useful mechanism for learning PowerShell.

Although this is a very simple dialog box, it would be annoying to implement
with WinForms due to all the manual control layout required. In the next section,
you’ll learn how easily you can describe this form with XAML.

Defining the search form’s appearance

In this section, we’re going to jump right into the user interface markup for the form.
The XAML text for the interface is shown in the following listing.

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="PowerSearch: Search Files for String"
 SizeToContent="WidthAndHeight" >
 <DockPanel>
 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal"
 Width="425" DockPanel.Dock="Top" Margin="10,17,10,17">
 <Label Width="100" >Path to search</Label>

Figure 17.10 A dialog

box that front-ends

the PowerShell

Get-ChildItem
and Select-String

cmdlets, allowing users

to search with Power-

Shell even if they don't

know the language

Listing 17.4 The search.xaml file declaring the file search interface

Create
top-level
window

Create
StackPanel

 to hold
controls

Add Label to
StackPanel
754 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

 <TextBox Name="Path" Width="300" >Add Row</TextBox>
 </StackPanel>
 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal"
 Width="425" DockPanel.Dock="Top" Margin="10,17,10,17">
 <Label Width="70" >File Filter</Label>
 <ComboBox Name="FileFilter" Width="100" IsEditable="True">
 *.ps1
 </ComboBox>
 <Label Width="100" >Search Pattern</Label>
 <TextBox Name="TextPattern" Width="125" >
 function.*[a-z]+
 </TextBox>
 </StackPanel>
 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal"
 Width="425" DockPanel.Dock="Top" Margin="10,17,10,17">
 <CheckBox Name="UseRegex" Width="150" >
 Use Regular Expressions
 </CheckBox>
 <CheckBox Name="Recurse" Width="150" >
 Search Subfolders
 </CheckBox>
 <CheckBox Name="FirstOnly" Width="150" >
 First Match Only
 </CheckBox>
 </StackPanel>
 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal"
 DockPanel.Dock="Top" Margin="75,5,5,5">
 <Button Width="100" Name="Run" Margin="5,0,5,0" >
 Run Command
 </Button>
 <Button Width="100" Name="Show" Margin="5,0,5,0" >
 Show Command
 </Button>
 <Button Width="100" Name="Cancel" Margin="5,0,5,0" >
 Cancel
 </Button>
 </StackPanel>
 </DockPanel>
</Window>

Looking through the XAML code, you see a lot of things that are familiar from the
WinForms examples: Label controls, TextBoxes, Buttons, and so on. This means
that you don’t have to learn a lot of new concepts, just a new way to describe how
they should be put together. In this UI description, the dialog box is constructed as a
set of rows of controls. A StackPanel layout control is used to arrange the elements
in each row and a DockPanel holds all the rows. Let’s look at one of the control dec-
larations in detail. The XAML that declares the Run button looks like this:

<Button Width="100" Name="Run" Margin="5,0,5,0" >
 Run Command
</Button>

Simply by inspecting the text, you can see that you’re creating a Button control, set-
ting the Width property on that control to 100, and setting the control Margin

Add named
TextBox to
StackPanel

Create another
StackPanel for

next row

Add ComboBox for
file filter

Add dialog
buttons to
bottom
POWERSHELL AND GRAPHICAL USER INTERFACES 755

property with values for left, top, right and bottom margins. Of particular impor-
tance is the Name property that lets you associate a unique name string with the con-
trol. You’ll need this information later when you’re binding actions to the controls.

This XAML document describes what our form will look like but it doesn’t say
anything about how it behaves.

NOTE At this point, the XAML experts in the audience will be shout-
ing that there are, in fact, many elements in XAML that do let you
describe behaviors (animations, triggers, and such). These features are
beyond the scope of this exercise, but you’re encouraged explore all the
things that can be done with XAML. It’s amazing how much you can
accomplish just using markup.

In the next section, we’ll introduce a PowerShell script that will “light up” your user
interface.

Specifying the form’s behavior

In the previous section, you described your form’s appearance using XAML markup.
In this section you’ll learn how to attach your business logic to this markup.

To display your form, you must load the XAML into the session and use it to cre-
ate an instance of System.Windows.Window. The WPF framework includes utility
classes to do most of the heavy lifting for this task. Once you have the UI object, you
just have to attach PowerShell actions to the controls. The following listing shows the
script that does both of these things for you.

Add-Type -Assembly PresentationCore,PresentationFrameWork

trap { break }

$mode = [System.Threading.Thread]::CurrentThread.ApartmentState
if ($mode -ne "STA")
{
 $m = "This script can only be run when powershell is " +
 "started with the -sta switch."
 throw $m
}

function Add-PSScriptRoot ($file)
{
 $caller = Get-Variable -Value -Scope 1 MyInvocation
 $caller.MyCommand.Definition |
 Split-Path -Parent |
 Join-Path -Resolve -ChildPath $file
}

$xamlPath = Add-PSScriptRoot search.xaml

Listing 17.5 search.ps1: defining the file search behavior

Load WPF
assemblies

Compute path
to XAML file
756 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

$stream = [System.IO.StreamReader] $xamlpath
$form = [System.Windows.Markup.XamlReader]::Load(
 $stream.BaseStream)
$stream.Close()

$Path = $form.FindName("Path")
$Path.Text = $PWD

$FileFilter = $form.FindName("FileFilter")
$FileFilter.Text = "*.ps1"

$TextPattern = $form.FindName("TextPattern")
$Recurse = $form.FindName("Recurse")

$UseRegex = $form.FindName("UseRegex")
$UseRegex.IsChecked = $true

$FirstOnly = $form.FindName("FirstOnly")

$Run = $form.FindName("Run")
$Run.add_Click({
 $form.DialogResult = $true
 $form.Close()
 })

$Show = $form.FindName("Show")
$Show.add_Click({Write-Host (Get-CommandString)})

$Cancel = $form.FindName("Cancel")
$Cancel.add_Click({$form.Close()})

function Get-CommandString
{
 function fixBool ($val) { '$' + $val }
 "Get-ChildItem $($Path.Text) ``
 -Recurse: $(fixBool $Recurse.IsChecked) ``
 -Filter '$($FileFilter.Text)' |
 Select-String -SimpleMatch: (! $(fixBool $UseRegex.IsChecked)) ``
 -Pattern '$($TextPattern.Text)' ``
 -List: $(fixBool $FirstOnly.IsChecked)"
}

if ($form.ShowDialog())
{
 $cmd = Get-CommandString
 Invoke-Expression $cmd
}

As was the case with the contents of the XAML file, there are many elements in this
script that should be familiar from the WinForms examples. To add an action to a
button, you use the add_Click() event method just like you did with WinForms.
You use the Text property on TextBox controls to get and set the contents of those
controls. Check boxes have an IsChecked property, as was the case with WinForms.

Load XAML that
constructs UI

Find and set Path
control to $PWD

Set default file
filter extension

 Set up CheckBox
controls

Bind button
Click actions

Build command
string

Format Booleans so
"True" becomes $true

Show form
and wait
POWERSHELL AND GRAPHICAL USER INTERFACES 757

The biggest difference here is that, instead of binding actions as you construct the
form, the XAML loader does all the construction and returns the completed object.
You then have to find the controls by name to be able to access them. In practice, this
turns out to be pretty simple. Once you’ve located the control objects, everything else
is much the same as it was with WinForms. The Get-CommandString function is
used to generate a string containing the PowerShell command that will perform the
actual search. This function uses the retrieved control objects along with string
expansion to produce a complete command.

Advantages of using WPF

The biggest advantage of using WPF is the separation of UI description from UI
behavior. By not mixing code and markup, each piece becomes simpler and can be
modified fairly independently. For example, because you’re identifying the controls
by name, it doesn’t matter where they get moved around in the form; you’ll still get
the correct control when you ask for it by name.

The other big advantage to this separation of concerns is that you can now use all
the WPF XAML GUI builders with PowerShell. Unlike WinForms, where the tools
needed to know PowerShell to work, XAML is XAML so the actual programming
language (for the most part) doesn’t matter and the UI can be designed indepen-
dently, decoupled from any code. This also means that the UI can be designed by an
expert UI designer and the code added by an expert scripter. Finally, the higher-level
nature of the WPF framework means that more effective PowerShell GUI frame-
works can be created.

PowerShell frameworks for WPF

Inspired by possibilities that arise from the combination of PowerShell and WPF/
XAML, the PowerShell community has created a number of higher-level libraries for
building WPF GUIs in PowerShell. As of this writing there are two good libraries
available free for download:

• The WPK library written by James Brundage, who was a member of the Power-
Shell team. This library is available at http://code.msdn.microsoft.com/Power-
ShellPack.

• The PowerBoots library, originally written and coordinated by Joel “Jaykul”
Bennett, who is a PowerShell MVP. PowerBoots is available on CodePlex at
http://powerboots.codeplex.com/.

Both of these libraries are packaged as PowerShell modules and provide a multitude
of useful features. And with that, we’ve finished our tour of .NET and what you can
do with it.
758 CHAPTER 17 EXTENDING YOUR REACH WITH .NET

http://code.msdn.microsoft.com/PowerShellPack
http://code.msdn.microsoft.com/PowerShellPack

17.4 SUMMARY

We introduced a number of areas where PowerShell can be applied thanks to its abil-
ity to access classes in the .NET Framework. When a particular application domain
may not have adequate coverage through cmdlets, if there’s a .NET API for that area,
the odds are good that PowerShell can be used to script it.

The first part of this chapter focused on expanding our knowledge of .NET. We
covered a variety of areas:

• Basic concepts in .NET and the common language runtime

• How to load assemblies into the PowerShell session using the Add-Type cmdlet
with the -AssemblyName parameter

• How to represent type names, including generic types, in the PowerShell lan-
guage and how to create instances of these types using the New-Object cmdlet

• Using the Add-Type cmdlet to create new .NET types dynamically in a Power-
Shell session

The next section of the chapter looked at some of the application domains supported
by .NET. These examples included network programming in PowerShell. We looked at

• Retrieving a simple web page in a script using the System.Net.WebClient class

• How to address more complex scenarios with the WebClient class such as using
PowerShell's built-in XML support to process an RSS feed

• How to build graphical interfaces for PowerShell using Windows Forms and WPF

In the next chapter we’ll continue with our exploration of Windows technologies and
look at COM and how it expands what you can do with PowerShell.
SUMMARY 759

C H A P T E R 1 8

Working with COM

18.1 Working with COM in PowerShell 761
18.2 Automating Windows with COM 764
18.3 Working with the WScript.Shell

class 777
18.4 Using COM to manage

applications 779

18.5 The WSH ScriptControl
class 783

18.6 Working with the Windows
Task Scheduler 786

18.7 Issues with COM 793
18.8 Summary 795
A horse! A horse! My kingdom for a horse!
 —King Richard in William Shakespeare’s
 The Life and Death of King Richard III

At the end of Shakespeare’s Richard III, King Richard stands upon a plain, sur-
rounded by foes, crying out for the one thing that he needs to continue on. Sort of
like the noble sysadmin: “A tool! A tool! My kingdom for a tool!” Okay, perhaps not
exactly like that, but at times, we do feel set upon from all sides, crying out desper-
ately for something to help us solve our problems. Fortunately, we in the PowerShell
world do get our horse: a framework called the Component Object Model (COM),
which can help us win our battles by giving us access to the necessary facilities.

In this chapter, we’ll cover the important details of working with COM from
PowerShell. We’ll look at a number of examples that illustrate how COM objects
work and the sorts of tasks that can be accomplished. You’ll also learn how to lever-
age earlier Windows scripting technologies in PowerShell scripts.
760

18.1 WORKING WITH COM IN POWERSHELL

COM is an interface specification describing how to write libraries that can be used
from multiple languages or environments. Prior to technologies like COM, each pro-
gramming language required its own set of libraries: Basic could only use libraries
written for Basic, C could only use libraries written for C, and so on. The COM spec-
ification allowed the creation libraries of components that could be accessed from mul-
tiple languages. But beyond simply sharing library code, COM allowed running
applications to expose automation interfaces that external programs could use to
remotely control them. In this section, we’ll introduce COM and see how to leverage
COM classes using PowerShell. COM provides easy (and in some cases trivial) access
to many Windows features. We’ll work through a number of examples in a variety of
application scenarios such as scheduling a task using the Windows task scheduler.
Finally, we’ll complete our COM coverage by examining some of the issues and limi-
tations the PowerShell scripter may encounter.

18.1.1 Creating COM objects

The first thing you need to know if you want to work with COM (or any other object
system for that matter) is how to create instances of COM objects. As with .NET
objects, you use the New-Object cmdlet, but for COM objects, you have to specify
the -ComObject parameter. This signature is shown in figure 18.1.

Notice that, unlike .NET objects, COM doesn’t have a way to pass arguments to
the object’s constructor, making it hard to initialize the object. As a workaround for
this, in PowerShell v2 (and later), you use the -Property parameter to initialize
properties on the constructed object before returning it.

Unique to the COM parameter set is the -Strict switch. This switch tells the
cmdlet to generate an error if a .NET/COM Interop library is loaded. Explaining
what this means and why it’s important is a bit complicated, so we’ll go through it in
pieces in the next section.

COM and Interop assemblies

In chapter 3, we talked about how the PowerShell type system uses adaptation to give
the user a consistent experience with different kinds of objects. COM objects are one
of these adapted types, but the way the PowerShell adapter works is affected by the

New-Object [-ComObject] <ProgID> -Strict -Property <Hashtable>

Cmdlet name

Class identifier for object to create

Indicates that raw COM

object must be returned

Table of key/value pairs used to

initialize instance properties

Figure 18.1 The New-Object parameter set for creating COM objects
WORKING WITH COM IN POWERSHELL 761

presence or absence of a COM Interop library. In effect, this Interop library is
.NET’s own adaptation layer for COM. The net effect is that the PowerShell COM
adapter will project a different view of a COM object if an Interop library is loaded
versus when there’s no Interop library. This becomes a problem because, for any
given COM class on any given machine, there may or may not be an Interop library,
so you may or may not get the doubly adapted COM object. If you want to be able to
write scripts that behave consistently everywhere, you need a way to control how the
adaptation is done. The -Strict parameter allows you to detect this when an
Interop library is loaded. Once you know what’s happening, you can decide whether
you want to fail or continue but along a different code path. This kind of portability
issue is something to keep in mind when you’re writing a script using COM that you
plan to deploy on other machines. But for now, let’s move on to our next topic and
see how to find out which COM classes are available.

18.1.2 Identifying and locating COM classes

In this section, you’ll learn how to identify or name a COM class and find out what
classes are available on a machine. Officially, all COM classes are identified by a glob-
ally unique ID (GUID). The following example uses the .NET System.GUID class to
show you what a GUID looks like:

PS (1) > [System.Guid]::NewGuid()
Guid

aaae24e3-14ea-4f70-9234-dfc3cbce9fb8

This isn’t a particularly friendly way to identify—well, anything really. So, as far as
PowerShell is concerned, COM objects are identified by a much more usable name
called the ProgID. This is a string alias that’s provided when the class is registered on
the system. Using the ProgID is the most human-friendly way of identifying the
object. By convention, the ProgID has the form

<Program>.<Component>.<Version>

which (at least according to the MSDN documentation) should be fewer than 39
characters in length.

NOTE Although this format is the recommended way to create a
ProgID, there’s no real way to enforce it, resulting in some interesting
interpretations for what each of the elements means. Generally, it
seems in practice that <Program> is the application suite, toolset, or
vendor who installed it; <component> is the COM classname; and the
version number is normally not used in calls, though it may exist in
even a multipart form.
762 CHAPTER 18 WORKING WITH COM

COM objects are registered in (where else?) the Registry. This means that you can use
the Registry provider to search for ProgIDs from PowerShell. Here’s a function we’ll
call Get-ProgID that will do it:

function Get-ProgID
{
 param ($filter = '.')

 $ClsIdPath = "REGISTRY::HKey_Classes_Root\clsid*\progid"
 dir $ClsIdPath |
 foreach {if ($_.name -match '\\ProgID$') { $_.GetValue("") }} |
 where {$_ -match $filter}
}

This searches through the Registry starting at the root of the classes hierarchy, where
COM objects are registered for keys whose paths end in “ProgID.” From the keys, you
retrieve the default property, which contains the name string of the ProgID. You
check this string against the filter and, if it matches, write it to the output stream.
Let’s try it out. You want to find the ProgID for Internet Explorer:

PS (1) > Get-ProgID internetexplorer
InternetExplorer.Application.1

And there it is: InternetExplorer.Application.1. This ProgID follows the rec-
ommended format: the program is InternetExplorer and the component in this
case is the actual Internet Explorer application. You can use this same pattern to find
the automation interfaces for other applications. Let’s look for Microsoft Word:

PS (2) > Get-ProgID word.*applica
Word.Application.11

You find the ProgID for Microsoft Word 11. This function works for non-Microsoft
applications as well. Let’s pick an application that you may have installed on your
computer—say, Apple’s iTunes media player:

PS (3) > Get-ProgID itunes.*application
iTunes.Application.1

Again, it follows the naming convention.
Now let’s look at another way to find ProgIDs: through WMI (which is the subject

of the next chapter). Here’s an alternate function that uses WMI:

function Get-ProgID
{
 param ($filter = '.')

 Get-WmiObject Win32_ProgIDSpecification |
 where {$_.ProgId -match $filter} |
 Select-Object ProgID,Description
}

WORKING WITH COM IN POWERSHELL 763

Not only is this script simpler, it also provides additional information: a description
of the class. Let’s look up Microsoft Word again to see this in action:

PS (6) > (Get-ProgID word.application) | select-object –First 1

ProgID Description
------ -----------
Word.Application.11 Microsoft Word Application

This time you get the ProgID and its description. The downside to this mechanism is
that it only locates a subset of the registered ProgIDs, so the Registry-based script is
usually the best approach.

Once you have the ProgID, you can use it with New-Object to create instances
of these objects. Starting the next section, you’ll see some of the things you can do
using COM.

18.2 AUTOMATING WINDOWS WITH COM
The first area where you’ll apply COM will be working with and automating basic
features and services built into Windows itself. Table 18.1 lists a number of the classes
that are useful in this area. Note that not all classes are available on all versions of
Microsoft Windows

For the rest of section 18.2, we’ll focus on the Shell.Application class and
look at a number of examples demonstrating how to apply this class. The examples

Table 18.1 COM classes for accessing Windows features

Class ProgID Description

Shell.Application Provides access to Windows Explorer and its capabilities.
Allows automation of many shell tasks like opening file
browser windows; launching documents or the help system;
finding printers, computers, or files; and so on.

SAPI.SpVoice Provides access to the Microsoft Speech API. Allows text-to-
speech with the Speak("string") method.

WMPlayer.OCX Manipulates the Windows Media Player.

MMC20.Application Manipulates the Microsoft Management Console application.

Agent.Control Interface to the Windows Animated Agents framework. Allows
animated characters to be displayed.

Microsoft.Update.Session Provides access to the Windows Update Agent (WUA), allow-
ing you to scan, download, and install updates.

Schedule.Service Allows you to create and schedule tasks, get a list of running
tasks, and delete task definitions (see section 18.6 for exam-
ples).

WScript.Shell Provides access to system information and environment vari-
ables; lets you create shortcuts and work with the Registry
(see section 18.3 for examples).
764 CHAPTER 18 WORKING WITH COM

start with automating Windows Explorer; then we’ll explore activating a Control
Panel applet and automating an application by sending keystrokes to it.

18.2.1 Exploring with the Shell.Application class

In this section, you’ll learn how to automate the Windows file browser using the
Shell.Application COM class. Through this class, Windows Explorer provides an
automation model that allows you to automate a significant number of tasks.

NOTE Automation model in this sense means that there’s a COM
object interface that lets an external program manipulate some aspects
of an application.

The first thing you need to do is create an instance of this class:

PS (3) > $shell = New-Object -ComObject Shell.Application

As always in PowerShell, COM objects, like any other object type, can be examined
using Get-Member. Let’s look at the members on the object you just created:

PS (4) > $shell | Get-Member

 TypeName: System.__ComObject#{efd84b2d-4bcf-4298-be25-eb542a5
9fbda}

Name MemberType Definition
---- ---------- ----------
AddToRecent Method void AddToRecent (Variant, st...
BrowseForFolder Method Folder BrowseForFolder (int, ...
CanStartStopService Method Variant CanStartStopService (...
CascadeWindows Method void CascadeWindows ()
ControlPanelItem Method void ControlPanelItem (string)
EjectPC Method void EjectPC ()
Explore Method void Explore (Variant)
ExplorerPolicy Method Variant ExplorerPolicy (string)
FileRun Method void FileRun ()
FindComputer Method void FindComputer ()
FindFiles Method void FindFiles ()
FindPrinter Method void FindPrinter (string, str...
GetSetting Method bool GetSetting (int)
GetSystemInformation Method Variant GetSystemInformation ...
Help Method void Help ()
IsRestricted Method int IsRestricted (string, str...
IsServiceRunning Method Variant IsServiceRunning (str...
MinimizeAll Method void MinimizeAll ()
NameSpace Method Folder NameSpace (Variant)
Open Method void Open (Variant)
RefreshMenu Method void RefreshMenu ()
ServiceStart Method Variant ServiceStart (string,...
ServiceStop Method Variant ServiceStop (string, ...
SetTime Method void SetTime ()
ShellExecute Method void ShellExecute (string, Va...
ShowBrowserBar Method Variant ShowBrowserBar (strin...
AUTOMATING WINDOWS WITH COM 765

ShutdownWindows Method void ShutdownWindows ()
Suspend Method void Suspend ()
TileHorizontally Method void TileHorizontally ()
TileVertically Method void TileVertically ()
ToggleDesktop Method void ToggleDesktop ()
TrayProperties Method void TrayProperties ()
UndoMinimizeALL Method void UndoMinimizeALL ()
Windows Method IDispatch Windows ()
WindowsSecurity Method void WindowsSecurity ()
Application Property IDispatch Application () {get}
Parent Property IDispatch Parent () {get}

Woo-hoo! Jackpot! Look at all that stuff! Let’s try it out. Start with the Explore()
method, which will launch an Explorer window on the path specified:

PS (10) > $shell.Explore("c:\")

At this point, you should see something like figure 18.2. This method call opened an
Explorer window at the root of the C: drive.

Here’s a handy function for laptop users who move around a lot. Many laptops
have docking stations that allow you to easily connect multiple peripherals. This is
great except that you need to undock the laptop before heading to a meeting.
Depending on the laptop, this can be annoying, so here’s a quick one-line function to
undock a laptop:

function eject { (New-Object -ComObject Shell.Application).EjectPC() }

This function gets an instance of the Shell.Application object and then calls the
EjectPC() method to undock the laptop.

NOTE I love this function. I go to way too many meetings.

Figure 18.2 Launching the Windows Explorer on C:\
766 CHAPTER 18 WORKING WITH COM

18.2.2 Managing browser windows using COM

Now let’s look at some examples where you actually work with the windows in Win-
dows. The Windows() method on Shell.Application allows you to get a list of the
Explorer and Internet Explorer windows that are currently open:

PS (16) > ($shell.Windows()).count
47

So there are 47 windows open in the current session. Let’s see what these Window
objects look like:

PS (17) > $shell.Windows() | Get-Member | Format-Wide Definition

void ClientToWindow (int, int) void ExecWB (OLECMDID, OLECMDEX...
Variant GetProperty (string) void GoBack ()
void GoForward () void GoHome ()
void GoSearch () void Navigate (string, Variant,...
void Navigate2 (Variant, Varian... void PutProperty (string, Variant)
OLECMDF QueryStatusWB (OLECMDID) void Quit ()
void Refresh () void Refresh2 (Variant)
void ShowBrowserBar (Variant, V... void Stop ()
bool AddressBar () {get} {set} IDispatch Application () {get}
bool Busy () {get} IDispatch Container () {get}
IDispatch Document () {get} string FullName () {get}
bool FullScreen () {get} {set} int Height () {get} {set}
int HWND () {get} int Left () {get} {set}
string LocationName () {get} string LocationURL () {get}
bool MenuBar () {get} {set} string Name () {get}
bool Offline () {get} {set} IDispatch Parent () {get}
string Path () {get} tagREADYSTATE ReadyState () {get}
bool RegisterAsBrowser () {get}... bool RegisterAsDropTarget () {g...
bool Resizable () {get} {set} bool Silent () {get} {set}
bool StatusBar () {get} {set} string StatusText () {get} {set}
bool TheaterMode () {get} {set} int ToolBar () {get} {set}
int Top () {get} {set} bool TopLevelContainer () {get}
string Type () {get} bool Visible () {get} {set}
int Width () {get} {set}

Again, you see lots of tantalizing things to play with. Let’s try looking at the first item
in the collection that was returned:

PS (21) > $shell.Windows()[0]
Unable to index into an object of type System.__ComObject.
At line:1 char:18
+ $shell.Windows()[0 <<<<]

Hmm… you got an error. So what happened here? If you look at the type of the
object returned by the method, you see that it’s of type System.__ComObject, which
is the .NET wrapper mechanism for accessing COM objects. PowerShell, in turn,
adapts the wrapped objects. Unfortunately, the adaptation mechanism isn’t perfect
and this is one of the places where these imperfections show through. The PowerShell
interpreter doesn’t know how to automatically index on these collections. This doesn’t
AUTOMATING WINDOWS WITH COM 767

mean that you can’t do it; you just have to work a bit harder. Instead of normal index-
ing syntax, you have to use the Item() parameterized property. Parameterized proper-
ties are similar to methods in that they can take arguments like a method, but they
can also be assigned to like a property, hence parameterized properties. In this case,
the Item()property is used for indexing a collection.

Let’s try it again:

PS (18) > $shell.Windows().Item(0)

Application : System.__ComObject
Parent : System.__ComObject
Container :
Document : mshtml.HTMLDocumentClass
TopLevelContainer : True
Type : HTML Document
Left : 354
Top : 80
Width : 838
Height : 489
LocationName : WinRM and WSMAN - Vista Forums
LocationURL : http://www.vistax64.com/network-shar
 ing/187197-winrm-wsman.html
Busy : False
Name : Windows Internet Explorer
HWND : 591430
FullName : C:\Program Files\Internet Explorer\i
 explore.exe
Path : C:\Program Files\Internet Explorer\
Visible : True
StatusBar : True
StatusText :
ToolBar : 1
MenuBar : True
FullScreen : False
ReadyState : 4
Offline : False
Silent : False
RegisterAsBrowser : False
RegisterAsDropTarget : True
TheaterMode : False
AddressBar : True
Resizable : True

This output shows you lots of information about this window. You can see that it’s an
Internet Explorer window along with the title and URL of the page that’s being dis-
played in it. Let’s select just the name and URL properties:

PS (19) > $shell.Windows() |
>> Select-Object -First 1 locationname,locationurl | Format-List
>>

LocationName : WinRM and WSMAN - Vista Forums
LocationURL : http://www.vistax64.com/network-sharing/187197-winrm-w
 sman.html
768 CHAPTER 18 WORKING WITH COM

This is a browser page pointing at a forum with a question about WSMan.
Okay, what else can you do with this object besides look at its properties? Well,

for one thing, you can change a lot of those properties. For example, let’s turn off all
the extra widgets that clutter up our browser windows to maximize our screen real
estate. First, let’s get rid of the menu bar. Examine the current state of the menu bar
by using

PS (10) > $shell.Windows().Item(0).MenuBar
True

A browser window with the menu bar turned on is shown in figure 18.3.
You can turn it off by setting the MenuBar property to $false:

PS (19) > $shell.Windows().Item(0).MenuBar = $false

Figure 18.4 shows what the window looks like now. The menu bar is gone and you’ve
reclaimed that space to view your web pages.

Figure 18.3 This figure shows a browser window where the menu bar is visible.

Remember where the menu bar shows up, as you’ll hide it next.

Figure 18.4 This is how the browser window looks after running a PowerShell

command to hide the menu bar. Compare this to the previous figure to verify

that the menu bar is indeed gone.
AUTOMATING WINDOWS WITH COM 769

In the next section, you’ll take what you’ve learned about these objects and build a
module for managing all the browser windows.

18.2.3 A browser window management module

In this section, you’ll build a COM-based tool to help manage the inevitable clutter of
browser windows you (or at least I) always end up with. You’ll call this function Get-
BrowserWindow and it will be exported from a module you’ll call COMtools.psm1.
You’ll also define an alias, gbw, for this function. The functional specification for this
command is as follows:

1 Calling this function with no arguments lists the names of open Internet
Explorer windows.

2 If a string argument is passed to this function, this argument will be used as a
regular expression pattern to match against the names of the open windows.

3 The function will allow the following actions to be performed on the selected
browser windows:

– Make the window visible on the desktop

– Minimize the window

– Close the window

The user experience should look like the following. First, you load the module:

PS (1) > Import-Module .\COMtools.psm1

This module imports the Get-BrowserWindow function and its alias gbw. To get a
list of all of the open windows, you call the function with no arguments:

PS (2) > (Get-BrowserWindow).Count
33

Using the Count property on the collection returned by the command, you can see
that there are 33 browser windows open. Let’s see how many search windows are
being used:

PS (3) > Get-BrowserWindow bing
powershell and COM - Bing
powershell xaml - Bing
powershell blogs - Bing

You currently have three Bing windows open. You decide that you don’t need the
blogs search window, so close it:

PS (4) > Get-BrowserWindow blogs.*bing -close

Then verify that it was closed by rerunning the search command:

PS (7) > Get-BrowserWindow bing
powershell and COM - Bing
powershell xaml - Bing
770 CHAPTER 18 WORKING WITH COM

Now let’s turn this specification into working code. You know how to get the list of
windows and filter them based on the window title. You’ll apply this knowledge (and
a bit of programmer pixie dust) to write your module. The following listing shows
the resulting source.

$Shell = New-Object -com Shell.Application

Add-Type -Namespace WPIA -Name WindowUtils
 -MemberDefinition @'
 [DllImport("user32.dll")]
 public static extern bool ShowWindow(
 IntPtr hWnd, Int32 nCmdShow);
'@

function Show-Window
{
 [CmdletBinding()] param (
 [Parameter(ValueFromPipeline=$true)]
 $window,
 [switch] $Minimize
)

 if (-not $window) { return }
 try
 {
 $hwnd = $window.HWND
 [void] [WPIA.WindowUtils]::ShowWindow($hwnd,6)
 if ($Minimize) { return }
 [void] [WPIA.WindowUtils]::ShowWindow($hwnd, 9)
 [void] [WPIA.WindowUtils]::ShowWindow($hwnd, 1)
 } catch { }
}

function windows ($pattern)
{
 $shell.Windows() | where {
 $_.Name -match 'Internet' -and
 $_.LocationName -match $pattern
 }
}

function Get-BrowserWindow
{
 [CmdletBinding(DefaultParameterSetName="full")]
 param (
 [Parameter(Position=0)]
 $Pattern = ".",
 [Parameter(ParameterSetName="full")]
 [switch] $Full,
 [Parameter(ParameterSetName="show")]

Listing 18.1 The COMtools.psm1 module

Create COM object
in module scopeb

Define ShowWindow
interop classc

Define number of
functionsd
AUTOMATING WINDOWS WITH COM 771

 [switch] $Show,
 [Parameter(ParameterSetName="minimize")]
 [switch] $Minimize,
 [Parameter(ParameterSetName="close")]
 [switch] $Close)

 foreach ($window in windows $Pattern)
 {
 if ($Show) { Show-Window $window }
 elseif ($Minimize) { Show-Window -Minimize $window }
 elseif ($Close) { $window.Quit() }
 else
 {
 if ($Full) { $window }
 else { $window.LocationName }
 }
 }
}
Set-Alias gbw Get-BrowserWindow
Export-ModuleMember -Function Get-BrowserWindow -Alias gbw

Let’s quickly walk through some interesting elements in this code and see how they
track against the functional specification. As always, you begin by creating the COM
object you’ll be using B. You also need to use P/Invoke (see section 17.1.5) to access
the APIs needed to show and hide windows c. You define a function to wrap the API
calls d. Because the APIs may throw exceptions, you enclose the calls inside a try/
catch statement. To guarantee that the target window is visible and on the top, you
make a series of calls to the ShowWindow() API to minimize, restore, and ensure visi-
bility. You use the Windows() method on the Shell.Application object to get the
list of windows. This collection includes both Explorer and Internet Explorer win-
dows but our spec says you only want the IE windows. To satisfy this, you create a
windows helper function that filters out non-IE windows by checking the Window-
Name property. This function also does the work of filtering the window collection by
title. It uses the -match operator to match the $Pattern parameter against the
LocationName property.

The main interface for this module is the Get-BrowserWindow function. This is
an advanced function (see section 8.2) that uses parameter sets to mark mutually
exclusive parameters. This function loops over the matched windows and shows,
minimizes, closes, or lists the window information on the console. Finally, you define
a short alias to make it more convenient to use the function and then export both the
alias and the function.

Let’s try using this module. Our first task will be to see if there are any open pages
with the word “Seattle” in the title. Call Get-BrowserWindow with Seattle as the
pattern argument:

PS (1) > Get-BrowserWindow Seattle
The Seattle Times | Seattle Times Newspaper
772 CHAPTER 18 WORKING WITH COM

This call returned one page. You can make that page visible by adding the -Show
switch to the command:

PS (2) > Get-BrowserWindow Seattle -Show

The browser window should now be visible (although it may not be the selected tab
in that window). Once you’re done with the page, you can close it, so you replace
-Show in the command with -Close:

PS (3) > Get-BrowserWindow Seattle -Close

Once the command has completed, either the tab containing the page will vanish or
the browser window will close.

The ability to find, view, or close browser windows is particularly handy when
you’re investigating a topic that ends up using dozens of browser windows for all the
different pages discussing the topic. But you can make it even more useful by adding
a -Gui option to the function as you’ll do in the next section.

Adding a graphical front end

The ability to list and manipulate browser windows from the command line is effec-
tive, but sometimes it’s difficult to isolate a specific window just using patterns. In
these situations, it’d be helpful to display the matches in a list and then select the
items to operate on from there. In this section, you’ll see how to do exactly this. You’ll
add a new -Gui switch to the Get-BrowserWindow function that tells it to display
the matches in a list box. The resulting display is shown in figure 18.5.

To do this, you’ll need to make a few small changes to the original function. You
need to add the -Gui parameter definition to the param block. The new parameter
definition is as follows:

 [Parameter(ParameterSetName="gui")]
 [switch] $Gui

Figure 18.5 This figure shows the GUI interface for the Get-BrowserWindow
function. When -Gui is passed to the command, the dialog box will appear showing

the filtered list of browser windows, which can then be shown, closed, or minimized.
AUTOMATING WINDOWS WITH COM 773

To implement the processing for this new switch, you’ll add an if statement right
after the param block that looks like this:

 if ($Gui)
 {
 Invoke-Gui $Pattern
 return
 }

Now you’re done. If the -Gui flag is specified, the function will call Invoke-Gui,
passing in the pattern to match and then return. Next, you have to write the Invoke-
Gui piece. In practice, writing this GUI turns out to be fairly easy to do.

Defining the GUI in XAML

In chapter 17, you saw how to build GUIs in PowerShell using WPF and XAML.
You’ll reuse what you learned as well as some of the code from section 17.3.3 to build
your GUI.

First, you’ll define the XAML text that describes the user interface you want to dis-
play. You can leverage some of the markup code that was shown in listing 17.9 to
make this easy. The markup for the new browser management form is shown in the
following listing.

$uiXaml = @'
 <Window Title="Manage Browser Windows"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="250" MinHeight="200" Width="700" MinWidth="650">
 <DockPanel>
 <StackPanel Orientation="Horizontal" DockPanel.Dock="Bottom"
 HorizontalAlignment="Center">
 <Button Width="150" Name="cw" Margin="5"
 Content="Close Browser Window"/>
 <Button Width="150" Name="mw" Margin="5"
 Content="Minimize Browser Window"/>
 <Button Width="150" Name="sw" Margin="5"
 Content="Show Browser Window"/>
 <Button Width="150" Name="cancel" Margin="5"
 Content="Cancel"/>
 </StackPanel>
 <ListBox Name="BrowserWindows" HorizontalAlignment="Stretch"
 DockPanel.Dock="Bottom" SelectionMode="Extended"/>
 </DockPanel>
</Window>
'@

Begin by assigning the here-string to a variable b. In code, you’re defining a form c
with a ListBox and four Button controls. A DockPanel d is used to hold the entire
form and manage the positions of the controls. The four button controls—close,

Listing 18.2 The XAML markup describing the Browser Window GUI

Define module-level variable to hold XAMLb

Define form size c

Define dock panel d

Define stack panel e

 Specify list
box to hold

window titles f
774 CHAPTER 18 WORKING WITH COM

minimize, show, and cancel are laid out horizontally in a StackPanel e, which is
docked at the bottom of the form. The ListBox f is declared last to take advantage
of the fact that the DockPanel control “fills” the form with the last control added so
you don’t have to do anything to get reasonable resizing behavior.

Defining the control actions

Now that you’ve defined the form, you need to run some PowerShell commands to
the control actions and then display the form (see the following listing).

function Invoke-Gui ($pattern = '.')
{
 $mode = [System.Threading.Thread]::CurrentThread.ApartmentState
 if ($mode -ne "STA") {
 Write-Error ("The -Gui option can only be used when PowerShell " +
 "is started using the -sta option")
 return
 }

 Add-Type -Assembly PresentationCore,PresentationFrameWork

 $xmlStream = [System.Xml.XmlReader]::Create(
 [System.IO.StringReader] $uiXaml)
 $form = [System.Windows.Markup.XamlReader]::Load(
 $xmlStream)
 $xmlStream.Close()

 $listBox = $form.FindName("BrowserWindows")

 $windowMap = @{}
 function setupListBox
 {
 $windowMap.Clear()
 $listBox.Items.Clear()
 $count = 0
 foreach ($w in windows $pattern)
 {
 $name = "(" + $count++ + ") " + $w.LocationName
 $windowMap[$name] = $w
 [void] $listBox.Items.Add($name)
 }
 }
 setUpListBox

 $form.FindName("cw").add_Click(
 {
 foreach ($sw in $listBox.SelectedItems | Write-Output)
 {
 try
 {
 $windowMap[$sw].Quit()

Listing 18.3 The PowerShell code for the Browser Window GUI

Check for STA-
mode PowerShell

b

Load WPF
assemblies

c

Convert XAML
text to windowd

Initialize
ListBoxe

Specify FindName()
method

f

AUTOMATING WINDOWS WITH COM 775

 }
 catch { }
 }
 setupListBox
 })

 $form.FindName("mw").add_Click(
 {
 foreach ($sw in $listBox.SelectedItems)
 {
 Show-Window -Minimize $windowMap[$sw]
 }
 })

 $form.FindName("sw").add_Click(
 {
 foreach ($sw in $listBox.SelectedItems)
 {
 Show-Window $windowMap[$sw]
 }
 })

 $form.FindName("cancel").add_Click({ [void] $form.Close() })

 [void] $form.ShowDialog()
}

This listing follows the same basic pattern you saw in chapter 17. First, you check to
see if you’re running in STA mode b because that’s required to use WPF. If you’re
running STA, then you load the WPF assemblies c and generate the GUI window
from the XAML definition d. Once you have the GUI object, you find the desired
controls by name and define the control actions using a scriptblock. You define a
hashtable to map the index to the window object and a function e to set up the map
and ListBox contents. You use the FindName() method to find each of the button
controls f. Finally you call ShowDialog() to display the form g.

Loading XAML from a here-string

One thing that’s a bit different from the example you saw in chapter 17 is how the
XAML is stored and loaded. In this example, instead of using a file, the XAML text is
embedded in the module as a here-string, stored in a module-level variable. When it
comes time to generate the UI object, you cast the XAML text into an instance of
System.IO.StringReader, which essentially allows you to read from a string the
same way you’d read from a file. Then you create an XmlReader class out of that
stream and finally use the static Create() method on the XamlReader class to build
the form from the XmlReader.

The other slightly complicated piece of code results from the fact that ListBox
only contains the titles of the windows and you need to get the actual object back to
be able to operate on it. You accomplish this by using a hashtable where the keys are

Show form as dialogg
776 CHAPTER 18 WORKING WITH COM

the browser window’s name and the values are the objects. Also, because it’s possible
for multiple windows to have the same title, you prefix the title with an index so that
all the strings are guaranteed to be unique. The final detail to consider is that, after
you’ve loaded ListBox, one of the windows listed may have been closed some other
way, which could lead to errors. You have try/catch statements around the ele-
ments that might throw an error to address this case.

Moving right along, let’s look at what you can do with some of the other COM
classes. In the next section, you’ll learn how to use the Windows Script Host shell
object (WScript.Shell) from PowerShell.

18.3 WORKING WITH THE WSCRIPT.SHELL CLASS

The WScript.Shell class will be familiar to any VBScript user writing Windows
management scripts. It contains a collection of useful methods for writing scripts on
Windows. As always, you’ll explore this object first. You’ll create an instance to work
with and put it into the $wshell variable:

PS (1) > $wshell = New-Object -com WScript.Shell

Now let’s see what it can do using Get-Member:

PS (2) > $wshell | Get-Member

 TypeName: System.__ComObject#{41904400-be18-11d3-a28b-00104bd
35090}

Name MemberType Definition
---- ---------- ----------
AppActivate Method bool AppActiva...
CreateShortcut Method IDispatch Crea...
Exec Method IWshExec Exec ...
ExpandEnvironmentStrings Method string ExpandE...
LogEvent Method bool LogEvent ...
Popup Method int Popup (str...
RegDelete Method void RegDelete...
RegRead Method Variant RegRea...
RegWrite Method void RegWrite ...
Run Method int Run (strin...
SendKeys Method void SendKeys ...
Environment ParameterizedProperty IWshEnvironmen...
CurrentDirectory Property string Current...
SpecialFolders Property IWshCollection...

The purpose of many of these methods is fairly obvious just by looking at the name.
For example, to pop up a message box you use the Popup() method. From the com-
mand line, enter the following command

$wshell.Popup("Hi there")

and up pops a message box, as shown in figure 18.6.
WORKING WITH THE WSCRIPT.SHELL CLASS 777

Let’s look at something a bit more focused on automating Windows (and windows).
One of the methods on the WScript.Shell class is SendKeys(). This method
allows you to send keys to an application just as if the user was typing them at the
keyboard. Let’s look at how you can use this feature to automate a Windows GUI
application. You’ll work with the Windows calculator (calc.exe or calc) in this
example. First, you need to get an instance of the WScript.Shell class:

$wshell = New-Object -Com WScript.Shell

Next, you’ll start a calculator process. Because PowerShell is a shell, you could just
run calc from the command line, but because this section is all about COM, use the
Run() method on the WScript.Shell instead:

[void] $wshell.Run("calc")

After you give the application a second to start, use the AppActivate() method to
set the focus on the calculator window. When you’re sure the window is active, send a
sequence of keys to the application, waiting for a second between each operation:

Start-Sleep 1
if ($wshell.AppActivate("Calculator"))
{
 "Calculator activated..."
 Start-Sleep 1
 $wshell.SendKeys("10{+}")
 Start-Sleep 1
 $wshell.SendKeys("22")
 Start-Sleep 1
 $wshell.SendKeys("~")
 Start-Sleep 1
 $wshell.SendKeys("*3")
 Start-Sleep 1
 $wshell.SendKeys("~")
 Start-Sleep 1
 $wshell.SendKeys("%{F4}")
}

If you ran this script, you’d see “10” appear in the result window, followed by “22”
shortly thereafter; then the two are added to give “32,” and so on. Finally, you send

Figure 18.6 When you use

the WScript.Shell object

to pop up a message box, it

will look like this.
778 CHAPTER 18 WORKING WITH COM

the sequence <alt><f4> to tell the application to close. (This is why you made sure
that the calculator process is active; otherwise, you might have sent the keystrokes to
the wrong application. Closing the wrong window is…well, bad.)

Up to now, you’ve only been working with Windows on the desktop. Let’s
expand our COM exploration to additional areas and applications.

18.4 USING COM TO MANAGE APPLICATIONS

In this section, we’ll explore some COM networking classes and then look at examples
of how to automate applications like Microsoft Word. You’ll start with the Internet
Explorer class.

18.4.1 Looking up a word using Internet Explorer

In this example, you’re going to use Internet Explorer to access a web page through its
COM automation object.

NOTE Accessing a website is not the main point of this example.
You’ve already seen an efficient way to do this using .NET classes in
section 17.2.1. The intention here is to see how to automate applica-
tions using a PowerShell script.

The goal here is to use the Wiktionary website to look up the definition of a word.
Our script will take two parameters: the word to look up and an optional switch to
tell the script that you want to make the browser window visible and leave it open
during the search. As before, the programmer pixie dust is sprinkled and the com-
plete function magically appears.

NOTE Although the notion of “programmer pixie dust” is rather silly,
there are many, many online resources that are almost as magical. Here
are just a few of the sites available: http://technet.microsoft.com, http://
microsoft.com/powershell, http://poshcode.org, http://codeplex.org,
and http://powershellcommunity.org. Remember: Good programmers
write good code; great programmers steal great code.

The code for the Get-WordDefinition function is shown in the following listing.

param(
 $word = $(throw "You must specify a word to look up."),
 [switch] $visible
)

Add-Type -AssemblyName System.Web

$ie = New-Object -ComObject InternetExplorer.Application
$ie.Visible = $visible

Listing 18.4 The Get-WordDefinition function

Load System.Webb
USING COM TO MANAGE APPLICATIONS 779

$ie.Navigate2("http://en.wiktionary.org/wiki/" +
 [Web.HttpUtility]::UrlEncode($word))

while($ie.ReadyState -ne 4)
{
 start-sleep 1
}

$bodyContent = $ie.Document.getElementById("bodyContent").innerHtml

$showText=$false
$lastWasBlank = $true
$gotResult = $false

switch -regex ($bodyContent.Split("`n"))
{
'^\<DIV class=infl-table' {
 $showText = $true
 continue
 }
'^\<DIV|\<hr' {
 $showText = $false
 }
'\[.*edit.*\].*Translations' {
 $showText = $false
 }
{$showText} {
 $line = $_ -replace '\<[^>]+\>', ' '
 $line = ($line -replace '[\t]{2,}', ' ').Trim()

 if ($line.Length)
 {
 $line
 $gotResult = $true
 $lineWasBlank = $false
 }
 else
 {
 if (! $lineWasBlank)
 {
 $line
 $lineWasBlank = $true
 }
 }
 }
}

if (! $gotResult)
{
 "No Answer Found for: $word"
}

if (! $visible)
{
 $ie.Quit()
}

Navigate to
Wiktionaryc

Wait until
readyd

Extract data e

Process
dataf

Close IEg
780 CHAPTER 18 WORKING WITH COM

You’re going to load an additional .NET assembly B because you need to encode your
word into a URL to send it to the Wiktionary site. Next, you get an instance of the
Internet Explorer object. You tell IE to navigate to the Wiktionary website and look up
the word c. This may take a while, so you loop, waiting for the document to be
loaded d. When the document is ready, you use the Internet Explorer Document
Object Model to extract the information you want out of the document e. Even after
you’ve extracted the document, the information you’re after still requires a significant
amount of work to locate and extract. You do this using the switch statement f. If
there was an answer, you display it; if not, you give the user an error message.

And finally, if the visible flag hasn’t been specified, close the browser window g.
Let’s try looking something up:

PS (1) > ./Get-WordDefinition.ps1 factorial

Singular factorial

Plural factorials
factorial (plural factorials)

(mathematics) The result of multiplying a given number of
 consecutive integers from 1 to the given number. In
equations, it is symbolized by an exclamation mark (!). For
example, 5! = 1 * 2 * 3 * 4 * 5 = 120.

[edit] Usage notes
" n !" is read as "factorial of n ."

PS (2) >

And there you go—a world of crucial knowledge at our fingertips!

NOTE In practice, this type of script, which is dependent on a website
that you don’t control, is very fragile. It’s extremely dependent on the
structure of pages generated by the target website, and these are subject
to change at any time. (In fact, this example had to be revised during
the production of the book because Encarta, the original target web-
site, changed its format.) If the page structure changes, your script will
be broken. (A well-structured data source such as the RSS feed, as
you’ll see in the next example, allows for much more reliable scripts.)

18.4.2 Using Microsoft Word to do spell checking

Wouldn’t it be great if every environment you worked in had spell checking like word
processors do? With PowerShell and COM, you can get at least part of the way there.
You’re going to write a script that will use Microsoft Word to spell-check the contents
of the clipboard and then paste them back. You’ll call this script Get-Spelling.ps1.

Let’s see how it’s used. First, you start Notepad and type some text with errors
into it:

PS (1) > notepad
USING COM TO MANAGE APPLICATIONS 781

Next, select the text and copy it to the clipboard. This is shown in figure 18.7.
Now run the script:

PS (2) > Get-Spelling

You’ll see the Word Spelling dialog box pop up, as shown in figure 18.8.

You go through all of the spelling errors and fix them as appropriate. Once all the
errors are fixed, the dialog box will disappear and the pop-up box will be displayed,
indicating that the revised text is available in the clipboard. Switch back to the Note-
pad window and paste the revised text into the window as shown in figure 18.9.

And you’re done. The text in the Notepad window is correctly spelled. Now that you
know how to use this script, let’s take a look at the actual code, which is shown in the
following listing.

$wshell = New-Object -com WScript.Shell
$word = New-Object -com Word.Application
$word.Visible = $false

Figure 18.7 This Notepad window

shows the misspelled text that

you will be fixing using the

Get-Spelling script.

Figure 18.8

The Microsoft Word

spell checker

launched by the

Get-Spelling
script shows the

misspelled text that

was copied from

the clipboard.

Figure 18.9 The Notepad window

showing the corrected text

Listing 18.5 The Get-Spelling script
782 CHAPTER 18 WORKING WITH COM

$doc = $word.Documents.Add()
$word.Selection.Paste()

if ($word.ActiveDocument.SpellingErrors.Count -gt 0)
{
 $word.ActiveDocument.CheckSpelling()
 $word.Visible = $false
 $word.Selection.WholeStory()
 $word.Selection.Copy()
 $wshell.PopUp("The spell check is complete, " +
 "the clipboard holds the corrected text.")
}
else
{
 [void] $wshell.Popup("No Spelling Errors were detected.")
}

$x = [ref] 0
$word.ActiveDocument.Close($x)
$word.Quit()

The first thing you do is create the object instances you’re going to use. You need an
instance of WScript.Shell to pop up a message box and the Word.Application
object for the bulk of the work. Once you have the Word.Application object, you’ll
make the Word window invisible, and then add an empty document to hold the text
you want to spell-check. Next, you copy the contents from the clipboard to the Word
document you created and see if you need to spell-check the text. If you do, you pres-
ent the Spelling dialog box. When the spell check is complete, you select all the text
and copy it back to the clipboard so you can paste it into the original document and
inform the user that the corrected text is available. If there were no spelling errors,
you’ll display a message box confirming this. The last step is to discard the document
you created and close the application. With this script, you can add spell-checking
capabilities to any application that lets you select and copy text.

NOTE Obviously, if Microsoft Word is not your word processor of
choice, it should be simple to modify the script to work with any word
processor that exports a similar automation model.

So far, we’ve focused on using COM to manipulate applications, but it can also be
used to access other features in Windows. Let’s see how COM can be used to bridge
between PowerShell and older Active Scripting–based languages like VBScript.

18.5 THE WSH SCRIPTCONTROL CLASS

In this section, we’ll show how to use the ScriptControl class from PowerShell.
This object will allow PowerShell to evaluate fragments of VBScript (or JavaScript or
any other language that has an ActiveScript engine) embedded inline in a Power-
Shell script. This allows you to reuse existing VBScript code simply by copying the
code into a PowerShell script.
THE WSH SCRIPTCONTROL CLASS 783

NOTE There’s another reason that this example is important. Some
COM objects work in COM automation languages such as VBScript,
but not in .NET environments such as PowerShell. Using this example,
you can package any required fragments of VBScript into the overall
PowerShell script.

18.5.1 Embedding VBScript code in a PowerShell script

You start by using the ScriptControl class to build a VBScript CodeObject. Be
aware that this class is not available on all versions of Microsoft Windows. This object
makes the VBScript functions defined in the script available to the caller as methods
on this code object. The function shown in the following listing returns a code object
with two of these methods on it: GetLength(), which returns the length of a string,
and Add(), which adds two objects together.

function Call-VBScript
{
 $sc = New-Object -ComObject ScriptControl
 $sc.Language = 'VBScript'
 $sc.AddCode('
 Function GetLength(ByVal s)
 GetLength = Len(s)
 End Function
 Function Add(ByVal x, ByVal y)
 Add = x + y
 End Function
 ')
 $sc.CodeObject
}

Let’s use the function to mix and match some PowerShell with VBScript:

PS (1) > $vb = Call-VBScript

Calling the function gives you an object with the VBScript functions available as
methods. First use the GetLength() method to get the length of a string:

PS (2) > "Length of 'abcd' is " + $vb.getlength("abcd")
Length of 'abcd' is 4

Now use the Add() method, but use it inside a string expansion to illustrate how
seamless this all is:

PS (3) > "2 + 5 is $($vb.add(2,5))"
2 + 5 is 7
PS (4) >

In the string expansion, the VBScript function is called to add the two numbers and
return the result. The result is converted to a string and included in the expanded
result string.

Listing 18.6 The Call-VBScript function
784 CHAPTER 18 WORKING WITH COM

18.5.2 Embedding JScript code in a PowerShell script

The script control also supports JScript, Microsoft’s implementation of ECMAScript
(JavaScript). This listing shows the same example but using JScript.

function Call-JScript
{
 $sc = New-Object -ComObject ScriptControl
 $sc.Language = 'JScript'
 $sc.AddCode('
 function getLength(s)
 {
 return s.length
 }
 function Add(x, y)
 {
 return x + y
 }
 ')
 $sc.CodeObject
}

First, you create the script control, this time specifying that the language is JScript B.
Then you add the code to define your functions c and finally return the object

d containing your functions. You call this function to get the code object back:

PS (4) > $js = Call-JScript

When you run the functions on this object, you get the same results you did in the
VBScript example:

PS (5) > "Length of 'abcd' is " + $js.getlength("abcd")
Length of 'abcd' is 4
PS (6) > "2 + 5 is $($js.add(2,5))"
2 + 5 is 7

This time, the JScript functions are called to return the results to PowerShell for display.
Our last example with the ScriptControl mixes everything together. In a one-

line script (command line), you can mix PowerShell, VBScript, and JScript. In fact,
you can have three languages all in one expression:

PS (7) > "The answer is " +
>> $js.add($vb.getlength("hello"),2) * 6
>>
The answer is 42
PS (8) >

This example illustrates the basics of how to use the script control from PowerShell.
Although we could continue to explore this type of embedding for quite some time,
there’s one final, important COM example we need to cover. A common requirement
for many management operations is the ability to schedule tasks to be run either on a

Listing 18.7 The Call-JScript function

Specify
JScript

b

Add codec

Return
CodeObject

d

THE WSH SCRIPTCONTROL CLASS 785

reoccurring schedule or when a particular event occurs. For example, backup and
housekeeping activities are usually scheduled to run late at night. In the next section,
you’ll see how to do this kind of scheduling using PowerShell.

18.6 WORKING WITH THE WINDOWS TASK SCHEDULER

In this section, you’ll learn how to use PowerShell to create, list, and manage Win-
dows Task Scheduler tasks.

NOTE These examples will only work on Windows Vista/Server 2008
or above. Starting with those releases, the Windows Task Scheduler
was significantly enhanced, adding many new features.

The COM class you need to work with the Task Scheduler is Schedule.Service.
This class allows you to create and schedule tasks, get a list of running tasks, and
delete task definitions. In this example, our goal is to schedule a task that will start a
PowerShell.exe process in 30 seconds from the time the task is created. This
PowerShell command will open a console window and then execute some script code
that will slowly count up from 1 to 10. Once it reaches 10, it’ll wait for quite a long
time so the Task Scheduler will be forced to shut that task down. Let’s walk through
the commands to do this.

18.6.1 Getting started with the Schedule.Service class

First, you need to use New-Object to get an instance of the Schedule.Service
object. Using Get-Member as always, you look to see what this class can do for you:

PS (2) > $ts = New-Object -ComObject Schedule.Service
PS (3) > $ts | Get-Member

 TypeName: System.__ComObject#{2faba4c7-4da9-4013-9697-20cc3fd40f85}

Name MemberType Definition
---- ---------- ----------
Connect Method void Connect (Variant, Variant, Variant...
GetFolder Method ITaskFolder GetFolder (string)
GetRunningTasks Method IRunningTaskCollection GetRunningTasks ...
NewTask Method ITaskDefinition NewTask (uint)
Connected Property bool Connected () {get}
ConnectedDomain Property string ConnectedDomain () {get}
ConnectedUser Property string ConnectedUser () {get}
HighestVersion Property uint HighestVersion () {get}
TargetServer Property string TargetServer () {get}
786 CHAPTER 18 WORKING WITH COM

The method names provide a reasonably clear description of the basic operations you
can perform. More detailed descriptions are shown in table 18.2.

18.6.2 Listing running tasks

Let’s connect to the Task Scheduler on the local machine and list the running tasks:

PS (4) > $ts.Connect()
PS (5) > $ts.GetRunningTasks(0)

Name : UserTask
InstanceGuid : {115A7A03-36B5-4937-8E23-E08B6E974488}
Path : \Microsoft\Windows\CertificateServicesClient\UserTask
State : 4
CurrentAction : Certificate Services Client Task Handler
EnginePID : 4784

Name : TMM
InstanceGuid : {6433D865-3D03-4F62-B70D-D8E314799EBB}
Path : \Microsoft\Windows\MobilePC\TMM
State : 4
CurrentAction : Transient Multi-Monitor Manager
EnginePID : 4784

Name : SystemSoundsService
InstanceGuid : {266F6DD9-8A1F-4C00-B62A-8CF0A47D4359}
Path : \Microsoft\Windows\Multimedia\SystemSoundsService
State : 4
CurrentAction : Microsoft PlaySoundService Class
EnginePID : 4784

You can see that there are three tasks running currently: UserTask, TMM, and System-
SoundsService. Because there may be more than one instance of a task running at any
given time, each task instance is uniquely identified by the InstanceGUID field. You’ll
get to the path field in a minute, but the other interesting field to notice is the
CurrentAction field. Each task has one or more triggers (events that start the task) and
one or more actions (operations performed by the task when it’s triggered). Let’s see
how to build a new task definition using the Schedule.Service object.

Table 18.2 The list of basic methods for the Windows Task Scheduler COM object

Schedule.Service method Description

Connect() Connect to the local or remote computer. Calling the method with
no arguments connects to the local service.

GetRunningTasks() Get a list of the currently running tasks (which is not the same as
the currently defined tasks). Not all definitions may be running at
any given time.

NewTask() Create a new task definition.
WORKING WITH THE WINDOWS TASK SCHEDULER 787

18.6.3 Creating a new scheduled task

To create a new task definition, you start by calling the NewTask() method:

PS (8) > $nt = $ts.NewTask(0)

NOTE People often ask what the 0 passed to NewTask() stands for.
The answer currently is nothing. This method argument is reserved for
future use, and all current scripts and programs should always pass 0.

Once you have the task object, you can begin to configure it starting with informa-
tion that will be used to identify the task once it’s registered. To set up this informa-
tion, you need to get the registration object returned by the RegistrationInfo
property on the new task object:

PS (9) > $ri = $nt.RegistrationInfo

With this object, you can set the Description and Author fields to help identify
this task definition:

PS (10) > $ri.Description = "Count to 10"
PS (11) > $ri.Author = "Bruce Payette"

Next, you have to establish the circumstances under which the task will be run.
Because you want to see the window displayed on the screen, you’re going to set the
LogonType to be 3 (interactive):

PS (12) > $principal = $nt.Principal
PS (13) > $principal.LogonType = 3

Now you need to establish when the task will be run by creating some triggers. The
numeric argument that’s passed in indicates the type of trigger to create. In this case,
you want to create a TimeTrigger, which is specified by passing 1 to the API:

PS (14) > $trigger = $nt.Triggers.Create(1)

To set the start and stop times for this task, you’ll have to write a small function to
convert a .NET time string into the format required by the Task Scheduler. This for-
mat is almost the same as .NET’s string representation of the UTC time except that
there’s a space in the .NET string where the Task Scheduler expects the letter T. To fix
this, you can use the -replace operator to substitute T for ' ':

PS (15) > function XmlTime ([datetime] $d)
>> {
>> $d.ToUniversalTime().ToString("u") -replace " ","T"
>> }
>>

Set the start and end boundary times to run the task:

PS (16) > $trigger.StartBoundary = XmlTime ((Get-Date).AddSeconds(30))
PS (17) > $trigger.EndBoundary = XmlTime ((Get-Date).AddMinutes(5))
788 CHAPTER 18 WORKING WITH COM

These settings mean that the task will trigger 30 seconds from now, but it must start
before the EndBoundary time is reached.

You want to limit how long the task can run by using the ExecutionTimeLimit
property. Limit the execution time to one minute:

PS (18) > $trigger.ExecutionTimeLimit = "PT1M" # One minute

Set the trigger Id string to identify the trigger. Remember that there may be more
than one trigger, in which case this field helps you to tell them apart:

PS (19) > $trigger.Id = "Trigger in 30 seconds"

Finally you enable the trigger:

PS (20) > $trigger.Enabled = $true

In order for the task to do anything when it triggers, you’ll also need to define an
action object for the task. Do so with the Actions.Create() method:

PS (21) > $action = $nt.Actions.Create(0)

As with the NewTask() call, the argument to this function is reserved for future use
and currently must always be 0. Next you’ll set up the action to take and any argu-
ments to that action:

PS (22) > $action.Path = @(Get-Command powershell.exe)[0].Definition
PS (23) > $action.Arguments = @'
>> foreach ($i in 1..10) { $i; sleep 1 }; sleep 1000
>> '@
>>

These commands specify the executable to run (PowerShell.exe) and the argu-
ments to pass to it when the process is launched.

Now you come to the Folder object. This object is used to control where the
task is stored. Task Scheduler definitions are organized in a hierarchy of folders like
the file system. This allows you to organize related sets of tasks in their own folder.
The following command retrieves an object that represents the root of the task
folder hierarchy:

PS (24) > $tsFolder = $ts.GetFolder("\")

Once you have this object, you can use it to navigate the task tree and create new
folders in that tree. But to keep the current example simple, just create the task in the
root of the task definition tree.

18.6.4 Credentials and scheduled tasks

The final thing you need before you can register this task is to specify the credentials
to use when running the task. These credentials are passed to the API used to register
a task RegisterTaskDefinition(), which will store them for later use when the
WORKING WITH THE WINDOWS TASK SCHEDULER 789

task is created. You’ll use the Get-Credential cmdlet to get the user credentials in
the PSCredential object:

PS (25) > $cred = Get-Credential

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential

At this point, you’ve run into a bit of a problem. The RegisterTaskDefinition()
method doesn’t understand PSCredential objects. It requires a name and a password,
which means that you’ll have to extract these fields from the credential object. Getting
the user name is trivial: UserName is a string-valued property on the credential object.
Getting the password, however, is less obvious. The Password field on the credential
object is a SecureString (see section 21.5.4), which the task registration API also
doesn’t understand. It requires the password to be a simple clear-text string. Fortu-
nately this scenario is covered and you can use the GetNetworkCredential()
method on the PSCredential object to get the necessary clear-text password.

Finally, you can put all of the pieces together and register your task with the Task
Scheduler. When you register the task, give it the name PowerShellTimeTrigger-
Test to make it easy to find later. Here’s the command to register the task:

PS (26) > $tsFolder.RegisterTaskDefinition(
>> "PowerShellTimeTriggerTest", $nt, 6,
>> $cred.UserName,
>> $cred.GetNetworkCredential().Password, 3)
>>
Name : PowerShellTimeTriggerTest
Path : PowerShellTimeTriggerTest
State : 3
Enabled : True
LastRunTime : 12/30/1899 12:00:00 AM
LastTaskResult : 1
NumberOfMissedRuns : 0
NextRunTime : 8/19/2010 11:23:40 PM
Definition : System.__ComObject
Xml : ...

This call returns a task registration object that includes all the task information you
passed. Of particular interest is the Xml property. This property contains the task reg-
istration information registered as an XML document. The content of this document
is shown in listing 18.8. In this listing, you can see elements corresponding to each of
the object you created: RegistrationInfo, Triggers, Actions, and Principal.
There’s also a section for the Settings element that contains additional information
about how the task is to be run.
790 CHAPTER 18 WORKING WITH COM

<?xml version="1.0" encoding="UTF-16"?>
<Task version="1.2" xmlns=
 "http://schemas.microsoft.com/windows/2004/02/mit/task">
 <RegistrationInfo>
 <Author>Bruce Payette</Author>
 <Description>Count to 10</Description>
 </RegistrationInfo>
 <Triggers>
 <TimeTrigger id="Trigger in 30 seconds">
 <StartBoundary>2010-08-20T06:23:40Z</StartBoundary>
 <EndBoundary>2010-08-20T06:28:10Z</EndBoundary>
 <ExecutionTimeLimit>PT1M</ExecutionTimeLimit>
 <Enabled>true</Enabled>
 </TimeTrigger>
 </Triggers>
 <Settings>
 <IdleSettings>
 <Duration>PT10M</Duration>
 <WaitTimeout>PT1H</WaitTimeout>
 <StopOnIdleEnd>true</StopOnIdleEnd>
 <RestartOnIdle>false</RestartOnIdle>
 </IdleSettings>
 <MultipleInstancesPolicy>IgnoreNew</MultipleInstancesPolicy>
 <DisallowStartIfOnBatteries>true</DisallowStartIfOnBatteries>
 <StopIfGoingOnBatteries>true</StopIfGoingOnBatteries>
 <AllowHardTerminate>true</AllowHardTerminate>
 <StartWhenAvailable>false</StartWhenAvailable>
 <RunOnlyIfNetworkAvailable>false</RunOnlyIfNetworkAvailable>
 <AllowStartOnDemand>true</AllowStartOnDemand>
 <Enabled>true</Enabled>
 <Hidden>false</Hidden>
 <RunOnlyIfIdle>false</RunOnlyIfIdle>
 <WakeToRun>false</WakeToRun>
 <ExecutionTimeLimit>PT72H</ExecutionTimeLimit>
 <Priority>7</Priority>
 </Settings>
 <Actions Context="Author">
 <Exec>
 <Command>
 C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
 </Command>
 <Arguments>
 foreach ($i in 1..10) { $i; sleep 1 }; sleep 1000
 </Arguments>
 </Exec>
 </Actions>
 <Principals>
 <Principal id="Author">
 <UserId>\brucepay</UserId>
 <LogonType>InteractiveToken</LogonType>
 </Principal>
 </Principals>
</Task>

Listing 18.8 The XML representation of the new task
WORKING WITH THE WINDOWS TASK SCHEDULER 791

Once this RegisterTaskDefinition() method has been run, your task is active
and scheduled. So 30 seconds after calling the method, you’ll see a window pop up on
your desktop displaying the numbers from 1 to 10, as shown in figure 18.10.

This window will continue to be displayed until the task duration timeout occurs,
at which point the Task Scheduler service terminates the triggered process.

18.6.5 Viewing the life cycle of a task

To see all of the events in the task life cycle, you can use the Task Scheduler tool to see
the task’s history. To start this tool, run taskschd.msc at the command line. Figure
18.11 shows the Task Scheduler window displaying the events in the task’s History tab.

Figure 18.10 This is the window you’ll

see when the scheduled task you created

is triggered and executes. The window

shows the output of the PowerShell

commands that were passed as

arguments to the task executable.

Figure 18.11 This figure

shows the event history

for the task you created

using PowerShell. It

shows the task triggering,

starting execution and

finally being terminated

because it exceeded the

maximum execution

time for the task.
792 CHAPTER 18 WORKING WITH COM

In this history, you see each step in the execution of the task: the trigger, starting the
task action execution, launching the task process, and finally stopping and terminat-
ing the task.

Using COM in PowerShell lets you do amazing things—automating applications,
mixing and matching languages, and so on. But there are also issues with COM sup-
port, which we’ll cover in the next section.

18.7 ISSUES WITH COM
Support for COM in PowerShell is very good but not perfect. In part, this is due to
the fact that PowerShell depends on .NET, and .NET’s support for COM is also not
perfect. In this section, we’ll explore a few problems that you may run into when
using COM from PowerShell, including more information on the Interop assembly
issue mentioned in section 18.1.1.

18.7.1 64-bit vs. 32-bit issues

One problem that arises is that some COM objects are only available to 32-bit appli-
cations. On 64-bit systems, the 64-bit PowerShell binaries are run by default, so if you
need to use a 32 bit–only COM object, you’ll have to explicitly start the 32-bit version
of PowerShell. This can also be an issue when using remoting because the default remot-
ing configuration on 64-bit systems is 64 bit as well. To remotely run a script that
requires a 32-bit COM object, you’ll have to connect to the 32-bit configuration on the
remote machine, regardless of whether the local system is 32 or 64 bit. (Section 12.6.6
in chapter 12 covers the details on how to target a specific remoting configuration.)

18.7.2 Threading model problems

By default PowerShell.exe runs in multithreaded apartment (MTA) mode. A signif-
icant number of COM objects require the caller to be in single-threaded apartment
(STA) mode. Most of the time this will be transparent to you because the PowerShell
COM type adapter does a bunch of magic under the covers, and most of the time it
works fine. Occasionally, though, you’ll encounter something that doesn’t work. The
solution is to restart PowerShell.exe with the -sta switch and try it again. The
-sta switch starts PowerShell in STA mode instead of the default MTA mode, and
this is usually sufficient to get things working.

NOTE Remember that, although the default mode for Power-
Shell.exe is MTA, the default (and only) mode for the PowerShell
ISE is STA. This difference can occasionally cause the same script to
behave differently in the two environments.

18.7.3 Interop assemblies, wrappers, and typelibs

As mentioned in 18.1.1, another thing that can potentially cause problems has to do
with the way the COM object has been wrapped or adapted. There are three possible
ISSUES WITH COM 793

categories of COM object you may encounter: a COM object that has a .NET
Interop library, a COM object that has a type library (commonly called a typelib)
but no Interop assembly, and a COM object that has neither.

In the first category, you get a COM object that has been wrapped in a .NET
interop wrapper. This wrapper may introduce changes in the object’s interface or
behavior that affects how you work with that object compared to the raw COM
object. For this reason, the New-Object cmdlet’s ComObject parameter set has an
additional parameter, -Strict, that causes a nonterminating error to be written if an
Interop assembly is loaded. Let’s look at some examples. Start by creating an
instance of the Word.Application object you used earlier:

PS (23) > $word = New-Object -Com word.application

Now try it again but with the -Strict parameter:

PS (24) > $word = New-Object -Com word.application -Strict
New-Object : The object written to the pipeline is an instance of the type

"Microsoft.Office.Interop.Word.ApplicationClass" from the
component's primary interop assembly. If this type exposes
different members than the IDispatch members, scripts written
to work with this object might not work if the primary interop
assembly is not installed.

At line:1 char:19
+ $word = New-Object <<<< -Com word.application –Strict

You get a detailed error message explaining that the object that was loaded is a
wrapped object. Note that this is a nonterminating error message, so the object is still
returned and execution proceeds. Here’s how to use this feature to write a script that
can adapt its behavior appropriately.

First, you don’t want the error message to appear in the output of your script, so
redirect it to $null. But even when you do this, the $? variable, which indicates
whether the last command executed was successful, is still set to $false so you know
that an error occurred:

PS (26) > $word = New-Object -com Word.Application `
>> -strict 2> $null
>>
PS (27) > $?
False

A script should check this variable and take an alternate action for the wrapped and
nonwrapped cases. Investigating further, let’s take a look at what was returned by the
call to New-Object:

PS (28) > $word.gettype().fullname
Microsoft.Office.Interop.Word.ApplicationClass

The output shows that the object is an instance of the Interop assembly mentioned
earlier.
794 CHAPTER 18 WORKING WITH COM

Next, take a look at an object for which there’s no Interop assembly and see how
that behaves differently. Create an instance of the Shell.Application class you
worked with earlier:

PS (43) > $shell = New-Object -ComObject Shell.Application
PS (44) > $shell | Get-Member

 TypeName: System.__ComObject#{efd84b2d-4bcf-4298-be25-eb
542a59fbda}

Name MemberType Definition
---- ---------- ----------
AddToRecent Method void AddToRecent (Varian...
BrowseForFolder Method Folder BrowseForFolder (...
:

In this situation, you see that the type of the object is System.__ComObject fol-
lowed by the GUID of the registered type library. This type library is what allows you
to see the members on the object but doesn’t affect the object’s behavior.

18.8 SUMMARY

This chapter introduced Windows’ native object model, the COM framework, and
we showed you how to use it with PowerShell. COM objects and automation inter-
faces are the core mechanism used by older, unmanaged scripting languages such as
VBScript and JScript. And, although the .NET Framework and managed code con-
tinues to grow in functionality, having direct access to these unmanaged scripting
interfaces still offers substantial value.

In this chapter, we covered the following points:

• We introduced the basic elements of COM, how to identify a COM object using
ProgIDs, and how to get a list of these ProgIDs.

• You saw that the Get-Member cmdlet is a powerful tool for learning about and
examining COM objects.

This chapter included many examples of how to use COM:

• Writing scripts that manipulate browser and shell windows using the
Shell.Application class

• Using the WScript.Shell object to pop up message boxes or send keystroke
sequences to automate a Windows application

• Using the browser to look up a word in an online resource with the Internet-
Explorer.Application class

• Using COM automation to control applications like Microsoft Word to per-
form scripted tasks via the Word.Application class
SUMMARY 795

• Using the ScriptControl to allow a PowerShell script to call functions written
in VBScript or JScript

• Creating scheduled tasks for the Windows Task Scheduler using the Sched-
uler.Service class

We also covered some of the issues you might run into using COM from PowerShell
such as STA versus MTA threading issues and 32-bit versus 64-bit controls.

You are now comfortable with .NET and COM objects, but these are general-
purpose technologies. In the next chapter we’ll look at an object framework and set of
technologies (CIM, WMI, and WSMan) that are specifically targeted at management
tasks. These technologies are based on industry standards with the goal of providing
broad cross-platform support for datacenter management.
796 CHAPTER 18 WORKING WITH COM

C H A P T E R 1 9

Management objects:
WMI and WS-MAN

19.1 Working with WMI in

PowerShell 798

19.2 The WMI cmdlets 801

19.3 The WMI object adapter 824
19.4 Exploring WS-Man 830
19.5 Summary 845
A horse is a horse, of course, of course. And no one can talk to a horse, of
course. That is, of course, unless the horse is the famous Mister Ed!

 —Theme song from the Mister Ed television show

In the previous chapter, we explored the kinds of things you can do with COM, the
Windows “native” object framework. Although COM and .NET can be used for
many management tasks, management isn’t their primary purpose. In this chapter
we’ll look at an object system that’s specifically designed to address the needs of sys-
tems management: Windows Management Instrumentation (WMI). WMI is Micro-
soft’s implementation of the industry-standard Common Information Model (CIM).

In this chapter, you’ll learn what WMI is, how to access it from PowerShell, and
what you can do with WMI once you have this access. You’ll work through a number
of examples to see how things work, exploring the sorts of tasks that can be accom-
plished. The second part of the chapter looks at Web Services for Management (WS-
Man). WS-Man is another standard related to CIM. We introduced WS-Man in
797

chapter 13 in the context of PowerShell remoting, but in this chapter, you’ll see how
to use it to access the CIM objects and why that matters.

19.1 WORKING WITH WMI IN POWERSHELL

WMI is Microsoft’s implementation of the Common Information Model. CIM is an
industry standard (a set of related standards) created by Microsoft, HP, IBM, and
many other computer companies with the goal of defining a common set of manage-
ment abstractions. By creating interoperable common models for managed elements
like services, processes, or CPUs, we can start to build management tools and pro-
cesses that can be applied universally.

In addition, as environments become increasingly more interconnected and
devices like power supplies and air conditioners are networked right alongside desktop
PCs, servers, and cell phones, the need for a common way to transmit management
data becomes critical. This requirement is driving work on new management-oriented
protocols like WS-Man that build on top of established, standard Internet protocols.

Collectively, these common models and protocols lay the groundwork for creating
effective cross-platform management solutions for the modern, heterogeneous, dis-
tributed IT infrastructure.

NOTE At one point in the early 2000s, it looked like there was a
movement away from standard management technologies like WMI.
People were going around saying things like “WMI is dead.” In fact,
this turns out not to be the case at all, and we’re seeing increasing inter-
est in CIM and related standards. WS-Man is a major factor in this
because it provides a tractable, nonproprietary transport mechanism
for the CIM APIs.

For example, the vPro technologies available in some Intel motherboards allow
remote management of computer features, independent of the installed OS.

Now that you have an understanding of why standard management technologies
like WMI and WS-Man are important, let’s see how all this works.

19.1.1 Exploring WMI

If you’re a Windows system administrator or Windows Server applications developer,
WMI should already be familiar to you. If you’re not a Windows administrator,
chances are good (at least until recently) that you’ve never heard of it, which is too
bad. WMI is one of the best not-so-secret technologies that the industry has to offer,
both for users and for developers. But if it’s so wonderful, why don’t you hear more
about it? Well, in part, because it has historically suffered from the “one-telephone”
syndrome: there’s no point in owning a telephone if there’s no one to call. For exam-
ple, prior to PowerShell, the only way you could use WMI was to write a program in
798 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

C++, write a script in VBScript, or use the WMI command-line tool (WMIC, a sort of
limited precursor to PowerShell). Unfortunately, all of these solutions made even the
simplest use of WMI fairly complex for a nonprogrammer. With the advent of things
like PowerShell, WMI becomes a convenient command-line tool for everyday users,
as you’ll see.

Let’s talk about what WMI actually is. To quickly refresh your acronym knowl-
edge, WMI stands for Windows Management Instrumentation, which is Microsoft’s
implementation of the Distributed Management Task Force (DMTF) CIM. CIM is,
in turn, an industry standard for an object model used to encapsulate the managed
elements in a system. The DMTF website (www.dmtf.org) describes CIM in the fol-
lowing way:

CIM provides a common definition of management information for
systems, networks, applications, and services, and allows for vendor
extensions. CIM’s common definitions enable vendors to exchange
semantically rich management information between systems throughout
the network.

That’s a very erudite if somewhat abstract definition. What it really means is that
there are “standard” ways of wrapping up bits of management data in a well-defined
standard package so you can work with this data across different vendors and envi-
ronments in a consistent, standard way. For example, CIM defines a “class” called
CIM_Process that abstracts out the details of what a process looks like on any given
system. This means that, when encapsulated using this CIM_Process class or model,
a process object on Windows, Solaris, Linux, or even a smartphone OS has the same
basic set of properties and methods. Thus if you need to find out the ID of a process,
CIM_Process defines a standard property ProcessID for accessing this information.
Similarly, if you need to stop this process, you can call the CIM_Process.Termi-
nate() method, and the underlying CIM implementation will map (or adapt) this
call into the necessary system-specific API call.

To support environment-specific extensions, CIM also allows vendors to create
derived classes of the CIM base classes that can surface nonstandard features as a set of
extensions while still preserving the common base characteristics of the model. The
goal of all of this is to make it easier to create system administration tools (and, by
corollary, system administrators) that can work effectively in heterogeneous environ-
ments. In the next section, we’ll look at how the CIM/WMI infrastructure facilitates
these goals.

19.1.2 The WMI infrastructure

The core of WMI is a Windows service that hosts the components of the WMI infra-
structure. These components include the WMI/CIM Object Manager, commonly
called a CIMOM, a repository for CIM/WMI object instances, and a set of providers
that provide the adaptation layer between concrete system resources the standard
WORKING WITH WMI IN POWERSHELL 799

CIM classes use to manage those resources. Figure 19.1 shows how these components
are organized.

The classes surfaced by the providers are logically arranged into a hierarchy of
namespaces. Within each namespace are related (at least in theory) classes or types
that represent (or model) management elements. In addition to classes, namespaces
can contain nested namespaces.

NOTE None of this should be new to anyone who’s paid attention so
far; we discussed at length how .NET does logical and physical type
organization in section 17.1. CIM has the same basic arrangement of
provider (physical) and namespace (logical) groupings.

Notice that there is no one-to-one mapping between namespaces and providers.
More than one provider can surface types with a namespace. In fact, a lot of the Win-
dows core providers expose (dump) all of their classes in the root\cimv2 namespace,
as you’ll see later.

NOTE The astute reader may be wondering how WMI providers
might relate to the namespace providers that PowerShell uses for access-
ing stores such as the file system and the Registry. WMI providers and
PowerShell providers are completely independent technologies
(although conceptually they’re both ways of accessing objects).

Table 19.1 includes a partial list of the WMI namespaces that are configured on
Windows.

WMI infrastructure

components

CIM/WMI

repository
CIM/WMI Object Manager (CIMOM)

WMI providers

WMI scripting/programming

interfaces and libraries

Managed services, applications ,

and system components

WMI consumers (scripts,

monitoring software, etc.)

R
e

g
is

try

S
N

M
P

W
in

3
2

W
in

d
o
w

s

In
s
ta

lle
r

P
e
rf

c
o
u
n

te
rs

Figure 19.1 The WMI implementation architecture. WMI providers surface managed

elements to the Object Manager. The WMI repository stores instances of active objects.
800 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

In the next section, we’ll (finally) leave the theoretical discussions (mostly) behind
and start talking about more practical applications of this technology when we intro-
duce the PowerShell cmdlets for accessing and manipulating WMI objects.

19.2 THE WMI CMDLETS

PowerShell has four cmdlets for working with WMI. These cmdlets are shown in table
19.2. This table has the name and description as well as which versions of PowerShell
each cmdlet is available in.

In the next few sections, we’ll look at each of the WMI cmdlets in detail; but first, let’s
examine the (rather large) set of parameters that are common to all the cmdlets.
Rather than repeating them for each cmdlet, we’ll look at them all at once.

Table 19.1 Partial list of the standard WMI providers

Provider Namespace Description

Active Directory root\directory\
ldap

Provides access to Active Directory objects

Event log root\cimv2 Provides classes to manage Windows event logs

Performance counter root\cimv2 Provides access to raw performance data counters

Registry root\default Provides access to the Registry, for reading, writing,
enumerating, monitoring, creating, and deleting
Registry keys and values

SNMP root\snmp Provides access to SNMP MIB data and traps from
SNMP-managed devices

WDM root\wmi Provides access to information about Windows
device drivers

Win32 root\cimv2 Provides a broad array of classes for managing a
computer, including information about the computer,
disks, peripheral devices, networking components,
operating system, printers, processes, and so on

Windows Installer root\cimv2 Provides access to information about software
installed on this computer

Table 19.2 The cmdlets for working with WMI

Cmdlet Description Availability

Get-WmiObject Retrieves objects from WMI v1 and v2

Set-WmiInstance Sets the properties on a WMI class or object v2

Invoke-WmiMethod Invokes a method on a WMI class or instance v2

Remove-WmiObject Removes an object instance from the repository v2
THE WMI CMDLETS 801

19.2.1 The WMI cmdlet common parameters

In this section, we’ll describe the parameters that are common to all the WMI cmd-
lets. These common parameters are shown in figure 19.2

In this figure, you see many parameters that are related to communications, like
-ComputerName, -Authority, and -Authentication. Because WMI is a distributed
object model, these parameters are obviously important. On Windows, WMI uses the
DCOM protocol as the basic transport layer for all of its communications.

NOTE Whenever we talk about protocols, we find ourselves in Acro-
nym Land (like Disneyland, but boring.) In this case, DCOM is Dis-
tributed COM, which is an extension of the Component Object Model
you saw in chapter 18. DCOM extends COM so that an object’s imple-
mentation doesn’t have to be on the same server as the object’s con-
sumer. DCOM uses the MSRPC (Microsoft Remote Procedure Call)
facility, and MSRPC is an extension of the DCE/RPC (Distributed
Computing Environment/Remote Procedure Call) standard. Do you
really need to care about this? To some extent, the answer is yes because
communication issues will interfere with your ability to use WMI
remotely. For example, this arrangement of protocols is why you some-
times see errors like “RPC server not available” coming from WMI.

Note that some of the parameters are similar to the parameters you saw on the remot-
ing cmdlets in chapters 12 and 13: -Credential, -ComputerName, -Throttle-
Limit, and -AsJob. Others have the same name but are slightly different because
WMI uses DCOM and PowerShell remoting uses WS-Man as the transport layer. For

[-ComputerName <string[]>]

[-AsJob]

[-ThrottleLimit <int>]

[-Authentication {<Default>|<None>|<Connect>|
<Call> |<Packet>|<PacketIntegrity> |
<PacketPrivacy> | <Unchanged>}]

[-Authority <string>]

[-Credential <PSCredential>]

[-EnableAllPrivileges]

[-Impersonation {<Default>|<Anonymous>|<Identify>|
<Impersonate>|<Delegate>}]

[-Locale <string>]

Machines to

execute on

Execute operation

asynchronously

Throttle the number of

concurrent operations

Type of

authentication

to use

Locale to use for error

messages and culture

information

Enable all of caller’s

privileges on target

Type of impersonation to use

Credentials used to

authenticate to target

computers

Authority to use to

authenticate WMI

connection

Figure 19.2 The common parameters available on all of the WMI cmdlets. These parameters

primarily deal with remote connection issues but also include the -AsJob parameter.
802 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

instance, in both cases you have the -Authentication parameter but the meanings
aren’t the same because of the different protocol requirements.

Finally, there are a few parameters that are specific to the WMI rather than
DCOM. The -Locale parameter allows you to tell the target computer what lan-
guage to use when it returns error messages. The -Impersonation parameter allows
you to control how your user token is created on the target computer.

NOTE There’s one significant architectural difference between Power-
Shell remoting and WMI that has to do with object methods and “live
versus dead objects.” In PowerShell remoting, the objects that are
returned are always “dead” objects—essentially, snapshots of the state of
the object when it was transmitted over the remoting channel. Because
these objects are just copies, decoupled from the original object, chang-
ing them doesn’t affect the remote system. WMI uses a very different
approach. WMI objects are “live” and maintain state that’s used for com-
municating changes back to the original object. In the WMI case, chang-
ing the local copy will affect the remote system. This is why WMI objects
have methods but PowerShell remoting objects don’t. There are pros
and cons to maintaining the association between the local and remote in
terms of performance and consistency, as you’ll see.

Jobs and throttling

A major enhancement added to the WMI cmdlets in PowerShell v2 is the -AsJob and
-ThrottleLimit parameters. The cmdlets can take a list of computer names to exe-
cute against, and this list can be very large. In PowerShell v1, there was no way for the
user to control the number of concurrent connections and therefore the resources
consumed when using Get-WmiObject against a lot of computers. Version 2 fixes
this by adding –ThrottleLimit, which, as was the case for the PowerShell remoting
cmdlets, limits the number of concurrent connections and uses a “sliding window,”
where as soon as one operation completes and that connection is closed, the next tar-
get is pulled from a queue and a new connection is initiated.

The second major enhancement was the addition of the -AsJob parameter. This
conceptually works in the same way as -AsJob parameter on Invoke-Command or the
Start-Job cmdlet, but the implementation is quite different. Whereas the Start-
Job cmdlet created a new process for each job, the WMI jobs run in process but on
another thread. This means that WMI jobs don’t go through a serialization boundary
like PowerShell jobs and consume far fewer resources than PowerShell jobs. But the
abstractions are maintained and, although WMI jobs are started using the WMI cmd-
lets, these jobs are managed using the same Get-Job/Receive-Job/Stop-Job cmd-
lets that you saw in section 12.5.1.

And now (at last) we’re ready to move on to the cmdlets themselves, starting with
the most important one: Get-WmiObject.
THE WMI CMDLETS 803

19.2.2 The Get-WmiObject cmdlet

In this section, you’ll see how to use the Get-WmiObject cmdlet to do two things:
explore the WMI namespaces and classes available on a computer and retrieve
instances of those classes from a computer.

As we observed earlier, the overall WMI architecture is rather like a database in
that you connect to the WMI service on a particular computer, optionally providing
additional connection information, and then retrieve the objects using a query. Get-
WmiObject is the cmdlet you use to perform these queries. Its signature is shown in
figure 19.3.

As always, the best way to see how something works is to use it in examples. To
kick things off, here’s a quick little PowerShell “script” that will return information
about the BIOS on the local computer:

PS (1) > Get-WmiObject -Class Win32_BIOS
>>

SMBIOSBIOSVersion : 5.30
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 09/05/08 10:24:25 Ver: 5.30
SerialNumber : MXX84000D8
Version : HPQOEM - 20080905

Get-WmiObject
[-Namespace <string>]
[-Recurse]
[-List]
[-Class <pattern>]

Retrieve all instances of

named class from

namespace

Select objects from namespace

using WQL (a SQL-like query

language) instead of individually

specifying class and filter

Only return specified

properties from object.

Optionally filter

objects retrieved

Get-WmiObject
[-Namespace <string>]
[-Class] <string>
[[-Property] <string[]>]
[-Filter <string>]
[-Amended]
[-DirectRead]

List types in

namespace

Namespace path to search

Get-WmiObject
[-Namespace <string>]
[-Query] <WQL Query string>
[-DirectRead]
[-Amended]

Retrieve additional (amended)

information such as property

and object descriptions

Request direct access to WMI

provider, without any regard to its

superclass or derived classes

Recursively list types in any

subnamespaces of current namespace

List parameter set

Query parameter set

WQL query parameter set

Filter types returned with

wildcard patterns

Figure 19.3 The signature for the Get-WmiObject cmdlet. This cmdlet has three

parameter sets and allows you to explore WMI using the -List parameter and to re-

trieve objects from the repository with the -Class and -Query parameters.
804 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

To run this same command against a remote computer, you just have to add the
-ComputerName parameter to the command. You get this:

PS (4) > Get-WmiObject -ComputerName brucepayx61 `
>> -Class Win32_BIOS `
>> -Credential redmond\brucepay
>>

SMBIOSBIOSVersion : 7SET33WW (1.19)
Manufacturer : LENOVO
Name : Ver 1.00PARTTBL
SerialNumber : LVB7KY3
Version : LENOVO - 1190

In this second example, you also have to specify credentials to access the target
machine because this was being done in a non-domain-joined environment. Now
let’s look at another, somewhat more complicated example. You need to get informa-
tion about some of the network adapters on a computer. You want a list of all the
adapters using DHCP to get their IP address and then print out the description and IP
address for the machines as well as see when the DHCP lease will expire. Managing
network adapters is exactly the kind of task that WMI was designed for, so as you
expect, there’s a WMI class that will give you this information: Win32_Network-
AdapterConfiguration. There’s a property called DHCPEnabled on this class that
you’ll use to filter for the adapters with DHCP enabled. The IP address assigned to
that adapter is available through another property, IPAddress. Finally, the descrip-
tion of the adapter is available through the Description property. (You’ll see how
you learn all this in the next section.)

PS (3) > Get-WmiObject Win32_NetworkAdapterConfiguration |
>> where { $_.DHCPEnabled } |
>> Format-List Description, IPAddress, DHCPLeaseExpires
>>

Description : Realtek RTL8168C(P)/8111C(P) Family PCI-E GBE NIC
IPAddress : {192.168.0.101, fe80::ec97:2ed7:3203:b22d}
DHCPLeaseExpires : 20100908002817.000000-420

Description : 802.11n Wireless PCI Express Card LAN Adapter
IPAddress : {192.168.0.105, fe80::c128:dbf3:3b1:76e0}
DHCPLeaseExpires : 20100908002819.000000-420

In this example, you used the Where-Object (where) cmdlet to filter the objects
returned and then formatted the desired properties with Format-List. There’s one
small issue with this output, however: the times aren’t exactly human readable. Fortu-
nately, PowerShell adds a script method that can be used to fix this formatting prob-
lem. You can have a calculated property (see section 11.3) in the list of properties that
will convert this value into a more readable DateTime object. The revised command
looks like this:

PS (4) > Get-WmiObject Win32_NetworkAdapterConfiguration |
>> where { $_.DHCPEnabled } |
THE WMI CMDLETS 805

>> Format-List Description, IPAddress,
>> @{
>> name = "DHCPLeaseExpires"
>> expression = {$_.ConvertToDateTime($_.DHCPLeaseExpires)}}
>>

Description : Realtek RTL8168C(P)/8111C(P) Family PCI-E GBE NIC
IPAddress : {192.168.0.101, fe80::ec97:2ed7:3203:b22d}
DHCPLeaseExpires : 9/8/2010 12:28:17 AM

Description : 802.11n Wireless PCI Express Card LAN Adapter
IPAddress : {192.168.0.105, fe80::c128:dbf3:3b1:76e0}
DHCPLeaseExpires : 9/8/2010 12:28:19 AM

The hashtable defining the calculated property in this example sets the name to be
the same as the original property but sets the expression to generate the value
(expression in the hashtable) to use this method to convert the value. The net result
is that you get the information you need with a single line of script.

Even though we’ve only looked at a couple of examples so far, it’s clear that WMI
is an extremely valuable source of management information—if only you knew how
to find that information. This is exactly what we’ll show you in the next section.

Using Get-WmiObject to find WMI classes

The key element you need to get information from WMI is the name of the class you
want to access such as Win32_BIOS or Win32_NetworkAdapterConfiguration.
Using the class name, Get-WmiObject sends a request to the remote CIMOM asking
it to retrieve the object or objects identified by this class name. Then the CIMOM
looks up the class name in its tables and retrieves the associated data if the class exists.

Because the CIMOM knows all about the classes that are defined, it’d make sense
to be able to ask CIMOM to tell you what’s there. In fact, this operation is explicitly
covered by the CIM specification. CIM is self-describing technology, which means it
provides ways for a client application to ask the object manager on the target system
what’s available. PowerShell leverages these mechanisms to provide you with the
-List parameter on Get-WmiObject, which will return a list of the available classes.
For example, to see all of the classes with BIOS in their name, use this:

PS (1) > Get-WmiObject -List *bios*

 NameSpace: ROOT\cimv2

Name Methods Properties
---- ------- ----------
CIM_VideoBIOSFeature {} {Caption,...
CIM_BIOSFeature {} {Caption,...
Win32_SMBIOSMemory {SetPowerState, R... {Access, ...
CIM_BIOSElement {} {BuildNum...
Win32_BIOS {} {BiosChar...
CIM_VideoBIOSElement {} {BuildNum...
806 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

Win32_SystemBIOS {} {GroupCom...
CIM_VideoBIOSFeatureVideoBIOSEle... {} {GroupCom...
CIM_BIOSFeatureBIOSElements {} {GroupCom...
CIM_BIOSLoadedInNV {} {Antecede...

This output shows each of the available class names along with the methods and
properties defined by those classes. As you saw with .NET, the amount of information
returned from the commands is frequently enough for your purposes, but all of the
standard classes that Microsoft includes with Windows are well documented on
MSDN:

http://mng.bz/4X76

This documentation includes many examples showing how to use classes, which is
terrific. (Not so terrific is that these examples are still mostly written in VBScript,
although this is becoming less true over time.)

Going back to the output from the previous example, there’s one piece of infor-
mation that we need to elaborate on. In section 19.1.2, we mentioned that WMI
classes are arranged in namespaces. In this output, you saw

 NameSpace: ROOT\cimv2

indicating that the classes listed were located in this namespace. Because this is the
default namespace, you haven’t needed to use the -Namespace parameter yet. In the
next section, we’ll look at how you work with CIM namespaces from PowerShell.

Navigating CIM namespaces

Returning to the first example in this chapter, you ran the command

Get-WmiObject -Class Win32_Bios

to get your data. The more complete way to write this command is to explicitly spec-
ify the namespace containing the class as well as the class name. The revised com-
mand would look like this:

Get-WmiObject -Namespace root\cimv2 -Class Win32_Bios

All classes are identified by a path of the form:

\\<computer>\<namespace>\<namespace>:<class>

You can see this path for any object returned using Get-WmiObject by looking at the
__PATH property on the object.

NOTE The vast majority of WMI classes that you’ll use on a regular
basis live in the root\cimv2 namespace, which is why you don’t force
the use of the -Namespace parameter. Because the -Class parameter
is positional, many WMI commands can simply be written as Get-
WmiObject Win32_Bios.
THE WMI CMDLETS 807

Figure 19.4 shows the basic structure of a portion of the WMI/CIM namespace.
In figure 19.4, you can see that namespaces contain both classes as well as nested

namespaces. The -List option on Get-WmiObject provides you with a list of
classes, but it doesn’t list the nested namespaces. So how do you discover the nested
namespaces? As it turns out, there’s a special class called __NAMESPACE that you can
query to get the list of namespaces in a namespace (remember that CIM is self-
describing). To get a list of the namespaces under root\cimv2, you use the following
command:

PS (2) > Get-WmiObject -Namespace root\cimv2 -Class __NAMESPACE |
>> Format-List name
>>

name : Security
name : SMS
name : ms_409
name : Applications

\cimv2

\root

Win32_Bios

Win32_CPU

\power

CIM_PowerSource

Win32_OutlookSummary

\msapps12

\others...

\\mymachine

Example class paths:

\\mymachine\root\cimv2:Win32_Bios
\\mymachine\root\cimv2\power:CIM_PowerSource

Figure 19.4 A portion of the WMI/CIM namespace hierarchy. The full path to a class

begins with the name through the root namespace and eventually to a specific class.
808 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

To find out what’s contained in the nested namespaces, you’d have to run a similar
command against each one, repeating this pattern for each level of nesting. Doing
this kind of manual navigation of namespaces is annoying if you’re trying to search
for a class name and aren’t sure what namespace it’s in. To simplify things, Get-
WmiObject also includes a -Recurse parameter that will cause -List to recursively
search all of the nested namespaces. Let’s try it in another example. The following
command will search the WMI repository starting at the root, looking for all classes
with the string “power” in them:

PS (3) > Get-WmiObject -Namespace root -Recurse -List `
>> -Class *power* | Format-Table __PATH
>>
__PATH

\\BRUCEPAYQUAD\ROOT\CIMV2:Win32_PowerManagementEvent
\\BRUCEPAYQUAD\ROOT\CIMV2:CIM_PowerSupply
\\BRUCEPAYQUAD\ROOT\CIMV2:CIM_UninterruptiblePowerSupply
\\BRUCEPAYQUAD\ROOT\WMI:MSNdis_StatusDevicePowerOn
\\BRUCEPAYQUAD\ROOT\WMI:MSNdis_StatusDevicePowerOff
\\BRUCEPAYQUAD\ROOT\WMI:MSPower
\\BRUCEPAYQUAD\ROOT\WMI:MSPower_DeviceWakeEnable
\\BRUCEPAYQUAD\ROOT\WMI:MSPower_DeviceEnable
\\BRUCEPAYQUAD\ROOT\WMI:MSNdis_80211_TransmitPowerLevel
\\BRUCEPAYQUAD\ROOT\WMI:MSNdis_80211_PowerMode
\\BRUCEPAYQUAD\ROOT\WMI:SystemConfig_V1_Power
\\BRUCEPAYQUAD\ROOT\WMI:SystemConfig_Power
\\BRUCEPAYQUAD\ROOT\WMI:SystemConfig_V0_Power
\\BRUCEPAYQUAD\ROOT\MSAPPS12:Win32_PowerPoint12Tables
\\BRUCEPAYQUAD\ROOT\MSAPPS12:Win32_PowerPointSummary
\\BRUCEPAYQUAD\ROOT\MSAPPS12:Win32_PowerPointActivePresentation
\\BRUCEPAYQUAD\ROOT\MSAPPS12:Win32_PowerPoint12Table
:
:

This output displays the path for each class. Notice that the output includes classes
from a number of different namespaces.

NOTE The set of WMI classes available on a machine depends on
what’s installed on that machine (both applications and operating sys-
tem). For example, in the output from the previous command, a num-
ber of Microsoft PowerPoint classes are listed. If the machine on which
the command is being run doesn’t have PowerPoint installed on it, you
wouldn’t see these classes. As a consequence, if you do try some of
these examples, don’t be surprised if you get results that are different
from what’s shown here.

At this point, you have a good idea how to get information out of WMI. You know
how to get a list of the classes available on a remote computer and how to use those
classes to get information. Something we haven’t touched on yet is the type of
THE WMI CMDLETS 809

information received for a specific class. The classes we’ve looked at so far returned
only a small amount of data. There are, however, many classes that return potentially
very large datasets. You could filter them using the Select-Object and Where-
Object cmdlets as you’ve been doing all along, but remember, you may be executing
the operation on a remote computer. For remote operations, retrieving a lot of data
can have serious performance implications. To mitigate this, WMI has a built-in way
to filter the data being returned at the source instead of at the receiver’s end. This
mechanism is available to the PowerShell user through the -Filter and -Query
parameter sets. In the next section, you’ll see how to use these parameters to manage
the amount of data you have to deal with.

Selecting WMI object instances using filters and queries

The syntax for Get-WmiObject in figure 19.2 mentioned two parameters that we
haven’t talked about yet: -Filter and -Query. These parameters allow you to lever-
age the intrinsic filtering capabilities built into WMI, allowing you to control how
much data is returned from the target.

As part of the overall CIM infrastructure, the environment includes a native query
language called WQL (WMI Query Language). This is a SQL-like language (remem-
ber that database hint earlier?) that’s used to select data from a WMI class or enumer-
ation. The -Filter and -Query parameters both make use of this query language,
although in slightly different ways. Let’s look at the -Filter parameter first.

The -Filter parameter

The -Filter parameter takes a string as an argument that contains a predicate expres-
sion defined using a subset of the overall WQL language. By predicate expression, we
mean an expression that has things like comparisons and logical operators (ANDs,
ORs). Whether or not a value is returned from the collection is predicated on this
expression returning TRUE (hence, predicate expression). The WQL operators that can
be used in these expressions are shown in table 19.3.

Table 19.3 The WQL operators that can be used in the -Filter parameter

WQL operator
PowerShell

operator
Operator description

= -eq Equal to.

< -lt Less than.

> -gt Greater than.

<= -le Less than or equal to.

>= -ge Greater than or equal to.

!= or <> -ne Not equal to.

AND -and “ANDs” two Boolean expressions and returns TRUE when both
expressions are true, equivalent to -and in PowerShell.
810 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

Let’s look at an example of filter expressions. You’ll rework the Win32_Network-
AdapterConfiguration but this time use the -Filter parameter instead of the
Where-Object cmdlet to do the filtering:

PS (1) > Get-WmiObject Win32_NetworkAdapterConfiguration `
>> -Filter 'DHCPEnabled = TRUE' |
>> Format-List Description, IPAddress
>>

Description : Realtek RTL8168C(P)/8111C(P) Family PCI-E GBE NIC
IPAddress : {192.168.0.101, fe80::ec97:2ed7:3203:b22d}

Description : 802.11n Wireless PCI Express Card LAN Adapter
IPAddress : {192.168.0.105, fe80::c128:dbf3:3b1:76e0}

In the next example, you’ll use the LIKE operator to match against the Description
string:

PS (2) > Get-WmiObject Win32_NetworkAdapterConfiguration `
>> -Filter 'DHCPEnabled = TRUE AND Description LIKE "%wire%"' |
>> Format-List Description, IPAddress
>>

Description : 802.11n Wireless PCI Express Card LAN Adapter
IPAddress : {192.168.0.105, fe80::c128:dbf3:3b1:76e0}

OR -or “ORs” two Boolean expressions and returns TRUE if either
expression is true, equivalent to -or in PowerShell. When more
than one logical operator is used in a statement, the OR opera-
tors are evaluated after the AND operators.

TRUE $true Boolean operator that evaluates to –1.

FALSE $false Boolean operator that evaluates to 0.

NULL $null Indicates an object doesn’t have an explicitly assigned value.
NULL isn’t equivalent to 0 or blank.

ISA -as Operator that applies a query to the subclasses of a specified
class.

IS n/a Comparison operator used with NOT and NULL. The syntax for
this statement is the following: IS [NOT] NULL (where NOT is
optional).

LIKE -like Similar to the PowerShell-like operator that does wildcard
matches except that the wildcard characters are different: % (any
string), _ (any single character), [ab=z] (match character range,
^ (don’t match range).

NOT not Comparison operator that use in a WQL SELECT query.

__CLASS n/a References the class of the object in a query.

Table 19.3 The WQL operators that can be used in the -Filter parameter (continued)

WQL operator
PowerShell

operator
Operator description
THE WMI CMDLETS 811

Add the NOT operator to select the nonwireless adapters:

PS (3) > Get-WmiObject Win32_NetworkAdapterConfiguration `
>> -Filter 'DHCPEnabled = TRUE AND NOT (Description LIKE "%wire%")' |
>> Format-List Description, IPAddress
>>
Description : Realtek RTL8168C(P)/8111C(P) Family PCI-E GBE NIC
IPAddress : {192.168.0.101, fe80::ec97:2ed7:3203:b22d}

At this point, compare the last LIKE WQL example to the PowerShell equivalent:

PS (4) > Get-WmiObject Win32_NetworkAdapterConfiguration |
>> where {$_.DHCPEnabled -eq $true -and -not
>> ($_.Description -like "*wire*")} |
>> Format-List Description, IPAddress
>>

Description : Realtek RTL8168C(P)/8111C(P) Family PCI-E GBE NIC
IPAddress : {192.168.0.101, fe80::ec97:2ed7:3203:b22d}

This last example showed you the corresponding PowerShell predicate. This predicate
can be created from the WQL expression, working element by element to get the
PowerShell predicate. The resulting PowerShell predicate expression is slightly longer
than the WQL filter, but if you take advantage of some of the PowerShell features to
shorten the expression, it turns into

PS (5) > Get-WmiObject Win32_NetworkAdapterConfiguration |
>> where {$_.DHCPEnabled -and ($_.Description -notlike "*wire*")} |
>> Format-List Description, IPAddress
>>

Description : Realtek RTL8168C(P)/8111C(P) Family PCI-E GBE NIC
IPAddress : {192.168.0.101, fe80::ec97:2ed7:3203:b22d}}

Now for a direct comparison of the predicate expressions:

WQL: DHCPEnabled = TRUE AND NOT (Description LIKE "%wire%")
PowerShell: $_.DHCPEnabled -and ($_.Description -notlike "*wire*")

This makes the correspondence very clear. Next, you’ll see how -Query works and
build on top of this.

Selecting WMI objects using -Query

The -Query parameter takes a complete WQL query instead of just the predicate
expression. The basic syntax for the WQL SELECT statement is

SELECT <propertyList> FROM <class> WHERE <predicateExpression>

which is patterned after SQL’s select operation. In this query, the predicate expression
is what you were passing through the -Filter parameter. Using the predicate from
the previous example, you can write the equivalent WQL query as follows:

 SELECT Description,IPAddress
 FROM Win32_NetworkAdapterConfiguration
 WHERE DHCPEnabled = TRUE AND NOT (Description LIKE "%wire%")
812 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

Now execute this query with Get-WmiObject:

PS {5) > Get-WmiObject -ComputerName brucepaydev01 -Query @'
>> SELECT Description,IPAddress
>> FROM Win32_NetworkAdapterConfiguration
>> WHERE DHCPEnabled = TRUE AND NOT (Description LIKE "%wire%")
>> '@
>>

__GENUS : 2
__CLASS : Win32_NetworkAdapterConfiguration
__SUPERCLASS :
__DYNASTY :
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
Description : Intel(R) 82566DM-2 Gigabit Network
 Connection
IPAddress : {157.59.86.40,
 fe80::653f:2770:d4e:4ac8,
 2001:4898:2b:3:8901:6b57:2cf8:5cb,
 2001:4898:2b:3:653f:2770:d4e:4ac8}

This command sends the WQL query to the CIMOM on the remote server, where it’s
executed and the results returned. The resulting object contains the properties you
requested along with all of the WMI metaproperties. The fact that the query is exe-
cuted on the remote server is significant. Rather than transferring a large amount of
data and then filtering it locally, by filtering on the target you can greatly reduce the
amount of data that must be transmitted.

By now, you should be reasonably comfortable using Get-WmiObject to discover
WMI classes and retrieve WMI objects, both locally and remotely. You know how to
filter the set of objects returned using the -Filter and -Query parameters. These
parameters allow you to efficiently retrieve a lot of information about the target sys-
tem. This is great for monitoring but not much good for maintenance. To manage
and maintain a system, you need a way to effect changes on the target system. In the
next section, you’ll see how to do so using the Set-WmiInstance cmdlet.

19.2.3 The Set-WmiInstance cmdlet

In this section you’ll learn how to update the properties on a WMI object using the
Set-WmiInstance cmdlet, shown in figure 19.5.

This cmdlet has the parameters common to all of the WMI cmdlets, such as the
-Class and -Namespace parameters you saw on Get-WmiObject. The purpose of
the remaining properties should be fairly easy to intuit. As you’d expect from a
PowerShell cmdlet, the -InputObject parameter allows you to update objects com-
ing from the input pipe. This technique allows the output of Get-WmiObject to be
piped to Set-WmiInstance. The -Arguments parameter is a hashtable containing
THE WMI CMDLETS 813

the names of the properties to update and the new values to use. The -PutType
parameter allows you to specify that you only want to create a new object, only want
to update an existing object, or want to create a new object if there isn’t one and oth-
erwise update the existing instance.

The -Path parameter is a bit more interesting. It allows you to identify not just the
class but the actual object you want to update. Earlier in the chapter, we talked about
how WMI classes are arranged in a hierarchy, like files and directories in the file system,
and like files in the file system, classes in the WMI namespace hierarchy can be
addressed through a path specification. The interesting thing about WMI paths is that
you can also target instances of a class. In the next section you’ll see how to do this.

Using WMI paths to target instances

When you retrieve objects from WMI, you expect to get one or more objects depend-
ing on the way you wrote your query. But for updating an object, you need to know
exactly which instance to update. When you work with singleton objects, where
there’s only a single instance, the class name and namespace are enough to uniquely
identify the target. But for collections (or enumerations) of objects, to do a set opera-
tion you have to identify a specific instance in the collection as the target.

CIM/WMI solves this problem in an interesting way: each object instance in the
collection has a unique path. These paths look like

\\<computer>\<namespace>:<class>.<keyproperty>="<value>"

where <keyproperty> is a property that uniquely identifies the instance. In the data-
base world, this would be called the primary key. WMI allows you to see the “instance
path” for any object returned using Get-WmiObject through the __PATH property on
that object. Let’s try this with the Win32_Service class. The following command
will give you the path for the Remote Desktop service instance:

PS (1) > Get-WmiObject -Class Win32_Service `
>> -Filter 'Name = "TermService"' |

Set-WmiInstance
[-Namespace <string>]
[-Class] <string>
[-Path <string>]
[-InputObject <targetObject>]

[[-Arguments] <hashtable>]
[-PutType <updateonly|createonly|updatecreate>]

Specify target object

by class, by path, or by

reading from pipeline

Select target object using

its class name

Get InputObject to

update from pipeline

Select target using path

including key property

Update/create mode used when

putting object into repository

Property/value pairs to

set on target object

Figure 19.5 The Set-WmiInstance cmdlet allows the user to change the properties on

an instance of a WMI class.
814 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

>> foreach { $_.__PATH }
>>
\\BRUCEPAYX61\root\cimv2:Win32_TerminalService.Name="TermService"

The path string shown in the output from this command includes the computer
name, namespace, and class. The portion of the path following the dot (.) is the key
property for this object. For services, this is the Name property. For processes, it’s the
process ID (or Handle) property.

The key properties for an object are identified by qualifiers on those properties.
To find the key properties for a class, you use the Get-WmiObject cmdlet to get the
metadata for a class:

PS (1) > $class = Get-WmiObject -list Win32_Process

Then, from the metadata, you can look at the Handle property on the object:

PS (2) > $p = $class.Properties | where { $_.Name -eq "Handle" }
PS (3) > $p
Name : Handle
Value :
Type : String
IsLocal : False
IsArray : False
Origin : CIM_Process
Qualifiers : {CIMTYPE, key, MaxLen, read}

In this output, you see that the property has a Qualifiers attribute. This attribute is
a dictionary of key-value pairs. Let’s look at the key qualifier for this property:

PS (5) > $p.Qualifiers["key"] | Format-List Name,Value
Name : key
Value : True

From this, you can see that the key properties on an object have the key qualifier set to
TRUE. This allows you to identify the key properties for a class by running the follow-
ing command:

PS (6) > $class.Properties |
>> where { $_.Qualifiers["key"]} |
>> Format-Table -AutoSize name, type
>>

Name Type
---- ----
Handle String

It’s also possible for a class to require more than a single property to identify a specific
instance. For example, the Win32_Environment class has two key properties, as
shown in the following:

PS (7) > (Get-WmiObject -List Win32_Environment).Properties |
>> where { $_.Qualifiers["key"]} |
>> Format-Table -AutoSize name, type
>>
THE WMI CMDLETS 815

Name Type
---- ----
Name String
UserName String

In the next section, you’ll see how to work with objects that have multiple key prop-
erties when you look at setting environment variables using the Win32_Environment
class.

Setting the instance properties

In this section, you’ll apply what you’ve learned about WMI paths to start setting
object properties. For your experiments, you’ll use the Win32_Environment class
that allows you to get and set the values in the Registry used to initialize a process’s
environment table. These settings are stored in the Registry as properties of the key at
the following path:

PS (1) > $path = 'HKLM:\System\CurrentControlSet\Control\Session
Manager\Environment'

Before we jump into the WMI examples, you’ll use Set-ItemProperty to create a
new environment variable property that you can experiment with safely:

PS (2) > Set-ItemProperty -Path $path `
>> -Name 'TestProperty' -Value '3.14'
>>

Validate that the property was set by calling Get-ItemProperty to retrieve the value:

PS (3) > Get-ItemProperty -Path $path -Name TestProperty

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MA
 CHINE\System\CurrentControlSet\Control\Session Ma
 nager\Environment
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MA
 CHINE\System\CurrentControlSet\Control\Session Ma
 nager
PSChildName : Environment
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
TestProperty : 3.14

The output confirms that you’ve created the property with the name TestProperty
and value 3.14. You’re ready to begin your WMI experiments.

The first thing you’re going to do is use the Win32_Environment WMI class to
retrieve this property. You’ll use a filter expression to restrict what’s returned to the
single property you’re interested in:

PS (4) > Get-WmiObject -Class Win32_Environment `
>> -Filter 'Name = "TestProperty"' |
>> Format-List Name,VariableValue,__PATH
>>
816 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

Name : TestProperty
VariableValue : 3.14
__PATH : \\BRUCEPAYX61\root\cimv2:Win32_Environment.Name=
 "TestProperty",UserName="<SYSTEM>"

By doing this, you can discover the WMI path needed to access this object. Notice
that, in this particular case, the path includes two key fields. Because each user can
have his or her own instance of a variable foo, you need two keys: the variable name
and the username, to uniquely identify an environment variable. In the previous out-
put, you can see that you’re targeting a systemwide environment variable.

Save this path in $vPath so you can use it later but with one small modification.
Instead of having the actual computer name at the top level, use . instead. This indi-
cates that the path applies to the current computer (i.e., localhost):

PS (5) > $vPath =
>> '\\.\root\cimv2:Win32_Environment.Name="TestProperty",UserName
="<SYSTEM>"'
>>

You can use this instance path to update the object. The following command will set
the VariableValue property of the targeted environment variable to a new value:

PS (6) > Set-WmiInstance -Path $vPath `
>> -Arguments @{VariableValue = "Hello"}
>>

VariableValue Name UserName
------------- ---- --------
Hello TestProperty <SYSTEM>

The output returned by the command shows the result of the operation. Just to be
extra careful, also confirm that the operation succeeded by using Get-WmiObject, fil-
tering by name:

PS (7) > Get-WmiObject -Class Win32_Environment `
>> -Filter 'Name = "TestProperty"' |
>> Format-List Name,VariableValue,__PATH
>>

Name : TestProperty
VariableValue : Hello
__PATH : \\BRUCEPAYX61\root\cimv2:Win32_Environment.Name=
 "TestProperty",UserName="<SYSTEM>"

And you see that the change was, indeed, made.
You can also use Set-WmiInstance to create a new environment variable by

including the Name and UserName properties in the arguments hashtable. You’ll try
this initially by targeting the TestProperty variable you’ve been working with.
Because you’re attempting to create a new instance, you only need to specify the
machine, namespace, and the class. To shorten the example command a bit, use the
THE WMI CMDLETS 817

-Class parameter and allow the target machine and namespace to default to local-
host and cimv2, respectively. Give it a try:

PS (8) > Set-WmiInstance -Class win32_environment `
>> -Arguments @{
>> Name="TestProperty"
>> VariableValue="Bye!"
>> UserName="<SYSTEM>"
>> }
>>
Set-WmiInstance : Object or property already exists
At line:1 char:16
+ Set-WmiInstance <<<< -Class win32_environment `
 + CategoryInfo : InvalidOperation: (:) [Set-WmiIns
 tance], ManagementException
 + FullyQualifiedErrorId : SetWMIManagementException,Microso
 ft.PowerShell.Commands.SetWmiInstance

This command failed because the target object already existed. Change the name of
the instance to create to TestProperty2 and try it again:

PS (9) > Set-WmiInstance -Class win32_environment `
>> -Arguments @{
>> Name="TestProperty2"
>> VariableValue="Bye!"
>> UserName="<SYSTEM>"
>> } | Format-List Name,VariableValue,__PATH
>>

Name : TestProperty2
VariableValue : Bye!
__PATH : \\BRUCEPAYX61\root\cimv2:Win32_Environment.Name=
 "TestProperty2",UserName="<SYSTEM>"

This time the command succeeded in creating the new object.
Because of the predictable nature of environment variable names, you can easily

figure out what the WMI instance path for any environment variable will be. Given
that you can specify the path for a variable even if it doesn’t exist yet, you might think
that you could use this path with Set-WmiInstance to create the target instance.
Let’s try it. The following would be the path to an environment variable named tp2:

PS (10) > $v2Path =
>> '\\.\root\cimv2:Win32_Environment.Name="tp2",UserName="<SYSTEM>"'
>>

Pass this path to Set-WmiInstance and see what happens:

PS (11) > Set-WmiInstance -Path $v2Path `
>> -Arguments @{VariableValue = "Hello"}
>>
Set-WmiInstance : Invalid parameter
At line:1 char:16
+ Set-WmiInstance <<<< -Path $v2Path `
 + CategoryInfo : InvalidOperation: (:) [Set-WmiIns
 tance], ManagementException
818 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

 + FullyQualifiedErrorId : SetWMIManagementException,Microso
 ft.PowerShell.Commands.SetWmiInstance

The command failed: clearly you can’t use this mechanism to create instances even
though you have all the information you need. In practice, this makes sense when you
look at WMI as a whole. For most object types (such as processes), you aren’t able to
figure out what the instance path will be ahead of time. This means that the set of
classes where it could work is quite limited.

With Get-WmiObject you’ve seen how to discover classes and retrieve instance.
With Set-WmiInstance, you know how to update existing objects and create new
instances. Our next topic is method invocation. Like .NET and COM objects, WMI
objects have methods. You’ll see how to invoke these methods in the next section.

19.2.4 The Invoke-WmiMethod cmdlet

In this section you’ll learn how to invoke methods on WMI classes and instances by
using the Invoke-WmiMethod cmdlet. In addition to the common WMI cmdlet
parameters, the parameters specific to this command are shown in figure 19.6.

Like .NET classes (see section 5.5), WMI classes can have both static or class mem-
bers and object or instance members. Static methods are the easier of the two types to
call because you just need the class name, method name, and arguments to call.
Instance methods are more complex because you need to specify additional informa-
tion to identify which instance of the target class to invoke the method on. (This is
the same issue you had when using Set-WmiInstance.)

Calling a static method

As our test case for static methods, let’s use the static Create() method on the
Win32_Process class to create an instance of (i.e., start) a process—in this case,
calc.exe. The command to do this looks like this:

PS (1) > $result = Invoke-WmiMethod Win32_Process `
>> -Name Create -ArgumentList calc
>>

Invoke-WmiMethod
[-Namespace <string>]
[-Class] <string>
[-InputObject] <managementObject>
[-Path] <string>
[-Name] <string>
[-ArgumentList] <object[]>]

Specify target object by class, by

path, or by reading from pipeline
Select target object

using its class name

Get target object

from pipeline

Select target object using

path that includes key

property specification

Method to call

Arguments to method call

Figure 19.6 The Invoke-WmiMethod cmdlet allows the user to invoke a method on

WMI objects.
THE WMI CMDLETS 819

Let’s take a second and examine the type of object that was returned from this
command:

PS (2) > $result.GetType().FullName
System.Management.ManagementBaseObject

This isn’t an instance of the Win32_Process class. Instead, it’s a Management-
BaseObject, which rather, like the PowerShell PSCustomObject, just serves as a
base for other object types. It has two interesting properties that give you the result of
the operation, ProcessID and ReturnValue:

PS (3) > $result | Format-Table ProcessId, ReturnValue

ProcessId ReturnValue
--------- -----------
9376 0

If the method call was successful, then the ReturnValue will be 0, indicating this
success, and the ProcessID will contain the process ID or handle of the new process.
It’s 0 here, so a new instance of the calculator applet should have appeared on the
desktop. You can also use a WQL query to confirm this:

PS (4) > $proc = Get-WmiObject -Query @"
>> SELECT __PATH, Handle
>> FROM Win32_PROCESS
>> WHERE ProcessId = $($result.ProcessID)
>> "@
>>

The result of this query is a Win32_Process object instance representing the calc
process, which you can confirm using Get-Member. In this case, you’re going to limit
the output from Get-Member to include only the methods on the object:

PS (6) > $proc | Get-Member -MemberType Method

 TypeName: System.Management.ManagementObject#root\cimv2\Win32
_Process

Name MemberType Definition
---- ---------- ----------
AttachDebugger Method System.Management.ManagementBaseObj...
GetOwner Method System.Management.ManagementBaseObj...
GetOwnerSid Method System.Management.ManagementBaseObj...
SetPriority Method System.Management.ManagementBaseObj...
Terminate Method System.Management.ManagementBaseObj...

In the list of methods displayed, you see the Terminate() method. On a wider dis-
play, you’d see that the full signature for this method is

System.Management.ManagementBaseObject Terminate(System.UInt32 Reason)
820 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

This is the method you need to terminate (i.e., stop) a running process. The method
takes a single argument that encodes the reason for terminating this process. You’re
going to pass 0 for this value. Now let’s look at the __PATH property on the object:

PS (7) > $proc | Format-List __PATH

__PATH : \\BRUCEPAYX61\root\cimv2:Win32_Process.Handle="9376"

This property allows you to target this specific object using Invoke-WmiMethod’s
-Path parameter. Let’s run the command. You’ll use the __PATH member on the object
in $proc to identify the process object you’re going to terminate, set the method name
to be Terminate using -Name, and pass it the value 0 using -Argument:

PS (9) > Invoke-WmiMethod -Path $proc.__PATH `
>> -Name Terminate -Argument 0
>>
Invoke-WmiMethod : Unable to cast object of type 'System.
Management.Automation.PSObject' to type 'System.IConvertible'.
At line:1 char:17
+ Invoke-WmiMethod <<<< -Path $proc.__PATH `
 + CategoryInfo : NotSpecified: (:)
 [Invoke-WmiMeth od], InvalidCastException
 + FullyQualifiedErrorId : System.InvalidCastException,
 Micro soft.PowerShell.Commands.InvokeWmiMethod

And it fails! What did you do wrong? As it turns out, absolutely nothing. What you
wrote is correct, but there’s a bug in the Set-WmiInstance cmdlet that’s causing it to
fail. You’ll encounter this bug anytime a numeric literal is passed directly as an argu-
ment to the method.

The Invoke-WmiMethod bug details

For those who are interested, here are the nitty-gritty details behind this bug. When
the PowerShell parser encounters a command-line argument that “looks” like a
number, it compiles that token as a number, but just in case you really wanted a
string, it then wraps this number in a PSObject and adds the original text of the
string as a note on this PSObject. This is done because you’re doing this at parse
time and won’t know the actual type of the argument until runtime when you look up
the actual command. The reason you need to preserve the original token string is
that there were a lot of people using arguments like 0001 for filenames. PowerShell
was taking these tokens and turning them into numbers. The argument 0001
becomes 1 as a number. As a result, the file was named 1 instead of 0001.

To fix this, you can add a wrapper that retains the original string. So why does this
cause Invoke-WmiMethod to fail? The reason is that the cmdlet is just taking its
arguments and passing them directly through to the WMI client layer. Because this
layer doesn’t understand the PSObject type, it fails. By using an expression like
(1) instead of a simple number 1, you can force the runtime to pass an unwrapped
number.
THE WMI CMDLETS 821

To avoid this error and work around the bug, you need to use a literal expression
instead of a simple numeric token as the argument. To do so, you just have to put
parentheses around the number. Let’s run the command updated to do this:

PS (10) > Invoke-WmiMethod -Path $proc.__PATH `
>> -Name Terminate -Argument (0) |
>> select -First 1 -Property '[a-z]*'
>>

ReturnValue : 0
Properties : {ReturnValue}
SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...
 }
Qualifiers : {}
ClassPath : __PARAMETERS
Site :
Container :

The return value is 0, indicating that the call was successful. At this point, the calc
process will have vanished from the desktop. To confirm that the process has been
terminated, call the Get-Process cmdlet:

PS (11) > Get-Process calc
Get-Process : Cannot find a process with the name "calc". Verify
 the process name and call the cmdlet again.
At line:1 char:12
+ Get-Process <<<< calc
 + CategoryInfo : ObjectNotFound: (calc:String)
 [Ge t-Process], ProcessCommandException
 + FullyQualifiedErrorId : NoProcessFoundForGivenName,
 Micros oft.PowerShell.Commands.GetProcessCommand

No process with the name calc was found, confirming that it has been terminated
(assuming, of course, that there aren’t other calc processes still running from earlier
examples).

Now, let’s look at the last of the WMI cmdlets, which will let you remove objects
from the system or the CIM repository.

19.2.5 The Remove-WmiObject cmdlet

The final WMI cmdlet to cover is Remove-WmiObject, which is shown in figure 19.7.
By now, you should have a good handle on these parameters, so let’s jump right

into the example. You’ll start another calc process, and then use a WQL query to get
the path to this process instance:

PS (1) > calc
PS (2) > $proc = Get-WmiObject -Query @"
>> SELECT __PATH
>> FROM Win32_PROCESS
>> WHERE Name='calc.exe'
>> "@
>>
822 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

When you have the path, you can call Remove-WmiObject:

PS (3) > Remove-WmiObject -Path $proc.__PATH
PS (4) >

This code will cause the process to be terminated, just as if you’d called the Termi-
nate() method. You can also use this cmdlet to remove the environment variable
you created earlier. First, verify that it still exists:

PS (5) > Get-WmiObject -Class Win32_Environment `
>> -Filter 'Name = "TestProperty"' |
>> Format-List Name,VariableValue,__PATH
>>

Name : TestProperty
VariableValue : Hello
__PATH : \\BRUCEPAYX61\root\cimv2:Win32_Environment.Name=
 "TestProperty",UserName="<SYSTEM>"

To remove this variable, pipe the output of Get-WmiObject into the Remove-Wmi-
Object cmdlet:

PS (6) > Get-WmiObject -Class Win32_Environment `
>> -Filter 'Name = "TestProperty"' |
>> Remove-WmiObject
>>

And finally, verify that it’s been removed:

PS (7) > Get-WmiObject -Class Win32_Environment `
>> -Filter 'Name = "TestProperty"' |
>> Format-List Name,VariableValue,__PATH
>>
PS (8) >

Nothing is returned from the query, confirming that the variable has been removed.
This covers all of the cmdlets that PowerShell includes for working with WMI,

but there’s one more thing to cover: the WMI object adapter and the WMI type

Remove-WmiObject
[-Namespace <string>]
[-Class] <string>
[-InputObject] <managementObject>
[-Path] <string>

Specify target object by class, by

path, or by reading from pipeline

Select target object

using its class name

Get target object

from pipeline

Select target object using

path that includes key

property specification

Namespace of class

(defaults to root\cimv2)

Figure 19.7 The Remove-WmiObject cmdlet allows you to remove objects from the

system using WMI.
THE WMI CMDLETS 823

shortcuts, which we’ll look at next. These mechanisms make it easier to work with
WMI from PowerShell.

19.3 THE WMI OBJECT ADAPTER

Let’s take a closer look at the objects returned from the WMI cmdlets. Once again, we’ll
look at the Win32_Process class for this investigation and an instance of the calculator
applet. You start the program and then get the Win32_Process object for that process:

PS (1) > calc
PS (2) > $g=Get-WmiObject Win32_process `
>> -filter 'Name = "calc.exe"'
>>

Use Get-Member to examine the methods and properties on the object that was
returned:

PS (3) > $g |gm -membertype "Method,Property"

TypeName: System.Management.ManagementObject#root\cimv2\Win32_Process

Name MemberType Definition
---- ---------- ----------
AttachDebugger Method System.Management....
GetOwner Method System.Management....
GetOwnerSid Method System.Management....
SetPriority Method System.Management....
Terminate Method System.Management....
__CLASS Property System.String __CL...
__DERIVATION Property System.String[] __...
__DYNASTY Property System.String __DY...
__GENUS Property System.Int32 __GEN...
__NAMESPACE Property System.String __NA...
__PATH Property System.String __PA...
__PROPERTY_COUNT Property System.Int32 __PRO...
__RELPATH Property System.String __RE...

What you see here are the adapted WMI methods for that process object, not the
methods and properties on the .NET type System.Management.ManagementOb-
ject. To get at the method of the base .NET object, you need to use the PSBase
property. From chapter 11 (section 11.6.2), you know that PSBase is the way to
bypass the type adapter and get at the native capabilities of an object. Let’s see what
this gives you:

PS (7) > $g.PSBase | Get-Member -MemberType Method

 TypeName: System.Management.Automation.PSMemberSet

Name MemberType Definition
---- ---------- ----------
add_Disposed Method System.Void add_Dis...
Clone Method System.Object Clone()
CompareTo Method System.Boolean Comp...
824 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

CopyTo Method System.Management.M...
CreateObjRef Method System.Runtime.Remo...
Delete Method System.Void Delete(...
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equa...
Get Method System.Void Get(), ...
get_ClassPath Method System.Management.M...

Notice the Delete() method that the base object exposes. This is what Remove-
WmiObject calls in order to delete an object instance. Also notice in the earlier output
that there was no Delete() method on the adapted object. This is because the
Delete operation is supported by the infrastructure rather than a specific class. This
illustrates why you may occasionally have to use the raw object—sometimes the
adapted type hides something that you need.

Another feature that makes it easy to use WMI from PowerShell is the WMI short-
cuts, which we’ll explore in the next section.

19.3.1 The WMI type accelerators

PowerShell provides three type aliases or accelerators for working with WMI: [WMI],
[WMICLASS], and [WMISEARCHER]. Let’s look at each of these accelerated types.

The [WMISEARCHER] type accelerator

The [WMISEARCHER] alias is a type accelerator for

[System.Management.ManagementObjectSearcher]

This type accelerator allows the user to directly cast a string containing a WQL query
into a searcher object. Once you have this searcher object, you just have to call its
GET() method to retrieve the corresponding data:

PS (1) > $qs = 'Select * from Win32_Process ' +
>> 'where Handlecount > 1000'
>>
PS (2) > $s = [WmiSearcher] $qs
PS (3) > $s.Get() | sort handlecount |
>> fl handlecount,__path,name
>>

handlecount : 1124
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="3144"
name : iexplore.exe

handlecount : 1341
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="3380"
name : OUTLOOK.EXE

handlecount : 1487
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="2460"
name : powershell.exe
THE WMI OBJECT ADAPTER 825

handlecount : 1946
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="988"
name : svchost.exe

The [WMI] type accelerator

The [WMI] alias is a type accelerator or shortcut for the type

[System.Management.ManagementObject]

which, as you know from our earlier experiments, is how .NET wraps a WMI object
instance.

You can use this accelerator to cast a string containing a WMI instance path (see
section 19.2) into the corresponding WMI object instance. You’ll use this accelerator
in an example where you use the calculator app again. Let’s start the target process:

PS (1) > calc

Then, create a WmiSearcher instance, which you’ll use to get the process object’s
WMI path:

PS (2) > $s = [WmiSearcher] `
>> 'Select * from Win32_Process where Name = "calc.exe"'
>>

You’ll call Get() on the searcher instance to retrieve the object, but you’re going to
need a trick to get the actual object. This is because the output of the call to Get() is
always a collection, even if the query matched only a single object. To complicate
matters, this collection can’t be indexed, like an array. Instead it’s an enumeration, so
to get at the objects in the collection, you need to enumerate that collection. Fortu-
nately, PowerShell enumerates by default, making this process easy to do: just use the
collection as input to a pipeline. To do so with no additional processing, you pipe
into the Write-Output cmdlet and it will stream the enumeration.

NOTE The approach just described is probably the only real practical
use for Write-Output. It’s the easiest way to transform an enumeration
into a collection that can be indexed with no additional processing.
Another pedagogical application for some people is to use the cmdlet to
make explicit the fact that output is being done. They use the command
Write-Output $foo instead of simply $foo to make the write opera-
tion explicit. This approach is largely a matter of personal preference.

Let’s stream the enumeration to get our target object:

PS (3) > $proc = $s.Get() | Write-Output

When you have the object, you can get the path to the object using the _PATH prop-
erty as you saw earlier:

PS (4) > $proc = [WMI] $so.__PATH
826 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

This code yields an instance of the process object. Now that you have this instance,
you can examine the process’s properties:

PS (4) > $proc.Name
calc.exe
PS (5) > $proc.HandleCount
49

You can update properties (which we won’t show here) and you can call methods. For
example, you can terminate the process by calling the Terminate() method:

PS (6) > $proc.Terminate()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

This code performs the same operation as when you called the Terminate() method
using Invoke-WmiMethod.

Whereas the [WMI] accelerator allows you to cast a path to an instance, the [WMI-
CLASS] accelerator casts a path into a class, as you’ll see next.

The [WMICLASS] type accelerator

The [WMICLASS] alias is a type accelerator for the

[System.Management.ManagementClass]

class. This accelerator can be used to cast a WMI class path into a WMI class object as
follows:

PS (7) > $c = [WMICLASS]"Win32_Process"

When you use Get-Member to look at the methods on this class

PS (8) > $c | Get-Member -MemberType method | Format-List

TypeName : System.Management.ManagementClass#ROOT\cimv2\Win32_
 Process
Name : Create
MemberType : Method
Definition : System.Management.ManagementBaseObject Create(Syste
 m.String CommandLine, System.String CurrentDirector
 y, System.Management.ManagementObject#Win32_Process
 Startup ProcessStartupInformation)
THE WMI OBJECT ADAPTER 827

you see that there’s one method, Create(), for creating processes. Let’s use it to start
a Notepad process:

PS (9) > $c.Create("notepad.exe") |
>> Format-Table ReturnValue, ProcessId
>>

 ReturnValue ProcessId
 ----------- ---------
 0 8588

Verify the process creation with Get-WmiObject:

PS (10) > Get-WmiObject Win32_Process `
>> -Filter 'Name = "notepad.exe"' |
>> Format-Table Name, Handle
>>

Name Handle
---- ------
notepad.exe 8588

This mimics what you did with the Create() method and Invoke-WmiMethod.
There’s still one more detail about the WMI object adapter that we need to cover

in the last part of this section: writing data to the repository.

19.3.2 Putting modified WMI objects back

We need to cover one last, very important topic about using the WMI type accelera-
tors. So far, we’ve looked at getting data, and we’ve looked at calling methods. Now,
let’s look at putting data back. In other words, how do you go about saving changes
you’ve made to a WMI object back to the repository?

Why is this even a topic, you ask? After all, you don’t have to do this with any of
the other object types, right? The reason is that because the underlying store for a
WMI object may be on a remote computer, incrementally flushing a set of changes
over a remote connection is too inefficient to use on a large scale. As a consequence,
the PowerShell WMI object adapter has a Put() method that must be called before
property changes made to the local copy of an object are reflected back to the under-
lying store. Let’s look at an example to see how this works. In this example, you’re
going to use WMI to change the volume name of the C: drive. First, get the WMI
object for the logical C: drive:

PS (9) > $disks = Get-WmiObject Win32_LogicalDisk

On this system, the C: drive is the first logical disk:

PS (10) > $disks[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329701888
828 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

Size : 241447768064
VolumeName : C_Drive

It currently has the boring name of C_Drive. Let’s give it a rather more dramatic name:

PS (11) > $disks[0].VolumeName = "PowerShellRocks"

Verify that the property in the object has been changed:

PS (12) > $disks[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329701888
Size : 241447768064
VolumeName : PowerShellRocks

And it has. But has this information been updated in the system yet? You can check
on this by querying the repository again, thereby getting a new instance, independent
of the one you modified:

PS (13) > (Get-WmiObject Win32_LogicalDisk)[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329603584
Size : 241447768064
VolumeName : C_Drive

As you can see, the underlying system object hasn’t been updated. The change so far
applies only to the object you modified. Now call the Put() method on the object to
flush the changes back to the system:

PS (14) > $result = $disks[0].Put()

Notice that you’ve saved the result of the Put() call. We’ll get to that in a second.
First, let’s make sure that the system was properly updated:

PS (15) > (Get-WmiObject WIN32_LogicalDisk)[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329579008
Size : 241447768064
VolumeName : PowerShellRocks

This time you see that the system has been updated. Next, let’s look at what you got
back from the Put() call. Let’s look at the type first:

PS (16) > $result.GetType().FullName
System.Management.ManagementPath
PS (17) > "$result"
\\localhost\root\cimv2:Win32_LogicalDisk.DeviceID="C:"
THE WMI OBJECT ADAPTER 829

It’s a [System.Management.ManagementPath] object, which you can then cast
back into the corresponding drive instance object, per the earlier discussion of the
WMI type accelerators:

PS (18) > $d = [wmi] "$result"
PS (19) > $d

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95328575488
Size : 241447768064
VolumeName : PowerShellRocks

Now you have a new instance of the logical disk object.
This example illustrates the basic approach for using PowerShell to modify system

settings through the WMI object adapter. First, you retrieve the object, then make the
necessary updates, and finally use Put() to put it back. Because this is an unfortunate
but necessary departure from the behavior of the other types of objects, it’s important
to be aware of it. It’s also important to note that Set-WmiInstance doesn’t suffer
from this limitation. A set of properties is specified at once using the hashtable, so
there’s no need for a separate Put() operation.

This completes our coverage of using WMI from PowerShell. With this founda-
tion, it should be possible for you to adapt existing WMI samples and resources in
your work with PowerShell. That said, WMI is rich and deep and there’s no way to
cover all the details in a single chapter, so additional exploration is recommended to
truly master the technology. You can find a great deal of information about WMI
available online at http://technet.microsoft.com; it’s a good place to start growing
your knowledge.

In the next section, we’ll investigate a related technology, WS-Man, that builds on
what you know about CIM and WMI objects. WS-Man allows you to perform the
same types of operations that you did through WMI using standard internet and web
protocols instead of DCOM. The use of more broadly supported protocols greatly
expands the reach of the CIM model.

19.4 EXPLORING WS-MAN

In chapter 13 we introduced WS-Man (Web Services for Management) in the context
of PowerShell remoting, where it’s used as a transport layer for PowerShell com-
mands. What it also does (among other things) is provide an alternative transport
layer for CIM/WMI. A major limiting factor for WMI as far as interoperability goes is
that, whereas the object model is platform agnostic, the communications layer used
to talk to the object manager is not because WMI uses the Microsoft-proprietary
DCOM protocol.
830 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

NOTE In practice, there are a number of non-Microsoft implementa-
tions of DCOM. For example, the Open Group (the merger of X/Open
and OSF) has an open source implementation of DCOM called COM-
Source. These implementations haven’t seen significant uptake in the
industry, though.

Obviously, a single-vendor protocol isn’t very useful if the goal is to foster interopera-
bility between different systems. To address this, in 2004 the DMTF released a new
standard, “Document DSP0226: Web Services for Management (WS-Management)
Specification,” which was created through the joint efforts of AMD, Dell, Intel,
Microsoft, and Sun Microsystems. (Since then, many additional companies, includ-
ing Oracle, Symantec, BEA, and Hitachi, have joined this effort.) This protocol was
based on widely adopted standards like web services and HTTP, giving it a much
higher chance for success. Although it’s still early in the adoption cycle, it does seem
to be getting the necessary traction to succeed.

Staring with Windows Vista and Windows Server 2008, Microsoft began including
an implementation of WS-Man with the operating system. In the Windows 7/Server
2008 R2 operating system releases, the implementation was substantially updated and
support for WS-Man was added to PowerShell to allow access to CIM over WS-Man. In
the next section, we’ll examine the cmdlets that were added to enable this access.

NOTE Given the limitations of the WS-Man implementation as
released with PowerShell v2, it should probably not be your default
choice when trying to solve a problem. In almost all cases, WMI is still
the better (i.e., faster and easier) choice. The key scenarios where you’d
need WS-Man are either when the target doesn’t support WMI (most
non-Windows systems) or when network/firewall issues exist that you
need to deal with. This is because WS-Man builds on top of HTTP, and
it’s more “firewall friendly” than WMI/DCOM.

19.4.1 The WS-Man cmdlets

The cmdlets included with PowerShell for managing a system through WS-Man are
shown in table 19.4. Although the names of these cmdlets parallel the names of the
WMI cmdlets quite closely, as shown in the table, there are some annoying differences
in their behavior. These differences will be pointed out as we encounter them.

Table 19.4 The WS-Man cmdlets

WS-Man cmdlet Description WMI equivalent

Get-WSManInstance Retrieves an instance of an object through
the WS-Man service on the target machine.

Get-WmiObject

Set-WSManInstance Creates an object using the specified WS-
Man resource.

Set-WmiInstance
EXPLORING WS-MAN 831

In the following sections we’ll go over each of these cmdlets, introducing WS-Man con-
cepts as we go as well as contrasting how these cmdlets work with the WMI cmdlets.

19.4.2 Using Get-WSManInstance to retrieve management data

The first cmdlet we’ll work with is Get-WSManInstance. The signature for this cmd-
let is shown in figure 19.8.

In figure 19.8, you see that there are a large number of parameters related to con-
nections. These are basically the same parameters that you saw on the PowerShell
remoting commands in section 13.1.5. This should be no surprise because remoting
is built on top of WS-Man.

Let’s look at using Get-WSManInstance to retrieve a WMI class. We’ll do the par-
allel operation using the WMI cmdlets to highlight the similarities (and differences)
between the two. We’ll start with a WMI example and then see what the equivalent
WS-Man cmdlet looks like. Our example query will be to retrieve information about
the target machine’s operating system using the Win32_OperatingSystem class.
We’ll limit the amount of information displayed by passing a list of properties to dis-
play to the Format-List cmdlet.

Start by putting these property names into a variable so you can reuse them later:

PS (1) > $properties = "Caption", "OSArchitecture","Version",
>> "WindowsDirectory"
>>

Now, call the Get-WmiObject cmdlet and the specified properties as a list:

PS (2) > Get-WmiObject Win32_OperatingSystem |
>> Format-List $properties
>>
Caption : Microsoftr Windows VistaT Home Premium
OSArchitecture : 64-bit

Invoke-WSManAction Invokes a method on the object on the target
machine.

Invoke-WmiMethod

Remove-WSManInstance Removes an object using the specified WS-
Man resource.

Remove-WmiObject

New-WSManInstance Creates a new WS-Man resource. Note:
Although the client side of the protocol is
complete, the Windows 7 release of the WS-
Man server component doesn’t support
instance creation except for managing some
aspects of the WS-Man service itself. This
cmdlet will, however, allow instances to be
created in non-Windows WS-Man implemen-
tations if the operation is supported.

None

Table 19.4 The WS-Man cmdlets (continued)

WS-Man cmdlet Description WMI equivalent
832 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

Version : 6.0.6002
WindowsDirectory : C:\Windows

This output shows that the target computer is running Windows Vista 64-bit version
6.0.6002, installed in C:\Windows. In this command, you relied on positional param-
eters and the default namespace to shorten the command. Write it with the parameter
names included and the namespace explicitly spelled out:

PS (3) > Get-WmiObject -Namespace root\cimv2 `
>> -Class Win32_OperatingSystem |
>> Format-List $properties
>>
Caption : Microsoftr Windows VistaT Home Premium
OSArchitecture : 64-bit
Version : 6.0.6002
WindowsDirectory : C:\Windows

It’s a bit longer to write, but the results are the same. In the next section, you’ll con-
vert the WMI command to a WS-Man command. The first change you need to make
is that, instead of specifying the namespace and class name separately, you using a sin-
gle resource URI that includes both parts.

Get-WSManInstance
[-ResourceURI] <Uri>
[-SelectorSet <Hashtable>]
[-Fragment <String>]

-Enumerate
[-ReturnType <String>]
[-Filter <String>]
[-Shallow]

[-ConnectionURI <Uri>]
[-ApplicationName <String>]
[-ComputerName <String>]
[-Authentication <AuthenticationMechanism>]
[-SessionOption <SessionOption>]
[-CertificateThumbprint <String>]
[-Credential <PSCredential>]
[-OptionSet <Hashtable>]
[-Dialect <Uri>]
[-Port <Int32>]
[-UseSSL]

Select target object

using its URI

WebService application

name to use

Auth mechanism

to use

Target computer

Hashtable of key property

values to select object on

XML fragment for

specific property

Get collection of

instances of this class

Query used to filter

objects that are returned

Return type to use

Do shallow enumeration
Arguments to

method call

Transmit encrypted using

secure sockets layer
Port on target computer

to connect to

Hashtable of

option/value pairs

Credentials to

connect with

Session options

Used to identify

certificate
Query language

dialect to use

(WQL, CQL, etc.)

Instance

parameter set

Enumerate

parameter set

Figure 19.8 The Get-WSManInstance cmdlet is used to retrieve management

object instances from the target computer. It can either retrieve a specific instance

of a class or enumerate all instances of that class with optional filtering.
EXPLORING WS-MAN 833

Targeting WS-Man resources using URIs

In WS-Man, resources (classes) are accessed using a URI (Uniform Resource Identi-
fier) that corresponds to the WMI path for the equivalent resource. If the path for a
class in WMI is of the form

\\root\<namespace>\<class>

then the corresponding URI for a resource in WS-Man is

http://schemas.microsoft.com/wbem/wsman/1/wmi/root/<namespace>/<class>

As a concession to usability, the WS-Man cmdlets allow you to use URI aliases instead
of returning the full resource URI every time. The supported WS-Man aliases and cor-
responding resource URIs they substitute for are shown in table 19.5.

Another point to be aware of is that WS-Man URIs require that forward slashes be used.
Using a backslash will result in an error. With an understanding of how to address a
resource, let’s return to our original task of retrieving the Win32_OperatingSystem
resource.

Getting the Win32_OperatingSystem resource

The WMI path for the class you’re targeting is \\root\cimv2\Win32_Operating-
System, so the WS-Man URI you’ll use is wmicimv2/Win32_OperatingSystem,
which is equivalent to

http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2

Now you’re ready to run the command, which produces the following results:

PS (4) > Get-WSManInstance `
>> -ResourceURI wmicimv2/Win32_OperatingSystem |
>> Format-List $properties
>>
Caption : Microsoftr Windows VistaT Home Premium
OSArchitecture : 64-bit
Version : 6.0.6002
WindowsDirectory : C:\Windows

From the output, it appears the results are identical to what you got from the WMI
command. When you dig in a bit further, you’ll see that that isn’t exactly true.

Table 19.5 The WS-Man URI aliases

WS-Man alias Resource URI

Wmi http://schemas.microsoft.com/wbem/wsman/1/wmi

wmicimv2 http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2

cmv2 http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2

Winrm http://schemas.microsoft.com/wbem/wsman/1

Wsman http://schemas.microsoft.com/wbem/wsman/1

Shell http://schemas.microsoft.com/wbem/wsman/1/windows/shell
834 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

Let’s see the object types returned by the cmdlets as well as the methods defined
on those objects. Rerun the two commands, piping the output into Get-Member.
First, the WMI command:

PS (5) > Get-WmiObject -Namespace root\cimv2 `
>> -Class Win32_OperatingSystem |
>> Get-Member -MemberType method
>>
 TypeName: System.Management.ManagementObject#root\cimv2\Win32_Oper
atingSystem

Name MemberType Definition
---- ---------- ----------
Reboot Method System.Management.ManagementBaseOb...
SetDateTime Method System.Management.ManagementBaseOb...
Shutdown Method System.Management.ManagementBaseOb...
Win32Shutdown Method System.Management.ManagementBaseOb...
Win32ShutdownTracker Method System.Management.ManagementBaseOb...

And then the WS-Man command:

PS (6) > Get-WSManInstance `
>> -ResourceURI wmicimv2/Win32_OperatingSystem |
>> Get-Member -MemberType method
>>

 TypeName: System.Xml.XmlElement#http://schemas.microsoft.com/wbem/
wsman/1/wmi/root/cimv2/Win32_OperatingSystem#Win32_OperatingSystem

Name MemberType Definition
---- ---------- ----------
AppendChild Method System.Xml.XmlNode AppendChild(Sys...
Clone Method System.Xml.XmlNode Clone()
CloneNode Method System.Xml.XmlNode CloneNode(bool ...
CreateNavigator Method System.Xml.XPath.XPathNavigator Cr...
Equals Method bool Equals(System.Object obj)
:

In the WMI case, you get back a “live” ManagementObject, which has methods that
can be used to manipulate that object. In the WS-Man case, what you get back is a
“dead” XML document that contains a representation of that data. This is conceptu-
ally similar to the way PowerShell remoting returns “dead” PSObjects; however, the
actual XML representations are completely different. The first part of the returned
XML (which is in the OuterXML property) looks like this:

<p:Win32_OperatingSystem xmlns:xsi = "http://www.w3.org/2001/XMLSchem
a-instance" xmlns:p = "http://schemas.microsoft.com/wbem/wsman/1/wmi/
root/cimv2/Win32_OperatingSystem" xmlns:cim = "http://schemas.dmtf.or
g/wbem/wscim/1/common" xsi:type = "p:Win32_OperatingSystem_Type" xml:
lang = "en-US" >
 <p:BootDevice>
 \Device\HarddiskVolume1
 </p:BootDevice>
EXPLORING WS-MAN 835

 <p:BuildNumber>
 6002
 </p:BuildNumber>
 <p:BuildType>
 Multiprocessor Free
 </p:BuildType>
 <p:Caption>
 Microsoftr Windows VistaT Home Premium
 </p:Caption>
 <p:CodeSet>
 1252
 </p:CodeSet>
 <p:CountryCode>
 1
 </p:CountryCode>
:

Given that you only get back data, you’ll have to use the Invoke-WSManAction to
call methods on the object. We’ll get to that in a minute. First, let’s talk about getting
enumeration compared to getting an instance.

Singleton resources vs. enumerations

For classes like Win32_OperatingSystem that are singletons (i.e., there’s only ever a
single instance), enumeration versus instance doesn’t matter. There’s only a single
object to retrieve; hence, it’s called a singleton. There are, however, many classes that
have a collection of instances like Win32_Process. If you try to access this class the
way you did Win32_OperatingSystem, you’ll get an error:

PS (7) > Get-WSManInstance -ResourceURI wmicimv2/Win32_Process
Get-WSManInstance : <f:WSManFault xmlns:f="http://schemas.microsoft.com/

wbem/wsman/1/wsmanfault" Code="2150859002"
Machine="localhost"><f:Message><f:ProviderFault provider="WMI
Provider"
path="%systemroot%\system32\WsmWmiPl.dll"><f:WSManFault
xmlns:f="http://schemas.microsoft.com/wbem/wsman/1/wsmanfault"
Code="2150859002" Machine="brucepayquad"><f:Message>The WinRM
client cannot process the request. The resource URI is not
valid: it does not contain keys, but the class selected is not
a singleton. To access an instance which is not a singleton,
keys must be provided. Use the following command to get more
information in how to construct a resource URI: "winrm help
uris". </f:Message></f:WSManFault></f:ProviderFault></
f:Message></f:WSManFault>

At line:1 char:18
+ Get-WSManInstance <<<< -ResourceURI wmicimv2/Win32_Process
 + CategoryInfo : InvalidOperation: (wmicimv2/

Win32_Process:Uri) [Get-WSManInstance],
InvalidOperationException

 + FullyQualifiedErrorId : WsManError,Microsoft.WSMan.Management.
 GetWSManInstanceCommand
836 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

This (rather long) error message is an XML document that has a number of signifi-
cant pieces of information. Let’s use the Format-XmlDocument function from section
16.4.3 to make it a bit more readable:

PS (8) > Format-XmlDocument -string ($error[0].Exception.Message)
<f:WSManFault xmlns:f = "http://schemas.microsoft.com/wbem/wsman/1/ws
manfault" Code = "2150859002" Machine = "localhost" >
 <f:Message>
 <f:ProviderFault provider = "WMI Provider" path = "%systemroot%\s
ystem32\WsmWmiPl.dll" >
 <f:WSManFault xmlns:f = "http://schemas.microsoft.com/wbem/wsma
n/1/wsmanfault" Code = "2150859002" Machine = "brucepayquad" >
 <f:Message>
 The WinRM client cannot process the request. The resource U
RI is not valid: it does not contain keys, but the class selected is
not a singleton. To access an instance which is not a singleton, keys
 must be provided. Use the following command to get more information
in how to construct a resource URI: "winrm help uris".
 </f:Message>
 </f:WSManFault>
 </f:ProviderFault>
 </f:Message>
</f:WSManFault>

First, it lets you know that the class isn’t a singleton. It then mentions using keys to get
a singleton instance. It also mentions using the command winrm help uris to get
help on specifying URIs. It doesn’t, however, mention using the -Enumerate parame-
ter, but you’ll cleverly intuit that this is what you need to do. Add that parameter to
the command and try again, filtering the output for brevity’s sake:

PS (8) > Get-WSManInstance -Enumerate `
>> -ResourceURI wmicimv2/Win32_Process |
>> select -First 5 |
>> Format-Table -AutoSize ProcessID,ParentProcessId,Name
>>

ProcessId ParentProcessId Name
--------- --------------- ----
0 0 System Idle Process
4 0 System
496 4 smss.exe
572 560 csrss.exe
632 624 csrss.exe

Note that this more closely matches our experience with the WMI commands, which
enumerate by default.

Filtering enumeration results

As was the case with collections in WMI, you can filter WS-Man enumerations with
the -Filter parameter. This parameter allows you to specify a WQL predicate to
EXPLORING WS-MAN 837

subset the data that’s returned. Let’s add a filter to the command that retrieves
Win32_Process instances. The command using WMI looks like this:

Get-WmiObject -Class Win32_Process -Filter "Name = 'powershell.exe'"

The corresponding command with Get-WSmanInstance is

PS (9) > Get-WSManInstance -Enumerate -ResourceURI wmicimv2/* -Filter @"
>> select Name,Handle, ParentProcessId from win32_process
>> where name = 'powershell.exe'
>> "@ | Format-Table -AutoSize Name, Handle, ParentProcessId
>>

Name Handle ParentProcessId
---- ------ ---------------
powershell.exe 6452 2148
powershell.exe 7632 2148
powershell.exe 6768 2148

There are a number of differences between the two commands. First, -Filter on the
Get-WSManInstance is more closely equivalent to the -Query parameter on Get-
WmiObject:

PS (10) > Get-WmiObject -Query @"
>> select Name,Handle, ParentProcessId from win32_process
>> where name = 'powershell.exe'
>> "@ | Format-Table -AutoSize Name, Handle, ParentProcessId
>>

Name Handle ParentProcessId
---- ------ ---------------
powershell.exe 6452 2148
powershell.exe 7632 2148
powershell.exe 6768 2148

But unlike the Get-WmiObject case, the -ResourceURI is mandatory. But just to
make things difficult, you can’t have the class name in the resource URI; it has to be *
instead. Unfortunately, this means you can’t just add a filter to an enumeration
request. The resource URI also has to be changed. Now let’s switch our focus back to
getting singleton instances.

Selecting instances

To select a singleton instance from an enumeration, you use the -SelectorSet param-
eter to specify the key properties for the target instance. This parameter takes a
hashtable containing the keys and values needed to identify the object you want to get.

NOTE The properties in the selector set are equivalent to the key
properties you saw in WMI object paths. There’s one significant differ-
ence: in WMI paths, the case of the key property names doesn’t matter,
whereas the selector names in WS-Man are case sensitive.
838 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

In the case of processes, as you saw with Invoke-WmiMethod, this key is the Handle
property. Let’s try this. First, launch calc.exe, and then use a filter to get its process
handle:

PS (1) > calc
PS (2) > $o = Get-WSManInstance -Enumerate `
>> -ResourceURI wmicimv2/* -Filter @"
>> select Name,Handle from win32_process
>> where name = 'calc.exe'
>> "@
>>
PS (3) > $o | Format-Table -AutoSize Name, Handle

Name Handle
---- ------
calc.exe 10640

Now you know that the handle you want is available in $o.Handle. Next, get the
corresponding instance using the selector set:

PS (4) > $target = @{
>> ResourceURI = "wmicimv2/Win32_Process";
>> SelectorSet = @{ Handle = $o.Handle }
>> }
>>
PS (5) > Get-WSManInstance @target | Format-Table -AutoSize Name,
Handle

Name Handle
---- ------
calc.exe 10640

This is a rather awkward way to target a specific object. You can make it easier by tak-
ing advantage of splatting (see section 5.8.4). You’ll construct a hashtable of properties
that will target the specific instance:

PS (4) > $target = @{
>> ResourceURI = "wmicimv2/Win32_Process";
>> SelectorSet = @{ Handle = $o.Handle }
>> }
>>

You can use this hashtable to target the instance you want:

PS (5) > Get-WSManInstance @target |
>> Format-Table -AutoSize Name, Handle

Name Handle
---- ------
calc.exe 10640

With the ability to identify an instance, you can move on to the next section, where
you’ll see how to update an object’s properties through WS-Man.
EXPLORING WS-MAN 839

19.4.3 Updating resources using Set-WSManInstance

Another consequence of the fact that Get-WSManInstance returns dead objects is
that you can’t simply update the object and call Put() as you did with the WMI type
accelerators. The pattern for updating a resource using a WS-Man mirrors how you
used Set-WmiInstance to update WMI objects in that you use the Set-WSMan-
Instance cmdlet. The syntax for this cmdlet is shown in figure 19.9.

We’ll recast the WMI example in section 19.3.3 where you used the VolumeName
property on the Win32_LogicalDisk class to change the volume name of the C:
drive. To do so, you need to be able to target the object by key property, which, for
this class, is DeviceID. First, you’ll list all of the hard drives on the target machine to
see what their device IDs and current volume names are. You’ll use Get-WSMan-
Instance -Enumerate, filtering on the DriveType property (which you happen to
know from earlier is 3). Here’s the command:

PS (1) > Get-WSManInstance `
>> -Enumerate wmicimv2/* -Filter `
>> "select * from Win32_LogicalDisk where DriveType = '3'" |
>> Format-Table DeviceID, DriveType, VolumeName
>>

DeviceID DriveType VolumeName
-------- --------- ----------
C: 3 c_drive
D: 3 FACTORY_IMAGE
L: 3
M: 3 backup

You can see that, on this particular computer, four drives are available. The C: drive,
not surprisingly, has C: as the drive ID and its current volume label is c_drive. To tar-
get this specific object, use Get-WSManInstance with the -SelectorSet parameter
to pick that drive:

PS (2) > Get-WSManInstance wmicimv2/Win32_LogicalDisk `
>> -SelectorSet @{ DeviceID = "C:" } |
>> Format-Table DeviceID, DriveType, VolumeName

Set-WSManInstance
[-ResourceURI] <Uri>
[-Dialect <Uri>]
[[-SelectorSet] <Hashtable>]
[-ValueSet <Hashtable>]
[-FilePath <String>]
[-Fragment <String>]
[-OptionSet <Hashtable>]

Cmdlet name

Path to file used to

update target object

Hashtable of named arguments

to instance constructor

Hashtable of option/

value pairs used to

identify target resource

Select target object

using its URI

Dialect of filter

language to use

Fragment of XML

document to return

Figure 19.9 The Get-WSManInstance cmdlet is used to invoke a method on the

target management resource or object. If the target object isn’t a singleton, a set of

selectors must be provided to identify the target resource.
840 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

>>
DeviceID DriveType VolumeName
-------- --------- ----------
C: 3 c_drive

You can use the same selector set to target the call to Set-WSManInstance. You specify
the new values for the properties in the hashtable passed to the -ValueSet parameter:

PS (3) > Set-WSManInstance wmicimv2/Win32_LogicalDisk `
>> -SelectorSet @{ DeviceID = "C:" } `
>> -ValueSet @{ VolumeName = "New Name" }|
>> Format-Table DeviceID, DriveType, VolumeName
>>

DeviceID DriveType VolumeName
-------- --------- ----------
C: 3 New Name

The Set-WSManInstance cmdlet emits the updated object to the output stream, ver-
ifying that the property has been updated. You can also rerun the Get command to
double-check that the update has occurred:

PS (4) > Get-WSManInstance wmicimv2/Win32_LogicalDisk `
>> -SelectorSet @{ DeviceID = "C:" } |
>> Format-Table DeviceID, DriveType, VolumeName
>>

DeviceID DriveType VolumeName
-------- --------- ----------
C: 3 New Name

The Get and Set-WSManInstance cmdlets give you the ability to view and update
objects using WS-Man. The last piece we need to consider is how to invoke methods.

19.4.4 Invoking methods with Invoke-WSManAction

In this section, you’ll learn how to invoke WS-Man actions using the Invoke-
WSManAction cmdlet. The signature for this cmdlet is shown in figure 19.10.

Invoke-WSManAction
[-ResourceURI] <Uri>
[-Action] <string>
[-SelectorSet <hashtable>]
[-ValueSet <hashtable>]
[-FilePath <File>]

Cmdlet name

Name of action

(method) to invoke

Path to file used to

update target object

Arguments to

method call

Hashtable of option/value

pairs used to identify target

resource

Select target object

using its URI

Figure 19.10 The Invoke-WSManAction cmdlet is used to invoke a method on the target

management resource or object. If the target object isn’t a singleton, a set of selectors must

be provided to identify the target resource.
EXPLORING WS-MAN 841

Let’s use this cmdlet to terminate the calc process you started in the last section. At
the time you created a hashtable that you splatted to retrieve the singleton process
object. You can use that same table to target the resource you want to apply the action
to. Let’s try it out and terminate that calc process:

PS (6) > $result = Invoke-WSManAction @target terminate

Now, assuming that the instance of the process was still around, it should have been
terminated. Let’s look at the result that was returned. If the Terminate() method
was successful, the return value should be 0:

PS (7) > $result.ReturnValue
0

And it is. But what about the larger result object? In keeping with the design of WS-
Man, the object returned is an XML document. You’ll use the document formatting
function from section 16.4.3 to display the complete document returned from the
action invocation:

PS (8) > Format-XmlDocument -string $result.OuterXml
<p:terminate_OUTPUT xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xmlns:p = "http://schemas.microsoft.com/wbem/wsman/1/wmi/root/
cimv2/Win32_Process" xmlns:cim = "http://schemas.dmtf.org/
wbem/wscim/1/common" xml:lang = "en-US" >

 <p:ReturnValue>
 0
 </p:ReturnValue>
</p:terminate_OUTPUT>

The resulting XML shows you that this is the output from invoking the Terminate()
method on the Win32_Process class as defined by the referenced XML schema.

This covers instance methods, so let’s move on to static or class methods. As an
example, you’ll use the static Create() method on the Win32_Process class to start
a new calc process. Here’s the command to do so:

PS (10) > Invoke-WSManAction -ResourceURI wmicimv2/win32_process `
>> -Action Create -ValueSet @{
>> CommandLine = 'calc'
>> CurrentDirectory = 'c:\'
>> }
>>

xsi : http://www.w3.org/2001/XMLSchema-instance
p : http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv
 2/Win32_Process
cim : http://schemas.dmtf.org/wbem/wscim/1/common
lang : en-US
ProcessId : 4780
ReturnValue : 0

As was the case in the previous example, the resource URI targets the class, and the
-Action parameter names the method. But this time, you’ll use the -ValueSet
842 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

parameter to pass arguments to the method call. This hashtable defines named
parameters for the target method.

From the invocation’s resulting document, you can see that the ReturnValue
field is 0, meaning that process creation was successful. But even though the process
creation was successful, you won’t see a calculator window displayed. That’s because
the WinRM service that handled the process creation request doesn’t create the pro-
cess in an interactive session. As was the case with PowerShell remoting, it’s not pos-
sible to use WS-Man remoting to start an interactive GUI application. This doesn’t
mean that the applications fail to launch—you just can’t see them on the desktop.
What you can do is verify that the process was created by trying to retrieve the
Win32_Process instance that corresponds to the ProcessId property in the result
document. (The handle and process ID in this class have the same value.) You run the
required Get-WSManInstance command:

PS (13) > Get-WSManInstance -ResourceURI wmicimv2/win32_process `
>> -SelectorSet @{ Handle = 8524 } |
>> Format-Table Name,Handle
>>

Name Handle
---- ------
calc.exe 8524

And you do, in fact, get your instance. Now, let’s terminate that instance using the
instance method:

PS (14) > Invoke-WSManAction wmicimv2/win32_process Terminate `
>> -SelectorSet @{Handle = 8524 }
>>
xsi : http://www.w3.org/2001/XMLSchema-instance
p : http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv
 2/Win32_Process
cim : http://schemas.dmtf.org/wbem/wscim/1/common
lang : en-US
ReturnValue : 0

Then, rerun the Get-WSmanInstance command to confirm that the process was ter-
minated:

PS (16) > Get-WSManInstance -ResourceURI wmicimv2/win32_process `
>> -SelectorSet @{ Handle = 8524 } |
>> Format-Table Name,Handle
>>
Get-WSManInstance : <f:WSManFault xmlns:f="http://schemas.microsoft.com/

wbem/wsman/1/wsmanfault" Code="2150858752"
Machine="localhost"><f:Message>

<f:ProviderFault provider="WMI Provider"
path="%systemroot%\system32\WsmWmiPl.dll"><f:WSManFault
xmlns:f="http://schemas.microsoft.com/wbem/wsman/1/wsmanfault"
Code="2150858752" Machine="brucepayquad"><f:Message>The WS-
Management service cannot process the request. The service
EXPLORING WS-MAN 843

cannot find the resource identified by the resource URI and
selectors. </f:Message></
f:WSManFault><f:ExtendedError><p:__ExtendedStatus
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://schemas.microsoft.com/wbem/wsman/1/wmi/root/
cimv2/__ExtendedStatus" xmlns:cim="http://schemas.dmtf.org/
wbem/wscim/1/common"
xsi:type="p:__ExtendedStatus_Type"><p:Description
xsi:nil="true" /><p:Operation>GetObject</
p:Operation><p:ParameterInfo>Win32_Process.Handle="8524"</
p:ParameterInfo><p:ProviderName>CIMWin32</
p:ProviderName><p:StatusCode xsi:nil="true" /></
p:__ExtendedStatus></f:ExtendedError></f:ProviderFault></
f:Message></f:WSManFault>

At line:1 char:18
+ Get-WSManInstance <<<< -ResourceURI wmicimv2/win32_process `
 + CategoryInfo : InvalidOperation: (wmicimv2/win32_proc
 ess:Uri) [Get-WSManInstance], InvalidOperationException
 + FullyQualifiedErrorId : WsManError,Microsoft.WSMan.Management.
 GetWSManInstanceCommand

Again, you need to reformat the error message for it to be readable. Here’s what the
reformatted result XML looks like:

PS (17) > Format-XmlDocument -string ($error[0].Exception.Message)
<f:WSManFault xmlns:f = "http://schemas.microsoft.com/wbem/wsman/1/

wsmanfault" Code = "2150858752" Machine = "localhost" >
 <f:Message>
 <f:ProviderFault provider = "WMI Provider" path =
 "%systemroot%\system32\WsmWmiPl.dll" >
 <f:WSManFault xmlns:f = "http://schemas.microsoft.com/wbem/wsman/1/
 wsmanfault" Code = "2150858752" Machine = "brucepayquad" >
 <f:Message>The WS-Management service cannot process the request.
 The service cannot find the resource identified by the resource
 URI and selectors.
 </f:Message>
 </f:WSManFault>
 <f:ExtendedError>
 <p:__ExtendedStatus xmlns:xsi = "http://www.w3.org/2001/XMLSchema-
 instance" xmlns:p = "http://schemas.microsoft.com/wbem/wsman
 /1/wmi/root/cimv2/__ExtendedStatus" xmlns:cim = "http://
 schemas.dmtf.org/wbem/wscim/1/common" xsi:type =
 "p:__ExtendedStatus_Type" >
 <p:Description xsi:nil = "true" />
 <p:Operation>
 GetObject
 </p:Operation>
 <p:ParameterInfo>
 Win32_Process.Handle="8524"
 </p:ParameterInfo>
 <p:ProviderName>
 CIMWin32
 </p:ProviderName>
 <p:StatusCode xsi:nil = "true" />
844 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

 </p:__ExtendedStatus>
 </f:ExtendedError>
 </f:ProviderFault>
 </f:Message>
</f:WSManFault>

This output is still not great. But you can see that the operation you were trying to
execute was GetObject and that the targeted object instance was Win32_Process.
Handle="8524".

19.5 SUMMARY

This chapter introduced the industry standard Common Information Model defined
by the DTMF, Microsoft’s implementation of this model (WMI), and how to use the
model from PowerShell. We covered the following:

• We explored the basic concepts behind CIM and WMI, which are to provide a
distributed, platform-agnostic mechanism for modeling management elements.
CIM is distinct from other object systems like .NET and COM in that it was
designed from the ground up to be a systems management framework instead
of a general-purpose programming framework. CIM is a discoverable system,
which means that it provides mechanisms that allow the user to find out what’s
available by querying the system itself.

• We covered the cmdlets that PowerShell provides for exploring and applying
these models to perform management tasks: Get-WmiObject, Set-WmiIn-
stance, Invoke-WmiMethod, and Remove-WmiObject.

• You learned how to use Get-WmiObject to leverage the discoverable nature of
CIM. You saw how to list available classes with -List and explore namespaces
using the __NAMESPACE class.

• Once you knew what you wanted to retrieve, we showed you how to use Get-
WmiObject to get object instances on both local and remote computers.

• We explained how to use WQL queries with the -Query and -Filter parame-
ters on Get-WmiObject to select specific instances to be returned from the tar-
get computer.

• We covered using Set-WmiInstance to update objects identified either from
standard input or through a WMI path, including instance paths.

• You learned how to invoke both static and dynamic methods on WMI classes
and objects with Invoke-WmiMethod and how to remove instances using
Remove-WmiInstance.

• We covered the WMI object adapter and what it does as well as how to use the
type accelerators [WMI], [WMICLASS], and [WMISEARCHER] to query and manip-
ulate objects. This section also explained the requirement to use the Put()
method to cause the updates to an object to be committed on the remote system.
SUMMARY 845

The second section in this chapter built on what you’ve learned about the WMI
object framework by introducing WS-Man, which provides a way to use standard
internet protocols (e.g., web services and HTTP) to execute CIM operations. We
introduced the corresponding WS-Man cmdlets and explored how they compare to
their WMI equivalents. In the process, we discussed some of the advantages (standard
protocols, cross-platform support) and some of the disadvantages (dead objects sent
as XML documents).

At this point, we’ve covered three object models: .NET, COM, and CIM/WMI. All
of these models have common traits: instances and classes, properties, and methods.
But there’s another common aspect to these objects that we’ve been avoiding up until
now: events and eventing. Events are operations where the system calls you instead of
the other way around. They require a rather different way of thinking about script-
ing—sufficiently so that events are covered in their own chapter. In chapter 20, we’ll
look at events in detail—how to use them, how to apply them, and some of the com-
plexities that the eventing model has. Despite all these warnings, eventing is
extremely powerful and should be in the toolkit of every advanced IT professional.
846 CHAPTER 19 MANAGEMENT OBJECTS: WMI AND WS-MAN

C H A P T E R 2 0

Responding in real time
with eventing

20.1 Foundations of event handling 848
20.2 Synchronous events 849
20.3 Asynchronous events 853
20.4 Working with asynchronous .NET

events 855
20.5 Asynchronous event handling with

scriptblocks 860

 20.6 Queued events and the Wait-Event
 cmdlet 863

 20.7 Working with WMI events 866
 20.8 Engine events 875
 20.9 Remoting and event forwarding 877
20.10 How eventing works 882
20.11 Summary 885
Exit, pursued by a bear
 —Stage directions from The Winter’s Tale,
 by William Shakespeare

Over the last 19 chapters, we’ve covered an enormous amount of material. We’ve cov-
ered cmdlets, functions, scripts, and modules. We’ve looked at the major elements of
the CLR and the .NET Framework, including assemblies, types, instances, and gener-
ics. We’ve also explored the COM and WMI object models and WSMan management
web services. But there’s still one area we haven’t formally addressed: eventing. In
chapter 17, we used one type of event, called a synchronous event, in our GUI pro-
gramming. In this chapter, we’ll spend more time working with synchronous events
but the majority of the material will focus on asynchronous events. Asynchronous
847

event handling allows scripts to respond to real-world events in a timely manner.
Although this is a somewhat advanced topic, knowing how to use eventing can be a
huge asset when you’re managing a distributed datacenter environment. In this chap-
ter, we’ll explore the basic concepts of event-driven scripting, the PowerShell eventing
model and infrastructure, and how to apply this feature.

20.1 FOUNDATIONS OF EVENT HANDLING

There are three major categories, or sources, of events supported by PowerShell: .NET
object events, WMI events, and engine events (that is, events generated by Power-
Shell itself). But before we go into specific discussions on any of these topics, you
need a common understanding of the concepts and terminology used in event-based
programming.

In the .NET Framework (and therefore in PowerShell), events are a “first-class”
concept just like methods and properties. By first class, we mean that they’re tangible
objects represented using classes. When you look at any class in the .NET Framework,
you’ll see that, along with methods and properties, each class also exposes some events.
It’s these event members that are the focus of our discussion of .NET eventing.

 Now let’s talk about what an event is and what makes event-based scripting dif-
ferent from traditional procedural scripting. The key difference with event-based
scripting is that, instead of an activity being executed as a result of an action in the
script, a script (or at least a portion of it) is executed as a result of an action by the sys-
tem. This pattern is sometimes called inversion of control, but it can be expressed
more colorfully as “Don’t call me, I’ll call you.”

NOTE This way of characterizing event-based programming captures
the essence of the model perfectly. Crispin Cowan (Linux Security and
now Windows Security Guru Extraordinaire) suggested this definition
as we were hiking through the Cougar Mountains in Washington.
Clearly, inspiration can arrive anywhere.

The traditional and event-driven flow control patterns are shown in figure 20.1.
Take a look at the traditional flow of control illustrated in the figure. In the tradi-

tional model, the flow of control always belongs to the mainline of the program. If an
action is required, the mainline program directly invokes that action. In contrast, with
the eventing pattern, rather than directly initiating actions, the mainline program reg-
isters the set of actions with an event source and then goes to sleep. It never initiates any
actions on its own. Instead, the event source is responsible for initiating actions as
required. In this scenario, you are, in effect, turning control over to the event service.

Sometimes this event service is a library routine that the mainline calls and allows
this library to handle dispatching events to the callbacks. This model is frequently
used in GUI programming. We’ll cover this model in detail in section 20.2.
848 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

NOTE In practice, we’ve been using this callback pattern all along,
not just in GUIs. This is how the ForEach-Object and Where-
Object cmdlets work: you pass action scriptblocks to the cmdlets and
the cmdlets take care of calling your code when it’s needed.

In other situations, the event service may be an active entity like another thread or
process. In practice, real programs rarely restrict themselves to a single model but
instead use different models at different times as appropriate. Starting in section 20.3,
we’ll explore these models in more detail and you’ll see how to apply them in Power-
Shell. But before we get to that, let’s examine synchronous event handling.

20.2 SYNCHRONOUS EVENTS

In this section, we’re going to look at the synchronous eventing pattern in detail. The
defining characteristic of synchronous eventing is that there’s never more than one
action occurring at any given time. All of the event-driven actions are synchronized

Traditional flow of control

While (condition)

call Abc() Library Abc()

Event service
Register event

Call Abc()

Register callbacks

Return result

Wait for events

Run action

Run action

Event-driven flow of control

Event 1

Trigger

Event 1

Event 2

Trigger

Event 2

Figure 20.1 The normal flow of control in a script is compared to the flow in an

event-based script. In the normal flow of control, the main thread of execution al-

ways retains control, calling library routines as needed. In event-based program-

ming, the mainline registers a set of callback actions that will be executed when

the specified event occurs. The event service then controls the flow of execution.
SYNCHRONOUS EVENTS 849

and no action is ever interrupted. This is the event-handling pattern used in most
GUI frameworks like Windows Forms (section 17.3.1) or Windows Presentation
Foundation (section 17.3.3).

20.2.1 Synchronous eventing in GUIs

In synchronous GUI frameworks, you create a collection of GUI elements and then
register actions with these elements so that when the user does something like click a
button, your actions will be executed. Once you’re done creating the GUI and regis-
tering the event actions, you hand control over to the framework, which will call the
actions you defined when it needs to.

In PowerShell, for defining synchronous event handlers, you can usually just
attach a scriptblock directly to the event member on the object. In fact, you’ve
already applied this pattern many times as in the following, familiar example:

$button = New-Object Windows.Forms.Button
$button.text="Push Me!"
$button.Dock="fill"
$button.add_Click({$form.close()})

By now, you know that this code creates a button that will close its containing form
when it’s clicked. The last line of this example is where the event handler is attached,
or “bound,” to the control. The Button object has a Click event, which fires when
the button is clicked. To add the Click event handler, you call the add_Click()
method, passing in the scriptblock to execute. Because the add_Click() method
requires an argument of type System.EventHandler, PowerShell automatically
wraps the scriptblock with a generated subclass of System.EventHandler. This is a
simple scenario and worked in PowerShell v1 because it was essentially hardcoded
into the PowerShell runtime. The System.EventHandler class is an example of
what is called a delegate in .NET terminology.

20.2.2 Delegates and delegation

In the GUI examples you saw in section 17.3, you set up control actions in the GUI
by attaching event handlers to the controls in the UI. When you set up event handlers
like this, you are, in effect, delegating the execution of that code to the UI and
depending on it to call the code at the right time. Because this involves delegated
actions, a logical name for these event handlers would be delegates—which is what
they’re called in .NET.

Earlier in this chapter (section 20.1) we said that events in .NET are a first-class
concept. You’ve seen that events are represented as members on a class. The delegate
values that you assign to event members are also first-class concepts and, like every-
thing else in .NET, are represented by types that derive from a common base type. In
this case, the common base type is System.Delegate. Depending on the argument
type for the target event member, the required event handler argument will be a
850 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

specific subclass of Delegate. In the PowerShell world, the role of the delegate is
always played by scriptblocks. But because scriptblocks don’t derive from Sys-
tem.Delegate, the PowerShell runtime has to synthesize Delegate wrapper classes
for the scriptblock that match the argument type required by the event member. Let’s
see how this works in a non-GUI example.

NOTE PowerShell v1 only supported the single subclass of delegate,
System.EventHandler, due to time restrictions. This type was chosen
because it’s widely used in the framework, especially by the GUI frame-
works. This meant that there were a lot of useful things you could do
even though you only had the one type. In v2, the delegate wrapping
support was generalized to cover all types of delegates so you no longer
have to deal with the limitations of only one delegate type.

A non-GUI synchronous event example

Although the use of System.EventHandler is very common in .NET, there are addi-
tional synchronous delegate types in the .NET Framework that don’t follow the Sys-
tem.EventHandler pattern. In PowerShell v1, working with these other delegate
types required writing some complicated code that manually generated a scriptblock
wrapper for the target type. This wasn’t practical for most PowerShell users, so in
PowerShell v2, Microsoft greatly improved the support for delegate types and the
PowerShell runtime can automatically generate wrappers for any type of delegate.

NOTE You can generate a wrapper for any event type, but you can’t
always automatically infer what type to generate in all scenarios. For
those cases, the use of an explicit cast is required to disambiguate
things. When you cast a scriptblock to the target type, the correct
wrapper can be synthesized.

In this example, we’ll look at how PowerShell’s enhanced delegate handling works.
You’re going to use a scriptblock as the MatchEvaluator in a call to the static
Replace() method on the [regex] class. The overload of Replace() you’re inter-
ested in uses a delegate to do custom transformations during the replace operation.
The signature for this method is

static string Replace(
string input,
string pattern,
System.Text.RegularExpressions.MatchEvaluator evaluator)

The first two arguments are the string to act on and the pattern to search for. The
final argument is a delegate of type

[System.Text.RegularExpressions.MatchEvaluator]
SYNCHRONOUS EVENTS 851

Now, examine this type:

PS (1) > [System.Text.RegularExpressions.MatchEvaluator] |
>> Format-List Name,FullName,BaseType
>>

Name : MatchEvaluator
FullName : System.Text.RegularExpressions.MatchEvaluator
BaseType : System.MulticastDelegate

You can see that it derives from System.MulticastDelegate. Because delegates are
invoked using the Invoke() method, by looking at this method’s signature you can
see what parameters your scriptblock requires. Let’s see what this method looks like
for the MatchEvaluator delegate (note the leading space in the ' Invoke' pattern,
which reduces the set of matched members):

PS (2) > [System.Text.RegularExpressions.MatchEvaluator] |
>> foreach {
>> [string] ($_.GetMembers() -match ' Invoke')
>> }
>>
System.String Invoke(System.Text.RegularExpressions.Match)

You see that the delegate takes a single parameter representing the matched text so the
scriptblock will look like

{param($match) ... }

Note that in this scriptblock definition, we’ve omitted the type attribute for simplic-
ity and in practice they aren’t needed. The delegate signature guarantees that the
scriptblock will never be called with the wrong argument types.

And now that you have the signature figured out, let’s find out what this method
actually does. Looking up the MatchEvaluator class on MSDN (Microsoft Devel-
oper’s Network), you see the following:

You can use a MatchEvaluator delegate method to perform a custom ver-
ification or manipulation operation for each match found by a replacement
method such as Regex.Replace(String, MatchEvaluator). For each
matched string, the Replace method calls the MatchEvaluator delegate
method with a Match object that represents the match. The delegate method
performs whatever processing you prefer and returns a string that the
Replace method substitutes for the matched string.

For our purposes, this means that whatever the scriptblock returns will replace the
matched substring. Let’s try this out. Write an expression that will replace all the
characters in a string with their corresponding hex representation:

PS (4) > $inputString = "abcd"
PS (5) > [regex]::replace($inputString, ".",
>> [System.Text.RegularExpressions.MatchEvaluator] {
>> param($match)
852 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

>> "{0:x4}" -f [int] [char]$match.value })
>>
0061006200630064
PS (6) >

Inside the scriptblock, you take each argument character and then use the format
operator to turn it into a set of four hexadecimal digits.

By now, you should be comfortable with synchronous events. It’s a pattern you’ve
worked with at length over the course of this book. Asynchronous events, on the
other hand, haven’t been covered at all thus far. Asynchronous events introduce a
number of considerations that make handling them more complicated. But because
asynchronous events are a much more realistic way to model the world, the ability to
handle them in PowerShell is important in scenarios such as responding to alerts.
Beginning with the next section, you’ll spend quite a bit of time mastering these
event patterns and learning how to apply them to solve real problems.

20.3 ASYNCHRONOUS EVENTS

Asynchronous events are much trickier to deal with than their synchronous cousins.
A synchronous event effectively runs on the same thread of execution as everything
else. By analogy, this is like attending a formal lecture where the speaker conducts the
main thread of conversation but periodically takes questions from the audience. By
following this synchronous question-and-answer policy, at no point are there ever two
actions (that is, two conversations) occurring at the same. This makes following the
flow of conversation much easier. Everything happens deterministically, eliminating
any collisions or consistency/coherency issues. Unfortunately that model doesn’t
match the way much of the real world works. Real-world events don’t occur in a strict
deterministic order—they happen when they happen, interrupting whatever else
might be going on at that time. In the lecture analogy, this is like the audience spon-
taneously yelling out questions, interrupting the speaker and possibly confusing
everyone. This type of concurrent operation makes life difficult for scripters because
it means that things may possibly get changed out of order or in unanticipated ways,
resulting in inconsistencies and errors.

In PowerShell v1, there was no support for the asynchronous pattern, which made
it pretty much impossible to handle asynchronous events. In fact, out of concern over
the possibility that things might happen out of order, PowerShell actively checks to
see if you’re trying to perform asynchronous actions and shuts down (that is, calls the
FailFast() API, causing a crash) if it detects them.

NOTE The rationale behind this behavior was, essentially, that it’s
better to be absolutely useless than to be possibly wrong. This is a
somewhat extreme view and not everyone agrees with this line of rea-
soning. On the other hand, crashing and thereby halting an operation
rather than, say, possibly launching a rocket at the wrong target does
make a certain amount of sense. You can’t un-launch a rocket, and say-
ing “Sorry, my bad” after blowing up a city just doesn’t cover it.
ASYNCHRONOUS EVENTS 853

To allow for robust handling of asynchronous events, PowerShell v2 added an event-
ing subsystem that uses a centralized event manager to ensure that this occurs in a
rational sequence. This subsystem takes care of all the bookkeeping and synchroniza-
tion needed to ensure a stable and consistent system without a lot of work on the part
of the script author. In the next section, we’ll introduce the model PowerShell uses for
doing this.

20.3.1 Subscriptions, registrations, and actions

The scripting model PowerShell uses for handling asynchronous events involves a few
core concepts. The first concept is the idea of an event subscription, where you select
the type of events you want to know about and then subscribe to be notified when
they occur. These subscriptions are registered with a source identifier, which allows
you to give a friendly name to each subscription. Once registered, the event subscrip-
tion will be notified about relevant events as soon as they occur and will continue to
receive notifications until the subscription is cancelled by explicitly unregistering it.
Each event subscription may optionally specify an action to be taken. With these
concepts in mind, we’ll look at the eventing cmdlets in the next section.

20.3.2 The eventing cmdlets

The PowerShell eventing cmdlets are shown in table 20.1. These cmdlets allow you to
register and unregister event subscriptions and list the existing subscriptions. You can
also list pending events (as opposed to subscriptions) and handle or remove them as
desired. There is also a cmdlet that allow scripts to generate their own events.

Table 20.1 The PowerShell eventing cmdlets

Cmdlet name Description

Register-ObjectEvent This cmdlet registers an event subscription for events generated by
.NET objects.

Register-WmiEvent Registers an event subscription for events generated by WMI
objects (see chapter 18).

Register-EngineEvent Registers an event subscription for events generated by PowerShell
itself.

Get-EventSubscriber Gets a list of the registered event subscriptions in the session.

Unregister-Event Removes one or more of the registered event subscriptions.

Wait-Event Waits for an event to occur. This cmdlet can wait for a specific event
or any event. It also allows a timeout to be specified limiting how
long it will wait for the event. The default is to wait forever.

Get-Event Gets pending unhandled events from the event queue.

Remove-Event Removes a pending event from the event queue.

New-Event This cmdlet is called in a script to allow the script to add its own
events to the event queue.
854 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

When handling events, you need to be able to register actions in response to these
events. You do so using cmdlets, but because there are several types or sources of
events, there are also several event registration cmdlets, as you saw in the table. The
three event subscription registration cmdlets are Register-EngineEvent, Regis-
ter-ObjectEvent, and Register-WmiEvent. PowerShell-specific events are han-
dled using the Register-EngineEvent cmdlet, asynchronous events on .NET
objects are handled using Register-ObjectEvent, and WMI events are addressed
with Register-WmiEvent. (WMI events are covered in section 20.7 and engine
events are covered in section 20.8.)

In the next section, we’ll focus on .NET events—the so-called object events. In the
process of doing this, we’ll also cover most of the core eventing concepts that apply
when working with any of the event sources.

20.4 WORKING WITH ASYNCHRONOUS .NET EVENTS

You use the Register-ObjectEvent cmdlet to create subscriptions for asynchro-
nous events on .NET objects. The signature for this cmdlet is shown in figure 20.2.

Let’s see how these parameters are used. First you need to identify the event you’re
interested in. For .NET events, this means that you need an object and the name of
the event member on that object to bind. This is the same pattern you’ve already seen
with Windows Forms and WPF, where, for example, a Button object has a Click
event accessed through the add_Click() member.

Once you’ve decided on the event to handle, you need to specify what to do with
the event. The -Action parameter on the cmdlet allows you to provide a scriptblock
to execute when an event fires. This scriptblock will receive a lot of information
about the event when it’s run, but there may be some additional, custom data that
you want to pass to the event handler. You can do this with the -MessageData
parameter.

Register-ObjectEvent
[-InputObject] <PSObject>
[-EventName] <string>
[[-Action] <scriptblock>]
[-Forward]
[[-SourceIdentifier] <string>]
[-MessageData <PSObject>]
[-SupportEvent]

Forward event to a

remote computer using

PowerShell remoting

Scriptbock that defines

action to take (optional)

Object to pass to event

handler (optional)

Name of event

member on object

Friendly name to

use for this event

subscription

Object to register event on

Event handler supports more

complex operation and

shouldn’t be visible on its own

Figure 20.2 The signature of the Register-ObjectEvent cmdlet. This cmdlet is used to

set up event handling for asynchronous events generated by .NET objects.
WORKING WITH ASYNCHRONOUS .NET EVENTS 855

Finally, when you have a number of events that you’re working with, the ability to
attach a friendly name to the subscription will make things easier to manage. This is
what -SourceIdentifier is for: it allows you to name the event registration or
event source.

There’s one last parameter that we haven’t discussed yet: -SupportEvent. In larger
event-driven scripts, there may be a number of event registrations that only exist to
support higher-level constructs within the application. In these scenarios, it’s useful to
be able to hide these supporting events much like the rationale behind the way you hide
supporting functions in modules. This event-handler hiding is accomplished using the
-SupportEvent switch. As was the case with modules, if you do want to see the hidden
events, you can specify the -Force switch on Get-EventSubscriber.

20.4.1 Writing a timer event handler

Okay, enough talk—let’s start doing something with .NET events. One of the most
obvious examples of an asynchronous event is a timer. A timer event fires at regular
intervals regardless of what else is going on. Let’s see how you can set up a subscrip-
tion events generated by the .NET System.Timers.Timer class.

NOTE These cmdlets can only be used for asynchronous .NET events.
It’s not possible to set up event handlers for synchronous events using
the PowerShell eventing cmdlets. This is because synchronous events
all execute on the same thread and the cmdlets expect (require) that the
events will happen on another thread. Without the second thread, the
PowerShell engine will simply block the main thread and nothing will
ever get executed.

Creating the Timer object

The first thing you need for our example is a Timer object. You use New-Object to
create it:

PS (1) > $timer = New-Object System.Timers.Timer

Because events are first-class and exist as members on a class, you can use Get-Member,
filtering the results on the Event member type, to see what events this object exposes:

PS (2) > $timer | Get-Member -MemberType Event

 TypeName: System.Timers.Timer

Name MemberType Definition
---- ---------- ----------
Disposed Event System.EventHandler Disposed(System.Objec...
Elapsed Event System.Timers.ElapsedEventHandler Elapsed...

From this output, you can see that the Elapsed event is what you’re looking for—it
fires when the timer period has elapsed.
856 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

Setting the timer event parameters

But you need to know more about this object than just the events—you need to
know how to set the timer interval, and start and stop the timer. Again you can use
Get-Member to find this information. (Note that the output shown here has been
trimmed to the interesting members for brevity’s sake.)

PS (3) > $timer | Get-Member

 TypeName: System.Timers.Timer

Name MemberType Definition
---- ---------- ----------
Disposed Event System.EventHandler Disp...
Elapsed Event System.Timers.ElapsedEve...
Close Method System.Void Close()
Start Method System.Void Start()
Stop Method System.Void Stop()
ToString Method string ToString()
AutoReset Property System.Boolean AutoReset...
Enabled Property System.Boolean Enabled {...
Interval Property System.Double Interval {...

When you look at the output, the way to start and stop the timer is obvious. The
AutoReset property determines if the timer only fires once (AutoReset = $false)
or fires repeatedly every interval (AutoReset = $true). Finally, the Interval prop-
erty controls the firing interval. Because the value is a double, you can guess that it’s
specified in milliseconds.

NOTE Yes, you could’ve gone to the MSDN documentation. But,
really, why bother? With Get-Member and a reasonably decent under-
standing of .NET, Get-Member is frequently all you need. This makes
PowerShell a useful tool for developers as well as IT professionals. Even
in Visual Studio, sometimes we’ll still flip over to a PowerShell window
to search for information about a type. Simple text and typing is still
faster sometimes.

Binding the event action

lLet’s register for an event on this object, which you do with the following
command:

PS (4) > Register-ObjectEvent -InputObject $timer `
>> -EventName Elapsed -Action { Write-Host "<TIMER>" }

Id Name State HasMoreData Locat
 ion
-- ---- ----- ----------- -----
2 605793a1-1af... NotStarted False
WORKING WITH ASYNCHRONOUS .NET EVENTS 857

This command attaches a scriptblock to the event that will write out the phrase
"<TIMER>" when it fires. You have to use Write-Host in this scriptblock because the
output from a triggered event action is simply discarded.

Now you’ll wait a minute…and…nothing happens. This is because you haven’t done
all of the other things to the Timer object to make it start firing (though obviously,
binding the event handler beforehand is usually a good idea).

Enabling the event

Let’s complete the remaining steps needed to start the timer triggering. Set the inter-
val to 500 milliseconds so the timer will fire in half a second:

PS (5) > $timer.Interval = 500

You want to fire repeatedly, so set the AutoReset property to $true:

PS (6) > $timer.AutoReset = $true

Next you enable the timer by setting the Enabled property to $true (or by calling
the Start() method which also sets Enabled to $true):

PS (7) > $timer.Enabled = $true
<TIMER>
<TIMER>
<TIMER>
<TIMER>

The timer starts running and you see the output you expected. Next comes the hard
part: getting it to stop. The command is easy; just type $timer.Stop() and press
Enter. But in the console shell, the timer is writing to the screen at the same time
you’re typing. This results in scrambled output, looking something like this:

<TIMER>
<TIMER>
<TIMER>
<TIMER>
$timer.Stop()<TIMER>
<TIMER>

Using Register-ObjectEvent

As a handy way to remember how to use the Register-ObjectEvent cmdlet,
think of assigning the scriptblock to the event member. If PowerShell supported this,
it’d look something like this: $timer.Elapsed = { Write-Host "<TIMER>" }.

The Register-ObjectEvent command allows positional parameters in the same
order, so the command would look like

Register-ObjectEvent $timer Elapsed { Write-Host "<TIMER2>" }

where the order of the elements is the same: object/member/action.
858 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

(Here’s another place where the ISE just works better—the timer output doesn’t inter-
fere with the ability to run commands.) Once you’ve stopped the timer, you can
restart it by calling the Start() method a second time:

PS (9) > $timer.Start()
PS (10) > <TIMER>
<TIMER>
<TIMER>
<TIMER>
$timer.Stop()<TIMER>

PS (12) >

Now that you know how to register a basic event subscription, we’ll look at how to
manage these subscriptions.

20.4.2 Managing event subscriptions

In this section, you’ll see how to find your event subscriptions and how to remove
them when you’re done with them. Being able to remove them is important because
event subscriptions persist in the session until explicitly removed.

Listing event subscriptions

Of course, before you can remove a subscription, you have to find it. PowerShell pro-
vides the Get-EventSubscriber to do this. Let’s use it to look at the subscription
you registered in the previous section:

PS (1) > Get-EventSubscriber

SubscriptionId : 1
SourceObject : System.Timers.Timer
EventName : Elapsed
SourceIdentifier : fca4b869-8d5a-4f11-8d45-e84af30845f1
Action : System.Management.Automation.PSEventJob
HandlerDelegate :
SupportEvent : False
ForwardEvent : False

The Get-EventSubscriber cmdlet returns PSEventSubscriber objects, which
have complete information about the registration: the object generating the event, the
action to execute, and so on. There are a couple of interesting properties to note in
this output. Because you didn’t give the subscription a friendly name using -Source-
Identifier when you created it, the Register-ObjectEvent generated one for
you. This autogenerated name is the string representation of a GUID, so you know
it’s unique (but not very friendly). The other thing to notice is that the action shows
up as a PowerShell Job object (see section 12.5). Because the relationship between
events and jobs is a somewhat longer discussion, we’ll defer it to section 20.10.

Removing event subscriptions

Now that you can list the event subscriptions, you can set about removing them. The
cmdlet to do this is not Unsubscribe-Event because unsubscribe isn’t on the
WORKING WITH ASYNCHRONOUS .NET EVENTS 859

approved verbs list and it’s not what you want to do anyway. You registered event sub-
scriptions with Register-ObjectEvent, so what you need to do is unregister the
subscription, which you’ll do with Unregister-Event. The cmdlet noun in this case
is Event, not ObjectEvent, because you can use a common mechanism to unregister
any kind of event. It’s only the registration part that varies. The rest of the eventing
cmdlets remain the same.

When you’re unregistering an event subscription, there are two ways of identify-
ing the event to unregister: by the SubscriptionId property or by the Source-
Identifier. The subscription ID is simply an integer that’s incremented each time
an event subscription is created. Because you didn’t give your event registration a
friendly name, you’ll use the SubscriptionId to unregister it:

PS (4) > Unregister-Event -SubscriptionId 1 -Verbose
VERBOSE: Performing operation "Unsubscribe" on Target "Event
subscription 'timertest2'".
PS (5) >

Note that you included the -Verbose flag in this command so that you could see
something happening. Let’s try running the command again

PS (5) > Unregister-Event -SubscriptionId 1
Unregister-Event : Event subscription with identifier '1' does not
exist.
At line:1 char:17
+ Unregister-Event <<<< -SubscriptionId 1
 + CategoryInfo : InvalidArgument: (:) [Unregister-Event
], ArgumentException
 + FullyQualifiedErrorId : INVALID_SUBSCRIPTION_IDENTIFIER,
 Microsoft.PowerShell.Commands.UnregisterEventCommand

and it results in an error. The Unregister-Event cmdlet is silent as long as nothing
goes wrong. If something does go wrong, you get an error.

We’ve covered the basics of creating and managing event subscriptions. But
before the handlers for these events can do much useful work, they’ll need access to
additional information. In the next section, you’ll write more sophisticated handlers
and see how they can use the automatic variables provided by the eventing subsystem.

20.5 ASYNCHRONOUS EVENT HANDLING WITH SCRIPTBLOCKS

In this section, we’ll look at the automatic variables and other features that Power-
Shell provides to allow scriptblocks to be used as effective event handlers.

20.5.1 Automatic variables in the event handler

In PowerShell eventing, the scriptblock that handles the event action has access to a
number of variables that provide information about the event being handled:
$event, $eventSubscriber, $sender, $sourceEventArgs, and $sourceArgs.
These variables are described in table 20.2.
860 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

Let’s write a quick test event handler to see what’s in the object in $Event. You’ll use
the timer event again:

PS (1) > $timer = New-Object System.Timers.Timer -Property @{
>> Interval = 1000; Enabled = $true; AutoReset = $false }
>>

In the event subscription action, you’ll display the contents of the event object:

PS (2) > Register-ObjectEvent $timer Elapsed -Action {
>> $Event | Out-Host
>> }
>>

Id Name State HasMoreData Locat
 ion
-- ---- ----- ----------- -----
4 9e3586c3-534... NotStarted False

You’ll start the timer to generate the event:

PS (3) > $timer.Start()
PS (4) >

ComputerName :
RunspaceId : 373d0ee9-47a5-4ceb-89e5-61e6389d6838
EventIdentifier : 7
Sender : System.Timers.Timer
SourceEventArgs : System.Timers.ElapsedEventArgs
SourceArgs : {System.Timers.Timer, System.Timers.ElapsedEv
 entArgs}
SourceIdentifier : 9e3586c3-534b-465a-84b3-7404110a0f12

Table 20.2 The automatic variables available in the event handler scriptblock

Variable Description

$event This variable contains an object of type System.Management.Auto-
mation.PSEventArgs that represents the event that’s being handled. It
allows you to access a wide variety of information about the event, as
you’ll see in an example. The value of this variable is the same object that
the Get-Event cmdlet returns.

$eventSubscriber This variable contains the PSEventSubscriber object that represents
the event subscriber of the event that’s being handled. The value of this
variable is the same object that the Get-EventSubscriber cmdlet
returns.

$sender The value in this variable is the object that generated the event. This vari-
able is a shortcut for $EventArgs.Sender.

$sourceEventArgs Contains objects that represent the arguments of the event that’s being
processed. This variable is a shortcut for $Event.SourceArgs.

$sourceArgs Contains the values from $Event.SourceArgs. Like any other script-
block, if there is a param statement, the parameters defined by that
statement will be populated and $args will only contain leftover values
for which there were no parameters.
ASYNCHRONOUS EVENT HANDLING WITH SCRIPTBLOCKS 861

TimeGenerated : 8/10/2010 12:17:40 PM
MessageData :

In this output, you see the properties on the PSEvent object that correspond to the
variables listed in table 20.2. The Timer object that generated the event is available
through the Sender property on the object and the $sender variable in the script-
block. The PSEvent object also includes context data about the event, including the
time the event occurred, the event identifier, and the RunspaceId this event is associ-
ated with. (Runspaces were discussed briefly in section 15.2.1.) The ComputerName
property is blank because this is a local event; but in the case of a remote event, it
would contain the name of the computer where the event occurred. (Section 20.9
covers remote events.)

20.5.2 Dynamic modules and event handler state

Because an event can fire at any time, you could never know what variables were in
scope and this, in turn, could make it hard to know what state will exist when the
action is executed. Instead, you want to be able to run the event handlers in a well-
defined, isolated environment. This objective aligns with the design goals for Power-
Shell modules, so you can leverage this feature by creating a dynamic module (section
11.4) for the action scriptblock. The eventing subsystem does this by calling the New-
BoundScriptBlockScriptblock() method to attach a dynamic module to the
handler scriptblock (section 11.4.2).

Beyond ensuring a coherent runtime environment for your event handler script-
block, the module also allows it to have private state. This ability can be quite useful
when you’re monitoring a system’s behavior over a period of time. The information
can be accumulated privately and then processed once enough samples have been
gathered. Let’s look at an example that illustrates how this state isolation works. The
following is a trivial example where you maintain a count of the number of timer
events fired. Once you reach a predetermined limit, the timer will be stopped. Let’s
walk through the example. First, you create the Timer object:

PS (1) > $timer = New-Object System.Timers.Timer -Property @{
>> Interval = 500; AutoReset = $true}
>>

As usual, subscribe to the Elapsed event on the timer:

PS (2) > Register-ObjectEvent -InputObject $timer `
>> -MessageData 5 `
>> -SourceIdentifier Stateful -EventName Elapsed -Action {
>> $script:counter += 1
>> Write-Host "Event counter is $counter"
>> if ($counter -ge $Event.MessageData)
>> {
>> Write-Host "Stopping timer"
>> $timer.Stop()
>> }
>> } > $null
>>
862 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

In the handler scriptblock for this event, you’re updating a script-scoped variable
$script:counter, which holds the number of times the event has fired. This variable
will only be visible within the dynamic module associated with the event, thus prevent-
ing your $counter from colliding with any other users of a variable called $counter.
After the variable is incremented, you print the event count and then check to see if the
limit has been reached. Notice that you’re making use of the -MessageData parameter
to pass the limit to the event handler, which it retrieves from the MessageData prop-
erty on the Event object. Now start the timer running to see it in action:

PS (3) > $timer.Start()
PS (4) >
PS (5) > Event counter is 1
Event counter is 2
Event counter is 3
Event counter is 4
Event counter is 5
Stopping timer

PS (6) >

As intended, the timer message is displayed five times and then the timer is stopped.
This example can easily be modified to, for example, monitor CPU usage or process
working sets over a period of time.

Setting up action scriptblocks for asynchronous events allows you to efficiently
handle events in the background. This, in turn, lets the main thread of your script
continue execution in the foreground or, in interactive sessions, allows you to con-
tinue entering commands at the shell prompt. There are, however, many monitor-
ing scenarios where there’s no main thread and all you want to do is wait for events
to happen. For example, if a service process crashes or faults, you want to be noti-
fied so you can take action to restart it. Otherwise, you simply wait for the next
event to arrive. This “wait for an event” pattern is addressed using the Wait-Event
cmdlet.

20.6 QUEUED EVENTS AND THE WAIT-EVENT CMDLET

As an alternative to setting up a lot of individual event handler actions, you can use
the Wait-Event cmdlet to process events in a loop. This cmdlet allows you to block,
waiting until an event or events happen. When the event arrives, you can take what-
ever action is required, then loop and wait for the next event. This event loop pattern
is very common, especially in GUI programming. The syntax for the Wait-Event
command is simple:

Wait-Event [[-SourceIdentifier] <string>] [-Timeout <int>]

By using the -SourceIdentifier parameter you can wait for a specific named
event. If you don’t use it, then any unhandled event will unblock you. By using the
-Timeout parameter, you can limit the length of time you'll wait for the event. This
QUEUED EVENTS AND THE WAIT-EVENT CMDLET 863

allows you to take remedial actions if the event you’re waiting for failed to occur in
the prescribed time.

NOTE You can either register an action for an event or wait for an
event but you can’t do both. If an action has been registered, when the
event fires the event object will be removed from the queue and passed
to the action scriptblock for processing. As a result, any Wait-Event
calls listening for this event will never receive it and will block forever.

Let’s experiment with this cmdlet using something other than the timer event. In this
example, you’ll work with the file system watcher class: System.IO.FileSystem-
Watcher. This class is used to generate events when changes are made to monitored
portions of the file system. Let’s look at the events exposed by this type:

PS (1) > [System.IO.FileSystemWatcher].GetEvents() |
>> Select-String .
>>

System.IO.FileSystemEventHandler Changed
System.IO.FileSystemEventHandler Created
System.IO.FileSystemEventHandler Deleted
System.IO.ErrorEventHandler Error
System.IO.RenamedEventHandler Renamed
System.EventHandler Disposed

Using this class, you can register for notifications when a file or directory is created,
changed, deleted, or renamed. You can create a FileSystemWatcher object that will
monitor changes to your desktop. First, you need to get the resolved path to the desk-
top folder:

PS (2) > $path = (Resolve-Path ~/desktop).Path

You have to do this because, as discussed previously, when you use PowerShell paths
as arguments to .NET methods (including constructors) you must pass in a fully
resolved path because .NET doesn’t understand PowerShell’s enhanced notion of
paths. Now, construct the file watcher object for the target path:

PS (3) > $fsw = [System.IO.FileSystemWatcher] $path

Set up an event subscription for the Created and Changed events:

PS (4) > Register-ObjectEvent -InputObject $fsw –EventName Created `
>> -SourceIdentifier fsw1
PS (5) > Register-ObjectEvent -InputObject $fsw –EventName Changed `
>> -SourceIdentifier fsw2

Finally, enable event generation by the object:

PS (6) > $fsw.EnableRaisingEvents = $true

At this point when you call Get-Event, you should see nothing:

PS (7) > Get-Event
864 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

This assumes that no other process is writing to the desktop while you’re doing this.
Let’s perform an operation that will trigger the event. Create a new file on the desk-
top:

PS (8) > Get-Date > ~/desktop/date.txt

You didn’t set up an action for either of the event registrations, so you won’t see any-
thing happen immediately. The events, however, haven’t been lost. Unhandled events
are added to the session event queue where they can be retrieved later. Let’s see what’s
in the queue at this point:

PS (9) > Get-Event | select SourceIdentifier

SourceIdentifier

fsw1
fsw2

In the output, you see that two events have been added: one for the creation of the
date.txt file and a second indicating that a change to the containing directory has
occurred. Note that simply reading the events doesn’t remove them from the queue.
You need to use the Remove-Event cmdlet to do this; otherwise, you’ll keep reread-
ing the same event objects. The Remove-Event cmdlet allows events to be removed
either by SourceIdentifier or by EventIdentifier. To discard all the events in
the queue, pipe Get-Event into Remove-Event:

PS (10) > Get-Event | Remove-Event

The queue is now empty, so you can call Wait-Event and the session will block until
a new event is generated (or you press Ctrl-C):

PS (11) > Wait-Event

To trigger an event, from another PowerShell session update the date.txt file by
using this:

Get-Date > ~/desktop/date.txt

This code will cause an event to be added to the queue, terminating the Wait-Event,
which will write the terminating event object to the output stream:

PS (11) > Wait-Event

ComputerName :
RunspaceId : 9c3c1728-7704-4e05-bba1-50ccc16d651f
EventIdentifier : 3
Sender : System.IO.FileSystemWatcher
SourceEventArgs : System.IO.FileSystemEventArgs
SourceArgs : {System.IO.FileSystemWatcher, date.txt}
SourceIdentifier : fsw2
TimeGenerated : 8/9/2010 3:57:13 PM
MessageData :
QUEUED EVENTS AND THE WAIT-EVENT CMDLET 865

Although you’re unblocked, the event hasn’t technically been handled, so it still exists
in the queue and you still have to manually remove it from the queue:

PS (12) > Get-Event | Remove-Event

Let’s call Wait-Event again but with a 2-second timeout and let the timeout expire:

PS (13) > Wait-Event -Timeout 2
PS (14) >

In this case, you were unblocked but no object was written. This makes it easy to dis-
tinguish between a timeout and an actual event.

Now let’s move on to the second type of events that can be handled by the Power-
Shell eventing infrastructure: WMI events.

20.7 WORKING WITH WMI EVENTS

In this section, we’re going to cover how to work with WMI events in PowerShell. As
was the case with .NET events, you handle WMI events using a cmdlet to register
actions associated with the events: the Register-WmiEvent cmdlet syntax is shown
in figure 20.3.

All the other eventing cmdlets remain the same as you saw for object events.
(You’ll see that this is also the case for engine events [section 20.8] and would also be
the same for any new object sources that might be added in the future.)

20.7.1 WMI event basics

WMI events are, in some ways, considerably more sophisticated than .NET events.
First, WMI events are represented as WMI objects and so, like all WMI objects, can be
retrieved from either a local or remote computer in a transparent way. Second,
because WMI event subscriptions can take the form of a WQL query, event filtering

Register-WmiEvent
[-Class] <string>
[-Query] <string>

[-Namespace <string>]
[[-SourceIdentifier] <string>]
[[-Action] <scriptblock>]
[-ComputerName <string>]
[-Credential <PSCredential>]
[-Forward]
[-MessageData <psobject>]
[-SupportEvent]
[-Timeout <Int64>]

Forward event to remote

computer using

PowerShell remoting

Event handler supports more

complex operation and

shouldn’t be visible on its own

Scriptblock that defines

action to take (optional)

Object to pass to event

handler (optional)

Namespace

containing class

Computer to access

Credentials to use

in this query

Maximum amount of time

to wait for event

WMI event trace class name

or WQL event query

Friendly name to use for

this event subscription

Figure 20.3 The signature of the Register-WmiEvent cmdlet. This cmdlet is used to set

up event handling for asynchronous WMI events.
866 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

can take place at the event source instead of transmitting all events to the receiver,
who is forced to do all the filtering. This is important if you’re monitoring a small set
of events on a large number of computers. By doing the filtering at the source
(remote) end, far less data is transmitted to the receiver and much less processing
needs to be done by the receiver, allowing for the overall monitoring task to scale to
far more computers than would otherwise be possible.

NOTE On the other hand, unlike object events, there’s no notion of
synchronous WMI events so all event handling must go through the
eventing subsystem.

We’ll begin our exploration of WMI events by looking at the Win32_*Trace classes,
which are much simpler to deal with than the full query-based event subscriptions.

20.7.2 Class-based WMI event registration

Before jumping into the full complexity of query-based event subscriptions, we’ll
look at some predefined WMI event classes. These classes hide a lot of the complexity
required by query-based event registration, making them easier to use. You can use
the following command to get a list of these classes. You’ll also display their super-
classes to see the relationships between the classes:

PS (1) > Get-WmiObject -List Win32_*trace |
>> Format-List Name,__SUPERCLASS
>>

Name : Win32_SystemTrace
__SUPERCLASS : __ExtrinsicEvent

Name : Win32_ProcessTrace
__SUPERCLASS : Win32_SystemTrace

Name : Win32_ProcessStartTrace
__SUPERCLASS : Win32_ProcessTrace

Name : Win32_ProcessStopTrace
__SUPERCLASS : Win32_ProcessTrace

Name : Win32_ThreadTrace
__SUPERCLASS : Win32_SystemTrace

Name : Win32_ThreadStartTrace
__SUPERCLASS : Win32_ThreadTrace

Name : Win32_ThreadStopTrace
__SUPERCLASS : Win32_ThreadTrace

Name : Win32_ModuleTrace
__SUPERCLASS : Win32_SystemTrace

Name : Win32_ModuleLoadTrace
__SUPERCLASS : Win32_ModuleTrace
WORKING WITH WMI EVENTS 867

By inspecting the class/superclass relationships, you can see that these classes form a
hierarchy of event sources, where the further you go from the root, the more specific
the event becomes. This hierarchy is illustrated in figure 20.4.

Let’s work through an example that shows how this works.

NOTE Because these event sources fire for any process event, regard-
less of who starts them, these commands must be run from an elevated
shell on Windows Vista, Window 7, Windows Server 2008, and Win-
dows Server 2008 R2. Also be aware that, because you’re recording all
process events in the first set of examples, you may see additional out-
put from other processes starting and stopping.

Using the Win32_ProcessTrace events

You’ll use the Win32_Process*Trace classes in this experiment. First you’ll set up an
event subscription to the Win32_ProcessStartTrace, which will fire every time a
process starts:

PS (2) > Register-WmiEvent -Class Win32_ProcessStartTrace `
>> -Action {
>> "Process Start: " +
>> $event.SourceEventArgs.NewEvent.ProcessName |
>> Out-Host
>> }
>>

In this class hierarchy, most
derived class represents most
specific event source

Win32_*Trace event class hierarchy

Win32_SystemTrace

Win32_ProcessTrace

Win32_ProcessStartTrace

Win32_ProcessStopTrace

Win32_ThreadTrace

Win32_ThreadStartTrace

Win32_ThreadStopTrace
Win32_ModuleTrace

Win32_ModuleLoadTrace

Figure 20.4 This figure shows the hierarchy of classes representing simplified WMI

event sources. The most derived class matches the most specific event.

Win32_ProcessStartTrace will only fire for process starts whereas

Win32_ProcessTrace will fire for both process starts and process stops.
868 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

Id Name State HasMoreData Location
-- ---- ----- ----------- -----
18 d999e74a-57c... NotStarted False

You can assign an action scriptblock to these event subscriptions, just as you did with
object events. In the body of the scriptblock, you’ll write a message indicating what
type of event was fired along with the process name. You’ll set up similar event han-
dlers for the Win32_ProcessStopTrace and Win32_ProcessTrace events, again
displaying the type of the event and the process name:

PS (3) > Register-WmiEvent -Class Win32_ProcessStopTrace `
>> -Action {
>> "Process Stop: " +
>> $event.SourceEventArgs.NewEvent.ProcessName |
>> Out-Host
>> }
>>
Id Name State HasMoreData Location
-- ---- ----- ----------- -----
19 c4b4bf9d-368... NotStarted False
PS (4) > Register-WmiEvent -Class Win32_ProcessTrace `
>> -Action {
>> "Process Any: " +
>> $event.SourceEventArgs.NewEvent.ProcessName |
>> Out-Host
>> }
>>
Id Name State HasMoreData Location
-- ---- ----- ----------- -----
20 e4a5ad65-d35... NotStarted False

From the hierarchy (and the names of the events), you know that
Win32_ProcessStartTrace fires when a process starts, Win32_ProcessStopTrace
fires when a process is terminated, and Win32_ProcessTrace fires on either kind of
process event. To test these subscriptions, run the following command, which will
start and stop an instance of the calc process a number of times:

PS (5) > & {
>> $p = Start-Process calc -PassThru
>> Start-Sleep 3
>> $p | Stop-Process
>> Start-Sleep 3
>> $p = Start-Process calc -PassThru
>> Start-Sleep 3
>> $p | Stop-Process
>> Start-Sleep 3
>> }
>>

In this command you’re using Start-Process to start the calc process with
-PassThru to capture the process object and save it in a variable. Then, after three
seconds, you pass the captured object to Stop-Process to terminate the calc
WORKING WITH WMI EVENTS 869

instance. This pattern is repeated three times and the whole thing is wrapped in a
scriptblock to cause it to be executed as a single command. (This way, you avoid hav-
ing your commands mixed in with the output and cluttering things up. Alternatively,
you could’ve used the PowerShell ISE instead of the console shell; see section 15.1.1.)
Here’s the output produced by this command:

Process Start: calc.exe
Process Any: calc.exe
Process Any: calc.exe
Process Stop: calc.exe
Process Start: calc.exe
Process Any: calc.exe
Process Any: calc.exe
Process Stop: calc.exe

The first two records were generated by the first calc process starting. You get both
Win32_ProcessStartTrace and Win32_ProcessTrace firing but not
Win32_ProcessStopTrace. The calc process is then stopped, resulting in two more
records, and this is repeated one more time for a total of eight records. (The order in
which the specific and general events are fired is nondeterministic, so the exact order
will change with different runs of the start/stop command.)

Verifying that the events fired

To verify that the events fire for all process creations, let’s start and stop the Telnet ser-
vice. This will cause the service manager to start the TlntSvr process, which should,
in turn, trigger an event:

PS (6) > Start-Service TlntSvr; Stop-Service TlntSvr
Process Any: tlntsvr.exe
Process Start: tlntsvr.exe
PS (7) > Process Stop: tlntsvr.exe
Process Any: tlntsvr.exe

This is confirmed by the output, indicating that the service process was started and
stopped.

The final step in this experiment is to clean up the event subscriptions you cre-
ated. Here’s the easiest way to do this:

PS (7) > Get-EventSubscriber | Unregister-Event
PS (8) >

Note that this code removes all event subscriptions for this session. This is fine for
experimentation but you should be careful doing this in a production environment
and be selective about what is removed.

This completes the easy part of WMI event handling. Although setting up event han-
dlers this way was easy, it was also very limited. In chapter 19, when you retrieved WMI
object instances using Get-WmiObject, you were able to do sophisticated filtering and
could be precise about the objects you retrieved. You can be just as precise with events,
but doing so requires the use of WQL queries. We’ll cover this in the next section.
870 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

20.7.3 Query-based WMI event registrations

In chapter 19 (section 19.2.2) you used the WMI Query Language (WQL) to select
and filter WMI objects. The format of those instance-based WQL queries was

SELECT <propertyList> FROM <ObjectClass> WHERE <predicateExpression>

With a little bit of additional syntax, WQL can also be used to select and filter WMI
events.

NOTE In CIM parlance, what you actually filter is called a notification,
not an event. CIM defines an event as something that happens at a par-
ticular point in time like a process starting or a user logging on. Notifi-
cations are the object representation (or model) for these event
occurrences. For simplicity, we’re going to stick to using event for both
cases in the rest this chapter.

The core syntax for event queries is the same as for instance queries but with some
additional features. We’ll look at these features in the next couple of sections.

The WITHIN keyword

The first of the additional keywords we’ll discuss is WITHIN. This keyword is used in a
query as follows:

SELECT <propertyList> FROM <EventClass> WITHIN <Seconds> WHERE
<predicateExpression>

The WITHIN keyword is used to specify the polling interval that the WMI service
should use to monitor and relay event data. The polling interval is the frequency with
which the monitored resource is checked. The smaller the polling interval, the more
often the monitored resource will be checked. This results in faster and more accurate
event notifications, but it also places more burden on the monitored system. The
argument to the WITHIN keyword is a floating-point number. This means you could
theoretically specify polling intervals of less than one second. However, specifying a
value that’s too small (like 0.001 seconds) could cause the WMI service to reject a
query as not valid due to the resource-intensive nature of polling. The polling interval
should be chosen based on the type of event being monitored. If the event doesn’t
require instant action, it’s generally recommended that the polling interval be greater
than 300 seconds (that is, 5 minutes).

The WMI intrinsic event classes

The objects you query for are also a bit different. With object events, you create an
instance of an object and then subscribe to an event on that object. With WMI
event queries, you subscribe to the type of event and then specify the event-
generating class you’re interested in. Some of the most useful of these intrinsic
event classes are _InstanceCreationEvent, __InstanceDeletionEvent, and
WORKING WITH WMI EVENTS 871

_InstanceModificationEvent, which are all derived from _Instance-
OperationEvent. These classes and their relationships are shown in figure 20.5.

These classes mirror the pattern you saw in the previous section where
Win32_ProcessTrace was the root event with Win32_ProcessStartTrace and
Win32_ProcessStopTrace as derived events. The difference here is that there’s no
class like Win32_Process mentioned in these events. They are general-purpose events
generated by all objects. So, when you want to register an event subscription for one
of these events, you use the ISA operator to select which class you’re interested in
receiving instance notifications from. Let’s see what a query using the WITHIN key-
word and these instance notifications events looks like:

SELECT * FROM __InstanceOperationEvent WITHIN 1
WHERE TargetInstance ISA 'Win32_Service'
 AND TargetInstance.Name='TlntSvr'

This query says to retrieve all events from InstanceOperationEvent with a polling
interval of one second (this is an experiment so you’ll use a small value) where the
object generating the event is an instance of the Win32_Service class and the Name
property on the instance is TlntSvr. In other words, you want to generate an event
anytime something happens to the Telnet service.

NOTE This example assumes that you have the Telnet service installed
on the target computer. Because the Telnet service is an optional install,
you may have to install it. To do so, from an elevated PowerShell
instance, run appwiz.cpl to launch the Programs And Features control
panel applet. In this applet, select “Turn Windows Features on or off,”
locate Telnet service in the list, and click the check box beside it. (This
process might vary slightly depending on which version of Windows
you’re running.) Click OK and the Telnet service will be installed.

Generated when WMI instance is created,
deleted, or modified

WMI instance event class hierarchy

__InstanceOperationEvent

__InstanceCreationEvent

__InstanceDeletionEvent

__InstanceModificationEvent

Generated when WMI
object is created

Generated when WMI
object is deleted

Generated when WMI
object is modified

Figure 20.5 The class hierarchy for the WMI instance operation event class. These

events are generated when a WMI is object is created, deleted, or modified. The base

event class is triggered for all three.
872 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

Let’s try this out. Assign the query to a variable:

PS (1) > $svcQuery = @"
>> Select * From __InstanceOperationEvent Within 1
>> Where TargetInstance Isa 'Win32_Service'
>> and
>> TargetInstance.Name='TlntSvr'
>> "@
>>

Now use the Register-WmiEvent to subscribe to this event. In the action field, dis-
play a message indicating the source of the event and then print out the contents of
the $event variable:

PS (2) > Register-WmiEvent -Query $svcQuery -Action {
>> Write-Host "Got instance operation event on Win32_Service"
>> $Event | Format-List * | Out-Host
>> }
>>

Id Name State HasMoreData Location
-- ---- ----- ----------- -----
2 ecd3a80c-a70... NotStarted False
PS (3) >

With the event subscription set up, trigger the event by starting the Telnet service:

PS (4) > Start-Service TlntSvr
Got specific instance operation event on Win32_Service
ComputerName :
RunspaceId : e4ac72a7-0868-488b-af17-4aeb9a1b04d1
EventIdentifier : 5
Sender : System.Management.ManagementEventWatcher
SourceEventArgs : System.Management.EventArrivedEventArgs
SourceArgs : {System.Management.ManagementEventWatcher, Sy
 stem.Management.EventArrivedEventArgs}
SourceIdentifier : ecd3a80c-a70c-4e21-a420-3038be93aade
TimeGenerated : 9/12/2010 9:36:31 PM
MessageData :

And, after a second or so, you see the message printed out by the action scriptblock.
Stop the service:

PS (6) > Stop-Service TlntSvr
PS (7) > Got specific instance operation event on Win32_Service

ComputerName :
RunspaceId : e4ac72a7-0868-488b-af17-4aeb9a1b04d1
EventIdentifier : 6
Sender : System.Management.ManagementEventWatcher
SourceEventArgs : System.Management.EventArrivedEventArgs
SourceArgs : {System.Management.ManagementEventWatcher, Sy
 stem.Management.EventArrivedEventArgs}
SourceIdentifier : ecd3a80c-a70c-4e21-a420-3038be93aade
TimeGenerated : 9/12/2010 9:36:36 PM
MessageData :
WORKING WITH WMI EVENTS 873

And you get a second message because the event you’ve subscribed to fires for any change.
In the next section, we’ll look at additional features for improving the network

behavior of the system by grouping events instead of sending them one at a time.

Aggregating events with GROUP

The next keyword we’ll cover is GROUP. The GROUP clause is used to aggregate the
events based on certain criteria. This means that instead of generating one notifica-
tion per event, the WMI service will group them together with a count and a repre-
sentative instance. This is another way to reduce the load on the client and the
network:

SELECT * FROM EventClass [WHERE property = value]
 GROUP WITHIN interval [BY property_list]
 [HAVING NumberOfEvents operator integer]

You create a query-based WMI event registration using the -Query parameter set on
Register-WmiEvent:

Select * From __InstanceOperationEvent Within .5
Where TargetInstance Isa 'Win32_Service'
and TargetInstance.Name='TlntSvr'
Group Within 20

Let’s set up this new event subscription. First save your query in a string and set up a
counter that will record the total number of events:

PS (1) > $GroupQuery = @"
>> Select * From __InstanceOperationEvent Within .5
>> Where TargetInstance Isa 'Win32_Service'
>> and TargetInstance.Name='TlntSvr'
>> Group Within 20
>> "@
>>
PS (2) > $global:TotalEvents = 0

Now register this event subscription:

PS (3) > Register-WmiEvent -Query $GroupQuery -Action {
>> Write-Host "Got grouped event"
>> $ne = $Event.SourceEventArgs.NewEvent
>> $ti = $ne.Representative.TargetInstance
>> $global:TotalEvents += $ne.NumberOfEvents
>> $msg = "Type: " + $ne.__CLASS +
>> " Num Evnts: " + $ne.NumberOfEvents +
>> " Name: " + $ti.Name +
>> " (" + $ti.DisplayName + ')' |
>> Out-Host
>> }
>>

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
3 d251cd26-2e2... NotStarted False
874 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

In the body of the event action scriptblock, you’ll format a string containing some of
the more interesting fields (at least for the purpose of this experiment). You’ll show
the type of the event class, the number of events that have been aggregated, and then
the Name and DisplayName for the matched service. You’ll generate a series of events
using a foreach loop to cause the event aggregation to fire:

PS (4) > foreach ($i in 1..3)
>> {
>> Start-Service TlntSvr
>> Start-Sleep 2
>> Stop-Service TlntSvr
>> Start-Sleep 2
>> }
>>

These events will all be accumulated in the event group and, when the group interval
expires, you should get an event notification. Use the Start-Sleep command to
wait for the timeout to expire:

PS (5) > Start-Sleep 10
Got grouped event
Type: __AggregateEvent Num Evnts: 6 Name: TlntSvr (Telnet)

The event count shows your total:

PS (6) > "Total events: $TotalEvents"
Total events: 6
PS (7) >

Now that you have your event, let’s clean up the event subscription:

PS (8) > Get-EventSubscriber | Unregister-Event

In this example, you’ve seen how you can use the GROUP keyword to further reduce
the number of events that need to be sent to the monitoring script.

This completes our look at WMI eventing so let’s move on to something a bit dif-
ferent. Up until now, we’ve only been talking about how to respond to events. In the
next section, you’ll see how to generate some events of your own.

20.8 ENGINE EVENTS

The last category of events we’re going to look at is called engine events. With engine
events, the notifications are generated by the PowerShell engine itself, either through
one of the predefined engine events or by explicitly generating an event in a script.

20.8.1 Predefined engine events

In the released version of PowerShell v2, there’s currently only one predefined engine
event identified by the string "PowerShell.Exiting". This string can also be
retrieved using a static method as follows:

PS (1) > `
>> [System.Management.Automation.PsEngineEvent]::Exiting
ENGINE EVENTS 875

>>
PowerShell.Exiting

This event is triggered when the PowerShell engine is shutting down and allows you
to perform actions before the session exits. Here’s an example event registration:

Register-EngineEvent `
 -SourceIdentifier PowerShell.Exiting `
 -Action {
 "@{Directory='$PWD'}" > ~/pshState.ps1
 }

This command registers an action to take when the PowerShell session ends. This
action writes a hashtable to the file pshState.ps1 in the user’s directory. The hashtable
captures the user’s current directory at the time the session was exited. Let’s use this in
an example. You’ll create a child PowerShell.exe process to run your script so you
don’t have to exit the current process. PowerShell recognizes when a scriptblock is
passed to the PowerShell.exe command and makes sure that everything gets passed
to the command correctly. Let’s run the command:

PS (1) > powershell {
>> Register-EngineEvent `
>> -SourceIdentifier PowerShell.Exiting `
>> -Action {
>> "@{Directory='$PWD'}" > ~/pshState.ps1
>> } | Format-List Id,Name
>> cd ~/desktop
>> exit
>> }
>>

Id : 1
Name : PowerShell.Exiting

Now look at the content of the file:

PS (2) > Get-Content ~/pshState.ps1
@{Directory=‘C:\Users\brucepay.REDMOND\desktop’}

And you see that the file contains a hashtable with the current directory recorded in
it. This example can easily be expanded to include things like the user’s history or the
contents of the function: drive, but adding those extensions is left as an exercise for
the reader.

The other class of engine events is script-generated events. We’ll look at those next.

20.8.2 Generating events in functions and scripts

The last of the core eventing cmdlets to look at is the New-Event cmdlet. This cmd-
let allows a script to generate its own events. Let’s use this cmdlet in an example to see
how it works. First you create the timer object:

PS (1) > $timer = New-Object System.Timers.Timer -Property @{
>> Interval = 5000; Enabled = $true; AutoReset = $false }
>>
876 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

And register the event subscription:

PS (2) > Register-ObjectEvent $timer Elapsed -Action {
>> Write-Host '<TIMER>'
>> New-Event -SourceIdentifier generatedEvent -Sender 3.14
>> } > $null
>>

In the handler scriptblock, as well as writing out a message, you’re also calling New-
Event to generate a new event in the event queue. Finally, start the timer

PS (3) > $timer.Start() > $null
PS (4) >

and wait for the event. Pipe the object returned from Wait-Event into the foreach
cmdlet for processing:

PS (5) > Wait-Event -SourceIdentifier generatedEvent |
>> foreach {
>> "Received generated event"
>> $_ |
>> Format-Table -AutoSize SourceIdentifier, EventIdentifier
, Sender
>> $_ | Remove-Event
>> }
>>
<TIMER>
Received generated event

SourceIdentifier EventIdentifier Sender
---------------- --------------- ------
generatedEvent 12 3.14

In the output, you first see the <TIMER> message indicating that the timer event has
triggered. Then you see the output from Wait-Event. In the foreach block, you
display the source identifier of the event generated by New-Event, and the Sender
field shows the number you passed to the cmdlet. When you’re done with this exam-
ple, you’ll remove the event subscription:

PS (6) > Get-EventSubscriber | Unregister-Event

This pretty much completes the local event handling story. But with PowerShell v2
adding remoting capabilities, obviously our eventing infrastructure needs to work in a
distributed environment as well. In the next section you’ll see how to work with
events in remote scenario.

20.9 REMOTING AND EVENT FORWARDING

Being able to set up local event handlers is useful, but you also need to be able to pro-
cess events generated on remote computers to manage distributed datacenters. The
PowerShell eventing subsystem, by building on top of PowerShell remoting, makes
this surprisingly easy. In figures 20.1 and 20.2 you saw the -Forward parameter. This
REMOTING AND EVENT FORWARDING 877

parameter does exactly what you might expect: it forwards the subscribed event to a
remote session. This is where the -SourceIdentifier parameter becomes critical.
The source identifier name that’s specified at the event source end becomes the name
of the event to process on the receiving end. This process is illustrated in figure 20.6.

Here’s where the engine events come into play. The forwarded events are handled
using engine event processing. The cmdlet for subscribing to this type of event is
shown in figure 20.7. (The events generated by New-Event in the previous section
are also engine events.)

Remote listener connects to event and sends command:
Invoke-Command $server 1 {

Register -ObjectEvent -SubscriberID Interesting .Event.1 -Forward …
}

client1 server1

Server event fires

server1client1

Sends event SubscriberID
Interesting .Event.1

Remote engine event manager

receives SubscriberID and

fires client-side event

Figure 20.6 The second-hop authentication changes when credential delegation is

used. Without delegation, the second hop from server 1 to server 2 authenticates as the

user that the service is running under. With credential forwarding enabled, server 1 can

use the client credentials to authenticate to server 2 as the client user.

Register-EngineEvent
[-SourceIdentifier] <string>
[[-Action] <scriptblock>]
[-Forward]
[-MessageData <object>]
[-SupportEvent]

Forward event to remote

computer using

PowerShell remoting

Scriptbock that defines

action to take (optional)

Object to pass to event

handler (optional)

Friendly name to use for this

event subscription

Event handler supports more

complex operation and

shouldn’t be visible on its own

Figure 20.7 The signature of the Register-EngineEvent cmdlet. This cmdlet is used

to set up event handling for events generated by the PowerShell engine.
878 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

This cmdlet lets you register subscriptions that trigger the event handler based on
the subscription identifier sent from the remote end. In the next section, we’ll look
at a detailed example where you forward an event from one machine for processing
on another.

20.9.1 Handling remote EventLog events

In this section, you’re going to apply what you’ve learned. Your goal is to be notified
locally every time an event is written into the event log on a remote computer. The
.NET EventLog class exposes just such an event: EntryWritten. To set this up, you
must establish event forwarding on the remote machine and then register a load event
handler. You’ll also need to maintain a connection to the remote end using the duration
of time you want to get events because the events are being forwarded over this channel.

The first thing you need to do is to establish a connection to the target computer.
You do so with the New-PSSession cmdlet, passing credentials if needed (see section
12.3.2 for more information on New-PSSession):

PS (1) > $s = New-PSSession -ComputerName brucepayquad

This is the session you’ll use to set up the event forwarding and then to transfer the
forwarded events. Next you’ll use Invoke-Command to set up the event forwarding
registration. The code to do this looks like this:

PS (2) > Invoke-Command $s {
>> $myLog = New-Object System.Diagnostics.EventLog application
>> Register-ObjectEvent `
>> -InputObject $myLog `
>> -SourceIdentifier EventWatcher1 `
>> -EventName EntryWritten `
>> -Forward
>>
>> $myLog.EnableRaisingEvents = $true
>> }
>>

Inside the scriptblock passed to Invoke-Command, you’re creating an EventLog
object associated with the Application event log. Then you use Register-
ObjectEvent to set up event forwarding for events that occur on the EntryWritten
event. You’ll use the source identifier name EventWatcher1. Finally, you enable rais-
ing events on the event log object.

With the remote end configured, now it’s time to set up the local end. This task is
much simpler. You register an engine event handler that will trigger on the source ID
matching the remote end:

PS (3) > Register-EngineEvent -SourceIdentifier EventWatcher1 -Action {
>> param($sender, $event)
>>
>> Write-Host "Got an event: $($event.entry.message)"
>> }
>>
REMOTING AND EVENT FORWARDING 879

And you’re done. Now whenever an entry is added to the Application event log on the
remote computer, you’ll see the entry message displayed on your console. Of course, if
you’re impatient, you can trigger an event yourself. Use the .NET FailFast() API to
cause a “Watson” event to be generated by crashing a PowerShell process:

PS (4) > powershell "[System.Environment]::FailFast('An event')"
PS (5) >

After a short time, you’ll see something like the following displayed on the console:

PS (6) > Got an event:

Well, this sort of worked: the event did trigger the event handler and you got the part
of the event you wrote. Unfortunately, the most interesting piece—the message in the
event itself—is mysteriously absent. You’ll see what happened in the next section.

20.9.2 Serialization issues with remote events

The serialization mechanism used by remoting can sometimes cause problems when
using remote events. Because the event is being sent over the remoting channel, it has
to be serialized by the PowerShell serializer. By default, the serialization depth is only
one. This means you get the top-level properties but not the second-level properties.
So to preserve the message content in $event.Entry.Message, you need to change
the serialization depth for this type of object to 2. Back in section 11.7.3, we covered
the types.ps1xml files and how they can be used to add metadata to a type. In section
12.6.5, we also talked about how those files can be used to change the serialization
depth for a type. So you need an XML document that you can pass to Update-Type-
Data to change the serialization depth for System.Diagnostics.Entry-

WrittenEventArgs to 2. Save this XML in a variable as a string for now:

PS (7) > $typeSpec = @'
>> <Types>
>> <Type>
>> <Name>System.Diagnostics.EntryWrittenEventArgs</Name>
>> <Members>
>> <MemberSet>
>> <Name>PSStandardMembers</Name>
>> <Members>
>> <NoteProperty>
>> <Name>SerializationDepth</Name>
>> <Value>2</Value>
>> </NoteProperty>
>> </Members>
>> </MemberSet>
>> </Members>
>> </Type>
>> </Types>
>> '@
>>
880 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

Now before you use this to set up new events, you should remove the existing event
registrations on both the local and remote ends of the connection:

PS (8) > Invoke-Command $s { Unregister-Event EventWatcher1 }
PS (9) > Unregister-Event EventWatcher1

You have the XML in a local variable but you need to update the type metadata on the
remote end. You need to get the content of the $typeSpec variable over to the
remote machine, which you’ll do by passing it as an argument to the Invoke-Com-
mand scriptblock:

PS (10) > Invoke-Command -ArgumentList $typeSpec -Session $s {
>> param ($typeSpec)
>>
>> $tempFile = [System.IO.Path]::GetTempFileName()
>> $tempFile = $tempFile -replace '\.tmp$', '.ps1xml'
>> $typeSpec > $tempFile
>> try
>> {
>> Update-TypeData $tempFile
>> }
>> finally
>> {
>> Remove-Item $tempFile
>> }
>> }
>>

Let’s go over what’s happening in this scriptblock. First you’re using the .NET Get-
TempFileName() method to get a temporary filename to use to store the data. Because
the default extension on the filename that’s returned is .tmp and you need it to be
.ps1xml, you used the -replace operator to change the extension. Then you write
$typeSpec to the file in $tempFile using redirection, call Update-TypeData to load
the file, and finally clean up by removing the temp file. You’re using the try/finally
statement to make sure that the file gets cleaned up even if there’s a problem updating.

With the type metadata updated, you can set up the remote event registration,
just like before:

PS (11) > Invoke-Command $s {
>> $myLog = New-Object System.Diagnostics.EventLog application
>> Register-ObjectEvent `
>> -InputObject $myLog `
>> -SourceIdentifier EventWatcher1 `
>> -EventName EntryWritten `
>> -Forward
>>
>> $myLog.EnableRaisingEvents = $true
>> }
>>
REMOTING AND EVENT FORWARDING 881

Then the local event subscription:

PS (12) > Register-EngineEvent -SourceIdentifier EventWatcher1 -Action
 {
>> param($sender, $event)
>>
>> Write-Host "Got an event: $($event.entry.message)"
>> }
>>

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
2 EventWatcher1 NotStarted False

And finally, you’re ready to try your event trigger again:

PS (13) > powershell "[System.Environment]::FailFast('An event')"
PS (14) >
PS (15) > Got an event: .NET Runtime version 2.0.50727.4200 - An event
PS (16) >

This time, when you see the event message, it includes the text from the call to Fail-
Fast() as written into the event log on the remote system.

Congratulations! We’ve pretty much reached the end of our eventing discussion
and you’re still with us. Event processing is an advanced topic, even for full-time pro-
grammers. Trying to understand how multiple actions are going to interoperate can
be mind-boggling. PowerShell’s approach to eventing is designed to make this as sim-
ple as possible, but understanding how it works under the hood can go a long way to
helping you figure things out. Let’s take a peek.

20.10 HOW EVENTING WORKS

The eventing infrastructure relies on two other components of PowerShell introduced
in PowerShell v2: modules (for isolation, as discussed earlier) and jobs (for managing
subscriptions). When you registered an event subscription, you saw that an object
was returned. This object is in fact a job object, with the same base class as the object
you get back from Start-Job or the -AsJob parameter on Invoke-Command. Once
an event subscription is created, it will show up in the Job table, which means that
you can use the Get-Job cmdlet as another way to find this subscription. Let’s go
back to our timer event subscription (see 20.4.1) and see what this looks like:

PS (6) > Get-Job | Format-List

Module : __DynamicModule_3fd88733-cbcb-4c0b-b489-1e1305782970
StatusMessage :
HasMoreData : False
Location :
Command : Write-Host "<TIMER>"
JobStateInfo : NotStarted
Finished : System.Threading.ManualResetEvent
InstanceId : d3f41e39-776d-4fe8-9bd2-db82a7e1311c
882 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

Id : 1
Name : fca4b869-8d5a-4f11-8d45-e84af30845f1
ChildJobs : {}
Output : {}
Error : {}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}
State : NotStarted

Let’s start the timer running again, setting the interval to something large so you can
still type:

PS (21) > $timer.Interval = 60000
PS (22) > $timer.Start()

Now when you run Get-Job

PS (29) > Get-Job | Format-Table State,Command -AutoSize

 State Command
 ----- -------
Running Write-Host "<TIMER>"

you see that the job state has been changed to Running. The other thing you should
be able to do if it’s a Job is to stop it by calling Stop-Job. Let’s try it:

PS (33) > Stop-Job
PS (33) > Get-Job | Format-Table State,Command -AutoSize

 State Command
 ----- -------
Stopped Write-Host "<TIMER>"

It works. But this code has done more than just stop the job—it’s also removed the
event subscription:

PS (35) > Get-EventSubscriber
PS (36) >

Because event handlers are effectively running in the background, it seems logical to
manage an active subscription as a Job. You should note that, although the executing
event handler is represented as a Job, it wasn’t started using Start-Job and, unlike
PowerShell jobs, still runs in process with the session that set up the subscription.

At the beginning of our discussion on events, we talked about the issues involved
in dealing with asynchronous events. Because these events can occur in any order,
great care is required to make sure that the integrity of shared data structures is main-
tained. To maintain this integrity, you have to make sure that programs synchronize
access to the shared objects, and doing so turns out to be difficult. In fact, this is one
of the most common reasons that a program stops responding and appears to be
hung. If two actions are trying to update a synchronized object at the same time, they
HOW EVENTING WORKS 883

can end up blocking each other, each trying to get exclusive access to the resource.
This type of contention is called a deadlock.

PowerShell deals with this problem by imposing a strict order on the actions
instead of on individual data objects. When an asynchronous event occurs, the event-
ing subsystem adds that event object to the event queue. Then, at various points in
the PowerShell runtime, the engine checks to see if there are any events posted to the
event queue. If there are, the engine suspends the mainline activity, pulls an event off
the queue, switches to the module context for that event handler, and then executes
the event scriptblock. Going back to the lecture analogy I used at the beginning of
the chapter, this operates like an online “Live Meeting” where the participants use
instant messaging to submit their questions. These questions get added to the queue
without interrupting the speaker. The audience can message at any time, but the
speaker will only address a question when it’s a suitable time to do so. This queuing
mechanism is illustrated in figure 20.8.

Events are added to the queue as they arrive and then are pulled off the queue by
the engine and processed when a convenient spot is reached.

To make sure events get processed in a timely manner, the engine needs to check
the queue fairly often. On the other hand, if it checks too often, it would substan-
tially slow down the interpreter. As implemented in PowerShell v2, the engine checks
for events in all calls that write objects, including between each stage in a pipeline. It
also checks between each statement in a script and anywhere the engine might loop

Events fire asynchronously and are added to queue

4

Mainline script execution

3 2

1

Process
event

When in a stable state,
check for events on queue

Resume mainline processing

Event queue

Pull event off queue if
available

Figure 20.8 How asynchronous event processing is handled in PowerShell. As

events occur, they are added to the queue asynchronously. At various stable points,

the engine checks the queue and pulls events off to execute. Once the event execu-

tion is complete, normal processing resumes.
884 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

for a long time. This provides a good tradeoff between event latency and overall per-
formance. In the case where there are multiple events pending on the queue at the
time of the check, the engine will use a throttling policy to decide how many of the
pending events will be processed before returning to the mainline so that the fore-
ground activity isn’t “starved.” (As an aside, the places where the event queue is
checked are the same places that the engine checks to see if it has been requested to
stop executing, such as when the user presses Ctrl-C.)

If the event has an action block associated with it, that scriptblock executes until
it’s completed. Once the event action is finished, the mainline activity is resumed.
Because the engine only processes events when it knows that the system state is stable,
problems related to inconsistent system state don’t arise and all activity is effectively
synchronous.

NOTE An event action runs until it’s complete. As long as it’s run-
ning, no other events are processed and the mainline activity is sus-
pended. This means that event handlers shouldn’t be written to
execute for a long time. The same consideration exists when writing
GUIs. If a control’s event handler runs on the UI thread for a long
time, the UI will be blocked, unable to respond to events, causing it to
appear to hang.

This architecture isn’t as efficient as the more fine-grained techniques so it’s not
appropriate for programs that are very performance sensitive. It is however simple,
effective, and completely sufficient for PowerShell scripting. It makes asynchronous
event handling in PowerShell a reasonable, if somewhat advanced, proposition.

This completes our coverage of eventing. We started with the basic synchronous
event handling mechanisms carried over from PowerShell v1. Then we moved on to
asynchronous processing, introducing the eventing cmdlets. We looked at a couple of
different event sources and how you can use them. You saw how eventing and remot-
ing work together and explored how the eventing infrastructure works.

20.11 SUMMARY

In this chapter, we introduced an advanced but useful topic: eventing. This feature
allows you to write scripts that can respond to real-world events in a timely manner.

The chapter began by introducing key concepts used in eventing and described
how event-driven scripts operate with the “don’t-call-me-I’ll-call-you” principle. We
explored the idea that there are two fundamental event types: synchronous and
asynchronous.

In synchronous events, all activities are synchronized so that no activity is ever
interrupted. This model has been used all along in PowerShell for things like the
ForEach-Object and Where-Object cmdlets and in the kind of GUI scripting you
saw in section 17.3. Digging further into synchronous events, we looked at how
SUMMARY 885

.NET represents events using the System.Delegate type. We also looked at a sub-
class of System.Delegate: the System.EventHandler type. In PowerShell v1, only
the System.EventHandler type was directly supported by PowerShell.

In section 20.3, we introduced asynchronous events, which execute in a nondeter-
ministic order. To deal with these asynchronous events, PowerShell includes an
eventing subsystem that takes care of synchronizing all operations. The core model for
eventing in PowerShell is built around the idea of event subscriptions. There are three
cmdlets for creating these subscriptions: Get-ObjectEvent, Get-WmiEvent, and
Get-EngineEvent for .NET, WMI, and PowerShell engine events respectively.

As part of the event subscription, an action scriptblock may be specified that will be
executed when the event is triggered. Context information for the event is made
available to the scriptblock through the $Event automatic variable. Some of the
properties on the object in $Event are also directly available through additional auto-
matic variables (see table 20.2).

Events may also be processed by calling Wait-Event to block for an event and
then process them as they arrive. Event subscripts can be listed with Get-Event-
Subscription and unregistered using Unregister-Event.

Handling events that come from .NET objects involves setting up an event sub-
scription on the event member of the class or object of interest. For WMI events, a
small number of events may be subscribed to by using specific WMI classes, but creat-
ing arbitrary event subscriptions requires the use of the eventing extensions to the
WMI Query Language. As opposed to normal instance queries (section 19.2.2), event
queries require the use of the WITHIN keyword to specify the polling interval for the
event being monitored. Queries are written using the intrinsic event classes (such as
__InstanceModified) to specify the event to subscribe to. Because the intrinsic
events apply to a large number of classes, the WHERE clause should be used to select a
specific target class by doing something like:

Where TargetInstance Isa 'Win32_Service'

Additional instance filter criteria can also be specified in the WHERE clause if needed.
To aggregate or group together related sets of WMI events, the GROUP keyword can

be added to the query. By grouping events, you reduce the network and processing
overhead on the client that would be incurred if each event was sent individually.
This can be important when writing a scalable application.

The final event source was engine events. These are PowerShell-specific events
that are subscribed to by name using the Register-EngineEvent cmdlet with the
-SourceIdentifier parameter. Engine events may be generated by the PowerShell
engine itself (though only one event is currently defined: Engine.Exiting). Scripts
can also generate their own engine events with the New-Event cmdlet. Finally, event
forwarding allows remote event subscriptions to act as a source of engine events.
When using PowerShell remoting, an event subscription can be created on a remote
computer, which, instead of executing a taking local action, forwards the events over
886 CHAPTER 20 RESPONDING IN REAL TIME WITH EVENTING

the remoting connection to the client for processing. The source identifier defined
for the event on the remote computer becomes a subscribable engine event on the
client side.

Wrapping things up, in this chapter we introduced some advanced features that
have traditionally only been used by programmers. The PowerShell eventing
subsystem makes these powerful techniques accessible to the nonprogrammer and IT
professional as well. Mastering these features gives you the ability to create more
responsive, efficient, and reliable scripts.

And now, in the last chapter of this book, we’re going to shift from doing things
to not doing things, or more specifically, to keeping unauthorized users from doing
things to our systems. Chapter 21 looks at security, the role PowerShell plays in
securing a computing environment, and the security features included in PowerShell.
With an environment as powerful as PowerShell, a good understanding of the secu-
rity topics involving PowerShell is critical. Remember: security is only boring until
you’ve been hacked.
SUMMARY 887

C H A P T E R 2 1

Security, security, security

21.1 Introduction to security 889

21.2 Security modeling 891

21.3 Securing the PowerShell
environment 897

21.4 Signing scripts 904
21.5 Writing secure scripts 916
21.6 Using the SecureString class 916
21.7 Summary 926
Oh brave new world, that has such people in it!
 —Miranda in William Shakespeare’s The Tempest

In this chapter, we’ll explore the topics of security and secure programming to see
how they impact PowerShell. In contrast to the previous chapters where our focus has
been on what people can do with PowerShell, with security our focus is on how to
prevent people (or at least the wrong people) from doing things. This switch is radical
but it’s the essence of security.

We’ll begin the chapter by introducing security-modeling concepts, and then look
at the security features in PowerShell. We’ll also show you how to write secure scripts
in PowerShell. Boring, you say. Do you need to know this stuff? Yes, you do. In a
connected world, security is incredibly important. A small mistake can have huge
consequences. People will talk about a “zone of influence”—the idea that something
that happens far away can’t impact you. This idea is meaningless in a connected
world. Anyone, anywhere can attack your system just as if they were next door. You
also have to consider cascading consequences: a useful script that someone posts on
her blog may get copied thousands of times. If there’s a security flaw in that script, it
will propagate along with the script, get copied into new scripts, and so on. A small
888

flaw in the original script may be replicated around the world. Now that we’re all
appropriately terrified, let us proceed.

When discussing security and PowerShell, there’s only one thing you should keep
in mind: PowerShell executes code. That’s what it does—that’s all it does. As a conse-
quence, you need to consider how having PowerShell on your system might introduce
security risks. Of course, this isn’t specific to PowerShell. It’s true of anything that runs
code—Perl, Python, even cmd.exe. Making sure that a system with PowerShell
installed is secure is the topic of the first part of this chapter. Once you have PowerShell
installed, you’re going to want to write, deploy, and execute scripts. The latter portion
of the chapter covers some approaches to writing secure PowerShell scripts.

21.1 INTRODUCTION TO SECURITY
We’ll begin our security discussion with some basic definitions. In this section, we’ll
look at what security is and what that means. We’ll also talk about what it isn’t, which
can be just as important.

21.1.1 What security is and what it isn’t

Computer security is the field devoted to the creation of techniques and technologies
that allow computers to be used in a secure manner. Obvious perhaps, but there are
two parts to the story. Secure means that the computer is protected against external
danger or loss of valuables (financial, personal, or otherwise). The flip side is that the
system has to remain useful. (There’s a joke in the security industry that the only way
to make a computer completely secure is to turn it off, disconnect all the cables, seal it
in concrete, and dump it into the middle of the ocean. This makes for a very secure
computer, but it’s not a very useful one.)

In approaching security, you must balance security requirements with utility. If
the techniques needed to secure a system are too hard to use, users won’t use them,
and the system will be unsecured. If they interfere with the basic tasks that need to be
performed, they’ll be disabled or bypassed and the system will be unsecured. Are you
getting the picture?

Now let’s look at what security isn’t. Security isn’t just cryptography. This fact is
oddly surprising to many people. Security uses cryptography—it’s one of the main
tools used to secure an environment. They are, however, separate fields. The corollary
is that unless you’re a cryptographer, you shouldn’t write your own cryptography
code. It’s very hard. And even the experts don’t always get it right. Even if it’s right
today, it may be wrong tomorrow.

NOTE An example of this is the MD5 hash algorithm, which had
been considered the gold standard for secure hashes for a long time
before it was found to be vulnerable.

The PowerShell environment, through .NET and the Windows platform, has access
to a variety of cryptographic tools for building secure systems. You should use these
INTRODUCTION TO SECURITY 889

tools instead of trying to roll your own. We’ll spend a considerable amount of time
on some of these tools later in this chapter.

21.1.2 Security: perception and reality

One last thing: Regardless of what computer security is or isn’t, sometimes it’s the per-
ception of security that matters most. Let’s take a look at a couple of stories that illus-
trate this.

The Danom virus

As we’ve discussed, PowerShell can be used to write scripts. It can be used to create,
copy, and modify files. This means that, like any scripting or programming language,
it can be used to write viruses, worms, and other malware.

NOTE The term malware is short for malicious software and is used to
generally describe all forms of software (spyware, viruses, and so on)
designed to cause damage in a computing environment. This may be
the only definition in the security vocabulary that everybody agrees on.
Or maybe not.

The fact that PowerShell could be used for this purpose didn’t go unnoticed in the
malware community. In August 2005, a virus author created a proof-of-concept virus
called Danom (Monad backwards). This virus script was essentially a port of existing
virus code to the PowerShell language. The same virus code had previously been writ-
ten in a variety of other scripting languages. It didn’t take advantage of any vulnera-
bility in either the operating system or the language interpreter. It required explicit
and significant user action to execute the virus code. In fact, all it did was demon-
strate that PowerShell was a decent scripting language. There wasn’t even a delivery
vehicle. In other words, there was no way to distribute the malicious code. And with
no mechanism to distribute the virus code, the threat was purely hypothetical.

This coding exercise was noticed by a security researcher, who then issued a bulle-
tin about it. This bulletin was picked up, first by the blogs and later by members of
the popular press, without investigating the details of the situation.

Because of the work that was going on with the next generation of Windows at
the time (the rather ill-fated Vista release), the press called this the first Vista virus.
The Microsoft security response team members responded by saying that it wasn’t a
Vista virus because PowerShell wasn’t in the official list of features for Vista at that
time. The press immediately turned this into “PowerShell cancelled due to virus
threat.” None of this was true, of course, but it made a good headline and lots of peo-
ple, even inside Microsoft, believed the story.

Out of all of this, one thing that was gratifying was how the community
responded to all this coverage. They reviewed the virus code and the security mea-
sures that the PowerShell team had designed into the product and saw that Danom
890 CHAPTER 21 SECURITY, SECURITY, SECURITY

presented no significant threat. With the help of the community and some aggressive
blogging, the tide was turned and people realized that there was no threat. All
returned to normal, at least for a while.

The MSH/Cibyz worm

Almost exactly one year later, in August 2006, the MSH/Cibyz worm was released.
This was essentially the Danom code with some updates and bug fixes.

NOTE Between the first and second releases, the malware dictionary
had been revised, so the second time around, the same code was reclas-
sified as a worm instead of a virus. It’s like being at a ball game listen-
ing to the guy handing out today’s program: “Programs! Programs! Get
your programs! You can’t tell a worm from a virus without a program!”

This time, there was a delivery vehicle using one of the peer-to-peer networks. The
story was picked up by the blogging community initially, but eventually a large secu-
rity software vendor issued a press release with an inflammatory title. The body of the
release, essentially said, “There’s nothing to see here. These aren’t the droids you’re
looking for. Please move along.” But it still generated discussion and rumors for
about a week.

The moral of the story is that it pays to investigate security alerts rather than just
react to headlines. Without being properly informed, it’s impossible to plan appro-
priate action, and planning is the key to establishing a secure environment. Because
one of the best tools for planning is security modeling, we’ll spend the next couple of
sections discussing these techniques.

21.2 SECURITY MODELING
In this section, we’ll briefly review some of the theories and concepts that have been
developed to help build secure systems. We’ll review the concepts of threats, vulnera-
bilities, and attacks. We’ll also cover the basics of threat modeling and why it’s impor-
tant. Note that this topic is an active and rapidly changing area of research. Theories
and approaches are postulated, applied, and refuted over very short periods of time.
The theoretical material we present in this section may even be obsolete by the time
you read this book. Still, having an awareness of the approaches that are being devel-
oped for building secure systems is always beneficial.

21.2.1 Introduction to threat modeling

Threat modeling is a systematic approach to identifying and categorizing threats to a
system. So what does that mean? A model is a simplified representation of a system with
unnecessary or unimportant details left out. By building a model, you can focus on the
details that matter and ignore the ones that don’t. Modern computer systems are too
complex to address every detail. You have to focus your attention on what matters most.
SECURITY MODELING 891

Let’s look at some more definitions. A threat to a system is a potential event that
will have unpleasant or undesirable consequences. A vulnerability is a weakness in the
design or implementation of a system that an attacker may exploit to cause one of
these undesirable events. An attack is when someone takes advantage of these vulner-
abilities to gain some advantage that they aren’t otherwise permitted to have.

Back to modeling. The point of a model is to have a formal approach for looking
at threats and vulnerabilities with the idea of defeating attacks. This is important
because you can quite literally spend the rest of eternity trying to guard a system
against things that don’t matter. If you don’t have a way of focusing your efforts, the
result will be a solution that will be useless at best.

21.2.2 Classifying threats using the STRIDE model

STRIDE is a well-known threat classification model. STRIDE is an acronym for
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege. It’s a way to categorize all the significant threats to a system.
Remember—a threat is something the attacker wants to happen, which means it’s
something you don’t want. The idea is that if you model all of the STRIDE threat
classifications, you have a decent chance of covering the most important areas. Table
21.1 explains each of the components of STRIDE.

For more information on STRIDE, see Writing Secure Code, Second Edition, by
Michael Howard and David LeBlanc (Microsoft Press, 2004).

Now that you have a system for understanding and classifying threats, let’s look at
the remaining pieces you need to build the threat model.

Table 21.1 The threat classifications in the STRIDE model

Threat classification Explanation

Spoofing identity Spoofing refers to various ways of assuming the identity of another user for
the duration of a task.

Tampering with data Tampering means changing data. Note that this doesn’t imply information
disclosure—simple corruption may be all that’s achieved.

Repudiation From an attacker’s perspective, repudiation essentially means covering your
tracks. A particular act can’t be traced or attributed to the source of the act.

Information disclosure Information disclosure is allowing unauthorized persons access to sensitive
information such as credit card numbers and passwords.

Denial of service A denial-of-service (DoS) attack involves some form of resource exhaustion.
It could be network bandwidth, CPU cycles, or disk space. The problem
with DoS attacks is that they’re easy to launch anonymously and
sometimes it’s difficult to tell if it’s actually an attack or that $2.99
special that you just announced on your website that’s causing a sudden
burst of network traffic.

Elevation of privilege In elevation of privilege attacks, an unprivileged user or process gains privi-
leged access.
892 CHAPTER 21 SECURITY, SECURITY, SECURITY

21.2.3 Security basics: threats, assets, and mitigations

There are three parts to building a security model: threats, assets, and mitigations. We
talked about threats in the previous section. Assets are things that motivate the
attacker to launch an attack. These assets may be things that are of direct value, such
as credit card numbers or other financial information. They may also be of indirect
value, such as code execution. This is an asset because once you have the ability to
execute code on a machine, you can use these resources to do things such as send
spam or execute distributed DoS attacks against other targets.

Mitigation is what you’re doing to mitigate those threats. The standard definition
of mitigation is to cause something to become less harsh or severe. I use this term
instead of prevent because it may well be that the activity you’re mitigating is neces-
sary; for example, the ability to execute code in PowerShell can’t be prevented,
because that’s its purpose. But you want to allow only authorized users to be able to
execute approved scripts. The threat of unauthorized script execution is mitigated
through a variety of approaches we’ll describe later in this chapter. Let’s look at a few
things you should keep in mind when securing a system.

Avoid lawn gnome mitigation

There’s a tendency, when trying to mitigate problems or otherwise reduce the attack
surface of a system, to focus on reducing attacks in a particular area instead of looking
at the system as a whole. This approach can add complexity to the system without
increasing security. This approach is known as lawn gnome mitigation. The story goes
like this. You hire a security consultant to secure your home. He drives up to your
house, parks, gets out, and stands on the sidewalk looking at the house. After a while,
he says that he sees where the vulnerability lies. He goes to the trunk of his car, takes
out a ceramic lawn gnome (as illustrated in figure 21.1), and places it on the lawn
between himself and the front door of the house. “I’ve mitigated the threat,” he says.
“That will be $2,000 please.”

Figure 21.1 A brave and noble lawn gnome protecting a home in Kitchener, Ontario,

Canada. Hopefully it didn’t cost the owner $2,000.
SECURITY MODELING 893

Has your high-priced security consultant mitigated a threat? As a matter of fact, he
has. A burglar trying to break into the house, who crosses the lawn at that exact spot,
will now trip over a lawn gnome. Of course, the burglar could go around it, or come
at the house from a different direction. In fact, your house isn’t any safer, and you have
an ugly ceramic statue in the middle of your lawn that you have to mow around.

NOTE There’s a variation of this approach that’s considered legiti-
mate, sometimes called “picket-fence” mitigation. A picket fence has
holes in it, so you put another one behind it. And if there are still holes
then you keep adding fences until there are no more holes. This is
equivalent to dumping truckloads of lawn gnomes on your property
until the house is surrounded by a 30-foot-high wall of ceramic
gnomes. It’ll work, but it’s not very attractive.

The moral of this story is that, when securing a system, don’t add unnecessary or
inappropriate checks. You have to look at the system as a whole. This is particularly
true when writing code. The more lawn gnomes you add, the more code you add to
the system. Each new line of code introduces new possibilities for errors, and these
errors can, in turn, become additional vulnerabilities.

Blacklisting/whitelisting

Short and sweet—blacklisting is saying who’s bad and whitelisting is saying who’s
good. In general, whitelisting is preferred. Assume that the world is bad and you only
trust people you know. This method is inherently the most secure approach to use
with PowerShell. The number of people you trust to give you scripts to run is much
smaller than the number of people you don’t trust to run scripts. PowerShell supports
the use of script signing to verify the identity of a script publisher and also validate
the integrity of a published script. (Signing is discussed at length in section 21.4.)

Whitelisting is also an approach that should be used when constructing con-
strained remoting sessions, as discussed in chapter 13, section 13.2.5. A constrained
session should only expose the commands that are needed and all others should be
marked private by default.

Authentication, authorization, and roles

Authentication is verifying the identity of the user. Authorization is determining
whether the user is authorized to perform an action. Roles are groupings of activities
for which authorization can be granted. Grouping multiple activities into a role
makes it easier to manage authorization. When users are assigned a particular role,
they’re automatically authorized to perform all the activities associated with that role.
PowerShell depends on the operating system for authentication and authorization
(see section 13.1.4). For role-based access control (RBAC) in PowerShell v2, through
remoting and constrained sessions it’s possible to implement role-based mechanisms,
though there are some significant limitations. A PowerShell script operates with the
894 CHAPTER 21 SECURITY, SECURITY, SECURITY

capabilities associated with the security token of the user who’s running the script.
This means that the remoting mechanism can’t grant the user any more privileges
than they’d normally have. It can only restrict the set of operations they can perform.

Input validation

The rule is that you must validate any input received from outside your script. In
scripting, this is the second most important rule for writing secure scripts. (The most
important rule is “Don’t run unknown or untrusted scripts.”)

Most scripting environments have the ability to dynamically compile and execute
code (this is one of the things that makes them dynamic languages). It’s tempting to
use this capability to simplify your code. Say the user needs to do some arithmetic
calculations in a script. In PowerShell, you could just pass this code directly to the
Invoke-Expression cmdlet and let it evaluate the expression:

PS (1) > $userInput = "2+2"

Now use Invoke-Expression to execute the command:

PS (2) > Invoke-Expression $userInput
4

Wasn’t that easy? But what if the user types the following?

PS (3) > $userInput = "2+2; 'Hi there'"
PS (4) > Invoke-Expression $userInput
4
Hi there

It still executed the calculation, but it also executed the code after the semicolon. In
this example, it was a harmless statement. But it might have been something like

$userInput = "2+2; del –rec –force c:\"

If this statement were executed, it’d try to delete everything on your C: drive…which
would be bad.

There are other places where you need to do input validation. If the user is sup-
plying a path, you should make sure that it’s a path that the user should have access
to. For example:

$userInput = "mydata.txt"
Get-Content $userInput

This fragment of script will return the contents of the file mydata.txt from the cur-
rent directory. This is what the script author intended. But because the script isn’t
doing any path checking, the user could have specified a path like

$userInput = "..\bob_dobbs\mydata.txt"

in which case they might get the contents of another user’s file. Suppose instead, the
script were written as

PS (1) > $userinput = "..\bob_dobbs\mydata.txt"
PS (2) > $safePath = Join-Path . `
SECURITY MODELING 895

>> (Split-Path -Leaf $userInput)
>>
PS (3) > $safePath
.\mydata.txt

Then, despite providing a relative path, users can still only get their own data. Alter-
natively, you may wish to generate an error message explaining that it’s an invalid file-
name:

PS (5) > if (Split-Path -Parent $userInput) {
>> "Invalid file name: $userInput"
>> }
>>
Invalid file name: ..\bob_dobbs\mydata.txt

But you need to be careful with this; you may inadvertently leak information about
the system through the error message.

NOTE People sometimes find it hard to understand why this is an
issue. Let’s look at an example. Say you’re logging into a system. If you
enter a username and password and the system responds with “invalid
account” if the username is wrong and “invalid password” if the pass-
word is wrong, the attacker now has a way of finding out whether an
account name is valid. In a sense, they’ve won half the battle.

You need to balance being friendly to the user with maintaining a secure system. So
even in quite simple systems, it’s tricky to get this kind of thing right.

Code injection

Code injection is closely related to the input validation. In fact, the first couple of
examples that we looked at in the input validation section are code injection attacks.
When you’re writing PowerShell code, any use of Invoke-Expression is suspect.
There are usually other ways of doing the same thing that don’t require using
Invoke-Expression. But there are other ways of injecting code into a PowerShell
session. Scripts are the most obvious one. Every time a script is called, the script is
loaded, parsed, and executed. Not only must you not execute scripts from unknown
sources, you must make sure that no one can tamper with your own scripts. In the
next section, we’ll go over the features in PowerShell for doing exactly that.

Because PowerShell exists in mixed-language environments, you also need to be
careful with other types of code injection attacks. The most common example is SQL
injection attacks. This is the classic attack in the web application world. The basic
attack mechanism is the same—nonvalidated user input is used to construct a SQL
query. This query is then passed to the database and bad things happen. The query is
being executed on behalf of the user, so there may be an information disclosure
attack. The query may delete data from the database, in which case you’re looking at
a DoS attack.
896 CHAPTER 21 SECURITY, SECURITY, SECURITY

Even more common in the PowerShell environment is the use of languages such
as VBScript and/or cmd.exe batch scripts. All these file types represent opportunities
for code injection.

At this point, we’ve covered the basic principles for creating a secure computing
environment. Let’s take a look at the features in PowerShell that were designed to
support these principles.

21.3 SECURING THE POWERSHELL ENVIRONMENT

The whole point of PowerShell is to execute scripts that automate system manage-
ment tasks. As a consequence, there’s no such thing as an inherently safe PowerShell
script. PowerShell has no concept of sandboxing; that is, executing in a safe restricted
environment. You must treat all PowerShell scripts as if they were executables.
Because of this, when PowerShell is installed, it does a number of things to be secure
by default. In this section, we’ll go over these features.

21.3.1 Secure by default

First, we’ll go over the elements of the PowerShell installation process that are
intended to meet the requirement that it be secure by default. Secure by default means
that simply installing PowerShell on a system shouldn’t introduce any security issues.

Notepad, the default file association for PowerShell

File association is the way Windows figures out what application to launch as the
default handler for files having a particular extension. For many scripting languages,
the default association launches the interpreter for that language. This has led to many
virus outbreaks. With PowerShell, the default file association for the .ps1 extension
launches an editor: notepad.exe in version 1 and powershell_ise.exe in version 2.
This means that if an attacker does manage to get a script onto your computer and you
accidentally double-click on this script, instead of executing the script it will open in
Notepad, at which point you can review the hacker’s code, or just delete the script.

Remoting is disabled by default

PowerShell remoting is disabled by default. Explicit action by a privileged user is
required to enable remoting, and even after it has been enabled, the default remoting
configurations are set up so that only members of the local Administrators group can
access the configuration.

No execution of scripts by default

PowerShell is installed in such a way that it won’t run scripts by default and can only
be used as an interactive command interpreter.

Before scripts can be run, the user has to take explicit action to change the execu-
tion policy for PowerShell to allow script execution. In the default configuration, the
SECURING THE POWERSHELL ENVIRONMENT 897

only way to execute code is if the user manually starts PowerShell and types
commands in at the prompt.

So PowerShell is secure by default because it doesn’t do much of anything. Now
let’s see how to make it useful by enabling script execution. But before you do that,
you should know where the scripts we’re running are coming from. Like most shells,
PowerShell uses the $ENV:PATH environment variable to find commands. The use of
this variable has security implications, so we’ll review those first before we talk about
how to enable scripting.

Managing the command path

A common local attack vector involves the $ENV:PATH and $ENV:PATHEXT environ-
ment variables. These variables control where commands are found and which files
are considered to be executable. The $ENV:PATHEXT variable lists the extensions of
all of the file types that PowerShell will try to execute directly through the Create-
Process() API. The $ENV:PATH variable controls what directories PowerShell will
look in when it searches for external commands. If an attacker can compromise these
variables or any of the files or directories that they reference, the attacker can use a
“Trojan Horse” attack—making something dangerous appear harmless.

NOTE Okay, who thinks a 20-foot-high wooden horse looks harm-
less? If you saw a 20-foot wooden horse appear in your driveway, would
you say “Oh, look dear, let’s bring this giant wooden horse that we’ve
never seen before into our house. Perhaps it will be our pet. I’ve always
wanted a giant wooden horse as a pet! What could possibly go wrong?”

The most important mitigation for this type of attack is to not include the current
directory in your command search path. This is the default behavior in PowerShell.
Omitting the current directory in your search path guards against the situation where
you cd into an untrusted user’s directory and then execute what you think is a trusted
system command such as ipconfig. If you execute commands out of the current
directory and the user had placed a Trojan ipconfig command in this directory,
their command would execute with all the privileges you have as a user. Not a good
thing. In general, it’s best to leave the current path out of $ENV:PATH.

There’s one other thing you should consider in this situation. The cmd.exe inter-
preter does execute out of the current directory, so if you run a cmd script from
PowerShell in an untrusted directory, there’s a risk that the batch file could be com-
promised by Trojan programs.

21.3.2 Enabling scripting with execution policy

When PowerShell is installed, script execution is disabled by default. Script execution
is controlled by the PowerShell execution policy setting. It’s important to understand
what the execution policy is intended to do. It isn’t intended to prevent people from
898 CHAPTER 21 SECURITY, SECURITY, SECURITY

using PowerShell—even in restricted mode it’s still possible to use PowerShell interac-
tively. The goal of the execution policy mechanism is to reduce the ways that Power-
Shell can be exploited by an attacker, allowing a user to operate more securely. It does
so by preventing unintended execution of unknown and potentially malicious scripts.
We’ll look at the various modes you can set execution policy to in the next section.

NOTE When reviewing this chapter, I stumbled across a question on
a technical help site. The poster was asking for help converting a
PowerShell script to VBScript. This was being done for “security rea-
sons.” When someone asked what the security issue was, the poster
responded that they felt that it was necessary to keep their execution
policy set to a very restrictive mode for fear of remote code execution
attacks. The perception was that VBScript was somehow safer because
it couldn’t be restricted. In essence, because there was a knob for Power-
Shell but not VBScript, VBScript had to be less dangerous. Although
there might be a grain of truth to this (VBScript has been around lon-
ger so, in theory, the ecosystem is more attuned to its potential security
issues) in practice, they’re pretty much equally dangerous. PowerShell
is just less easy to exploit by default.

Choosing an execution policy setting

PowerShell v1 defined four execution policies: Restricted, AllSigned, Remote-
Signed, and Unrestricted. PowerShell v2 introduced two new policy settings:
Bypass and Undefined. The details of these policies are shown in table 21.2.

Table 21.2 Descriptions of the various execution policies

Policy Description

Restricted This is the default execution policy upon installation. When this policy is in
effect, script execution is disabled. This includes script modules, profile files
and types, and format files. PowerShell itself isn’t disabled and may still be
used as an interactive command interpreter. Although this is the most secure
policy, it severely impacts your ability to use PowerShell for automation.

AllSigned When the execution policy is AllSigned, scripts can be executed but they
must be Authenticode-signed before they’ll run. When running a signed script,
you’ll be asked if you want to trust the signer of the script. Section 21.4 covers
the details of script signing. AllSigned is still a secure policy setting, but it
makes script development difficult. In an environment where scripts will be
deployed rather than created, this is the best policy.

RemoteSigned RemoteSigned requires that all scripts that are downloaded from a remote
location be Authenticode-signed before they can be executed. Note that this
depends on whether the application doing the download marks the script as
coming from a remote location. Not all applications do this. Anything down-
loaded by Internet Explorer 6.0 or above, Outlook, or Outlook Express will be
properly marked. RemoteSigned is the minimum recommended execution
policy setting. It’s the best policy setting for script development.
SECURING THE POWERSHELL ENVIRONMENT 899

In version 1, execution policy could only be controlled by a Registry key, which was
set using the Set-ExecutionPolicy cmdlet. This approach had two major prob-
lems. First, setting this key required elevated privileges, making it awkward for non-
admin users. Second, this single Registry key was much too broadly scoped for many
scenarios. In the next section, we’ll look at how these problems were addressed in
version 2.

Controlling and scoping execution policy

In this section, we’ll look at how execution policy is set and scoped. By scope, we
mean the set of users and processes that are affected by a particular setting.

In PowerShell v1, setting the execution policy required changing Registry keys
and this in turn meant that the operation required administrator privileges. Because
the settings were always done in the Registry, they were persistent and affected all
instances of PowerShell. Version 2 changed this practice in a couple of ways. First,
the Set-ExecutionPolicy cmdlet was enhanced to have some additional scope

Unrestricted When the execution policy is Unrestricted, PowerShell will run any script.
It will still prompt the user when it encounters a script that has been down-
loaded. Unrestricted is the least secure setting. We don’t recommend that
you use this setting, but it may be necessary in some developer scenarios
where RemoteSigned is still too restrictive.

Bypass
(v2 only)

Nothing is blocked and there are no warnings or prompts. This execution pol-
icy is designed for configurations in which PowerShell scripts are part of a
larger application that has its own security model. The Windows Diagnostics
feature in Windows 7 is a good example of this type of application.

Undefined
(v2 only)

Removes the currently assigned execution policy from the current scope. This
parameter won’t remove an execution policy that’s set in a Group Policy scope
(User scope or Machine scope).

Table 21.2 Descriptions of the various execution policies (continued)

Policy Description

Set-ExecutionPolicy
[-ExecutionPolicy] {<Unrestricted> |

<RemoteSigned> | <AllSigned> |
<Restricted> | <Default> |
<Bypass> | <Undefined>}

[[-Scope] {<Process> | <CurrentUser> |
<LocalMachine> | <UserPolicy> |
<MachinePolicy>}]

[-Force]
[-Confirm]
[-WhatIf]

Cmdlet name

Scope at which to

apply policy

Type of execution

policy to apply

Request confirmation from

user before proceedingDisplay what

will be done

Suppress default

prompting

Figure 21.2 The Set-ExecutionPolicy cmdlet parameters. This cmdlet allows

you to control what scripts can be run using scoped policy settings.
900 CHAPTER 21 SECURITY, SECURITY, SECURITY

settings. The syntax for the PowerShell v2 Set-ExecutionPolicy cmdlet is shown
in figure 21.2.

Table 21.3 lists the scopes and their meanings. The major change is the addition
of a process-level execution policy scope.

PowerShell examines these settings in the following order, where the first policy set-
ting found is applied:

1 The Group Policy setting for the machine level or Computer Configuration,
which applies to all users of this machine

2 The Group Policy setting for the user level or User Configuration, which
applies to all users, independent of the computer they’re using in a domain
environment

3 The process-level policy

4 The execution policy for a user as specified in the Registry settings for that user

5 The execution policy for the machine as specified in the machine Registry

This policy processing order means the Group Policy settings override the process-
level policy, which overrides the user-level policy, with the local machine policy being
last. Be aware that on x64 systems there are policy settings in the Registry for both
64- and 32-bit versions of PowerShell.

Because the process-level policy is transient (it only lasts until the process exists),
you need a way to set it for a process. This brings us to another important improve-
ment: the addition of the -ExecutionPolicy parameter to powershell.exe. This
parameter allows the user to run PowerShell with different policies without requiring
a persistent change to a Registry setting. It also means that you can establish a short-
cut to run a script even when the machine policy is set to, for example, Restricted.
The following example shows how to start the shell in Bypass mode:

powershell.exe -ExecutionPolicy bypass

Table 21.3 PowerShell execution policy scope settings

Setting Description Version

MachinePolicy Group policy setting for the machine. v1 and v2

UserPolicy Group policy setting for the user. v1 and v2

LocalMachine This policy setting applies to all users on the system. v1 and v2

LocalUser The policy setting only applies to the current user. Other users on this
machine aren’t affected.

v1 and v2

Process The policy setting only applies to the current process and will be dis-
carded when the process exits. In this case, the execution policy is
saved in the PSExecutionPolicyPreference environment variable
($ENV:PSExecutionPolicyPreference) instead of in the Registry.

v2 only
SECURING THE POWERSHELL ENVIRONMENT 901

It’s also possible to change the execution policy setting for a process that’s already run-
ning by using the Set-ExecutionPolicy cmdlet within that process. For example,
you can get the current execution policy setting using Get-ExecutionPolicy:

PS (1) > Get-ExecutionPolicy
RemoteSigned

Here you see that the policy is set to RemoteSigned. Now run the command to
change it to Bypass. As was the case when you enabled PowerShell remoting in sec-
tion 12.1.3, you’re prompted to confirm making this change because the change has
security implications:

PS (2) > Set-ExecutionPolicy -Scope Process -ExecutionPolicy
 Bypass

Execution Policy Change
The execution policy helps protect you from scripts that
you do not trust. Changing the execution policy might
expose you to the security risks described in the
about_Execution_Policies help topic. Do you want to change
the execution policy?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

You respond with Y and then verify that the policy has changed:

PS (3) > Get-ExecutionPolicy
Bypass

If you want to suppress the prompt, as was the case with Enable-PSRemoting, you
use the -Force switch:

PS (4) > Set-ExecutionPolicy -Scope process -ExecutionPolicy
 remotesigned -Force

And again, verify that the policy has been changed:

PS (5) > Get-ExecutionPolicy
RemoteSigned
PS (6) >

NOTE This particular feature of execution policy allows you to work
around a problem with implicit remoting (see section 12.4). Implicit
remoting generates a temporary module to contain the command proxies
it generates. This temporary module is then loaded; but modules, like
scripts, are subject to the current execution policy setting. This means you
can’t use implicit remoting if the execution policy is set to Restricted
or AllSigned, because you won’t be able to load the temporary module.
To work around this problem, you can set the process-local execution
policy to something less restrictive, call Import-PSSession, and then
restore the old policy. You can even create a proxy function for Import-
PSSession that hides the details of this workaround.
902 CHAPTER 21 SECURITY, SECURITY, SECURITY

The final way to set the execution policy for a process is by setting the $env:PS-
ExecutionPolicyPreference environment. You’ll examine the variable’s value and
then change it:

PS (6) > $ENV:PSExecutionPolicyPreference
RemoteSigned
PS (7) > $ENV:PSExecutionPolicyPreference = "allsigned"

To verify that the environment variable has affected the current process, you run
Get-ExecutionPolicy:

PS (8) > Get-ExecutionPolicy
AllSigned

You can see that it has. Now let’s start a new instance of powershell.exe:

PS (9) > powershell.exe Get-ExecutionPolicy
File C:\Users\brucepay\Documents\WindowsPowerShell\profile.
ps1 cannot be loaded. The file C:\Users\brucepay\Documents\
WindowsPowerShell\profile.ps1 isn’t digitally signed. The
script will not execute on the system. Please see "get-help
 about_signing" for more details..
At line:1 char:2
+ . <<<< 'C:\Users\brucepay\Documents\WindowsPowerShell\pr
ofile.ps1'
 + CategoryInfo : NotSpecified: (:) [], PSSecu
 rityException
 + FullyQualifiedErrorId : RuntimeException

AllSigned

Because environment variables are automatically inherited by the child process, you see
an error saying that the profile couldn’t be run because the execution policy isn’t All-
Signed, which is confirmed by the output from the Get-ExecutionPolicy command.

NOTE When Microsoft introduced these changes, some people were
concerned that they had weakened the security model for PowerShell
because now users could override the execution policy setting in the
Registry. But remember that this feature isn’t intended to prevent a user
from doing something bad deliberately. (If they wanted to run a script,
they could read the script file into a variable and use Invoke-Expres-
sion.) Its purpose is to help the user avoid making mistakes and run-
ning malicious script code accidentally. This is similar to the User Access
Control (UAC) feature. In both cases, the user is prompted to confirm
actions that may have significant consequences. If you really feel the
need to restrict access to PowerShell for a user, then something like
AppLocker in Windows 7/Server 2008 R2 is much more appropriate.

A couple of the execution policy settings (RemoteSigned and AllSigned) depend
on being able to sign your scripts. In the next section, we’ll review the overall script-
signing architecture in Windows and look at how to sign scripts in PowerShell.
SECURING THE POWERSHELL ENVIRONMENT 903

21.4 SIGNING SCRIPTS

Signing a script is the process of adding extra information to a script file that identi-
fies the publisher of the script in a secure way. By secure way, we mean that it’s done in
such a way that you can reliably and mechanically verify that:

• The script really was signed by the correct person
• The contents of the script haven’t been changed in any way since it was signed

In the next section, we’ll look at the basic technologies that are used to accomplish
these goals.

21.4.1 How public key encryption and one-way hashing work

Script signing is accomplished using two technologies: public key encryption and
one-way hashes. Public key encryption is important because it uses two keys: a private
key for encrypting information and a second public key for decrypting the data
encrypted with the private key. The other technology you need is a one-way hash
function. This is a type of function where it’s easy to calculate the output for any
input but is very hard to recover the input if you have only the output. These hash
functions also need to be collision resistant. In other words, it should be highly
unlikely that two inputs produce the same output. Here’s how these technologies are
used to verify the authenticity and integrity of the script:

1 The script author (or publisher) calculates a one-way hash of the contents of the
script using a secure hashing algorithm.

2 This hash is then encrypted with the publisher’s private key and attached to the
script in the form of a comment block.

3 The script is then delivered to the consumer who is going to run the script.

4 Before the script is run, PowerShell removes the signature block, and then cal-
culates its own one-way hash of the document using the same algorithm as the
publisher.

5 Using the publisher’s public decryption key, PowerShell decrypts the hash con-
tained in the signature comment block.

6 It compares the hash it calculated against the one that was recovered from the
signature block. If they match, the script was created by the owner of the private
key and hasn’t been tampered with. If they don’t match, the script is rejected. It’s
either not legitimately signed by the publisher or it has been tampered with.

There’s one small thing that we’ve skipped in this discussion. How do you get the
right public key to decrypt the signature in the first place? Calling up the publisher
on the telephone every time you run the script isn’t going to work. This is where
signing authorities and certificates come in. First we’ll look at the role of a signing
authority in creating certificates. Then we’ll talk about how you can create your own
904 CHAPTER 21 SECURITY, SECURITY, SECURITY

self-signed certificates. This is a two-stage process: first you create a local signing
authority and then use that authority to issue a certificate.

21.4.2 Signing authorities and certificates

Making all of this signing stuff work requires a way of getting the public key associ-
ated with a signer’s identity. This is done using the signing certificate. A certificate is a
piece of data that uses a digital signature to bind together a public key and an iden-
tity. But wait! If it’s signed then aren’t you back where you started? Now you need to
get a public key to verify who you should get the public key from. Yikes. Here’s where
signing authorities come in. These are well-known, trusted, third-party organizations
from which authors can purchase signing certificates. When someone wants to be
able to sign scripts, they contact a signing authority to purchase a certificate. The
signing authority then verifies the identity of the party requesting the certificate.
Once this is done, the signer receives the private key and can then start signing docu-
ments. Part of the signature includes the user’s identity, which will be verified using
the public key of the certificate that you look up at the signing authority. This is
called the chain of trust.

All of this machinery is part of what’s called a Public Key Infrastructure (PKI).
There are a number of additional pieces necessary to make it all work. One of these
pieces is the local certificate store. This store is used as a local cache for certificates. If
you had to establish a network connection to the signing authority every time you
wanted to do something, it wouldn’t work very well. Also, you wouldn’t be able to
work when you weren’t connected to a network. By caching the certificates locally,
you can avoid these problems. (There are other intermediate tiers in the trust chain,
and some other details such as expiry and revocation that we’re not going to cover
here because they are well documented elsewhere. MSDN has a good discussion of
this material, for example.)

So do you need to contact a signing authority before you can safely run scripts?
This is the topic of the next section on self-signed certificates.

21.4.3 Self-signed certificates

What does the average person do if you want to sign scripts but don’t want to invest
time and money getting a certificate from a signing authority? The answer is that you
can use self-signed certificates. This certificate is one you create for yourself where the
computer becomes the signing authority. Obtaining this type of certificate doesn’t
have the issues associated with a public signing authority. It’s free and easy to get, but
other computers won’t trust your computer as a valid authority and so won’t run
scripts that you sign with this certificate.

NOTE If you create a self-signed certificate, be sure to enable strong
private-key protection on your certificate. Doing so will prevent other
programs from signing scripts on your behalf. You’ll see how to do this
later in the chapter.
SIGNING SCRIPTS 905

This approach sounds somewhat less than useful, but it allows you to control what
scripts can be run on your computer. In the next section, we’ll see how to create a self-
signed certificate.

Creating a self-signed certificate

To create a self-signed certificate, we’ll use the MakeCert.exe program. This utility is
included as part of the Microsoft .NET Framework SDK and the Microsoft Platform
SDK. These can be freely downloaded from Microsoft if you don’t already have them.
Even if they’re installed on the computer, you may have to modify the setting of
$ENV:PATH so it includes the directory that contains these commands. You can use
Get-Command to see whether MakeCert.exe is installed and where it’s located:

PS (1) > Get-Command makecert.exe | fl

Name : makecert.exe
CommandType : Application
Definition : C:\Program Files\Microsoft Visual Studio 8\SDK
 \v2.0\Bin\makecert.exe
Extension : .exe
Path : C:\Program Files\Microsoft Visual Studio 8\SDK
 \v2.0\Bin\makecert.exe
FileVersionInfo : File: C:\Program Files\Microsoft V
 isual Studio 8\SDK\v2.0\Bin\makecert.exe
 InternalName: MAKECERT.EXE
 OriginalFilename: MAKECERT.EXE
 FileVersion: 5.131.3790.0 (srv03_rtm.0303
 24-2048)
 FileDescription: ECM MakeCert
 Product: Microsoftr Windowsr Operatin
 g System
 ProductVersion: 5.131.3790.0
 Debug: False
 Patched: False
 PreRelease: False
 PrivateBuild: False
 SpecialBuild: False
 Language: English (United States)

You can see that it’s installed in the Visual Studio SDK directory. (This doesn’t mean
you have to run out and buy Visual Studio, by the way. The free SDK is all you need.)
This command is fairly complex with a lot of options. You’re going to get set up for
signing in two steps—creating a local certificate authority and using that authority to
create a signing certificate.

Creating a local certificate authority

First, run the following command to create a local certificate authority for your
computer:

PS (2) > makecert -n "CN=PowerShell Local Certificate Root" `
>> -a sha1 -eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer `
>> -ss Root -sr localMachine
906 CHAPTER 21 SECURITY, SECURITY, SECURITY

>>
Succeeded

When you run this command, a dialog box will appear, asking you to establish your
identity by entering a password for this signing authority (see figure 21.3).

So what did this command actually do? You’ve instructed the command to create
a self-signed certificate that will be used for code-signing purposes. You want this
certificate placed in the root certificate store on the local machine. You’ve also said that
you want to use SHA-1 (Secure Hash Algorithm, version 1) for hashing files. Table
21.4 has further explanation for each of the parameters you specified to the command.

Table 21.4 MakeCert parameters used to create a self-signing authority

MakeCert parameter Description

-r Instruct the utility to create a self-signed certificate.

-n "CN=PowerShell Local
Certificate Root"

This allows you to specify the X.500 name to use for the certificate
subject. You’re going to use CN=PowerShell Local
Certificate Root.

-a sha1 This selects the algorithm used to generate the signature hash.
The value can be either md5 or sha1. The default is md5, but this is
no longer considered robust so choose sha1 instead.

-eku 1.3.6.1.5.5.7.3.3 Inserts a set of comma-separated Enhanced Key Usage (eku)
object identifiers (or OIDs) into the certificate. In our case, the
enhanced use you want is for code signing. That is, you want to
create a key for the particular purpose of signing executable files.

-sv root.pvk Specify the name of the file where the private key is to be written.
In this example, a file called root.pvk will be created in the current
directory.

-ss Root Subject’s certificate store name that stores the output certificate.

-sr localMachine Specify whether the certificate is to be created in the current
user’s store or the local machine's store. The default is
CurrentUser, but you want this certificate to be machine-wide so
you specify LocalMachine.

Figure 21.3 What

you see when you

run makecert to

create the self-

signing authority
SIGNING SCRIPTS 907

Creating the signing certificate

Now that you’ve created a signing authority, you need to give yourself a signing certif-
icate. Again, you can do this with MakeCert.exe by running the following command:

PS (3) > makecert -pe -n "CN=PowerShell User" -ss MY -a sha1 `
>> -eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer
>>
Succeeded
PS (4) >

This code creates a certificate file in root.cer using the private key stored in the
root.pvk file. Table 21.5 explains the options you’re using in this command.

Let’s check out what you’ve created. Let’s look for files named “root” in the current
directory:

PS (10) > dir root.*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\working\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/12/2006 6:32 PM 591 root.cer
-a--- 8/12/2006 6:32 PM 636 root.pvk

In the first step, you create the file root.pvk—the private key—for your signing
authority. In the second step, you create the certificate file root.cer that you need for
signing. But the more important question is whether or not you created the certifi-
cate in the certificate store. You can verify this using the Certificate snap-in in MMC.
Figure 21.4 shows what this looks like.

Table 21.5 MakeCert parameters used to create a code-signing certificate

MakeCert parameter Description

-pe Marks the generated private key as exportable. This allows the pri-
vate key to be included in the certificate.

-n "CN=PowerShell User" Specifies the X.500 name for the signer.

-ss MY Specifies the subject’s certificate store name that stores the out-
put certificate.

-a sha1 Specifies the hash algorithm to use.

-eku 1.3.6.1.5.5.7.3.3 Specifies that you want code-signing certificates.

-iv root.pvk Specifies where the certificate issuer’s PVK private key file is. (You
created this file in the previous step with the –sv parameter.)

-ic root.cer Specifies the location where the issuer’s certificate file should be
written.
908 CHAPTER 21 SECURITY, SECURITY, SECURITY

Of course, this is PowerShell, so there must be a way to verify from the command
line. You can do so using the PowerShell certificate provider by typing the following
command:

PS (13) > dir cert:\CurrentUser\My -CodeSigningCert | fl

Subject : CN=PowerShell User
Issuer : CN=PowerShell Local Certificate Root
Thumbprint : 145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687
FriendlyName :
NotBefore : 8/12/2006 6:34:31 PM
NotAfter : 12/31/2039 3:59:59 PM
Extensions : {System.Security.Cryptography.Oid, System.
 Security.Cryptography.Oid}

If the certificate was created, the output shows you the thumbprint of the certificate,
which contains authentication data for “PowerShell User.” You have everything set
up! You’ve established a signing authority and issued yourself a certificate. Let’s move
on and sign some scripts.

21.4.4 Using a certificate to sign a script

Now that you have a self-signed certificate, you can sign scripts. In this section, we’ll
go through the steps to do so. We’ll also show you how to change the script execution
policy to verify that your scripts are signed properly.

Setting up a test script

First, create an unsigned script that you can use for testing purposes:

PS (16) > '"Hello there"' > test-script.ps1

Figure 21.4 Verifying that the certificates have been created from the Certificates snap-in
SIGNING SCRIPTS 909

Assuming that your execution policy is currently set to something like Remote-
Signed that lets you run local scripts, let’s run test-script.ps1:

PS (17) > ./test-script.ps1
Hello there

Now change the execution policy to AllSigned and verify that you can’t run
unsigned scripts any longer. You’ll use Set-ExecutionPolicy:

PS (18) > Set-ExecutionPolicy AllSigned

When you try to run the script, it will fail:

PS (19) > ./test-script.ps1
File C:\Temp\test-script.ps1 cannot be loaded. The file C:\Temp\
test-script.ps1 isn’t digitally signed. The script will not
execute on the system. Please see "get-help about_signing" for more
 details..
At line:1 char:17
+ ./test-script.ps1 <<<<

The error message tells you that the script isn’t signed and suggests a help topic that
will explain what’s going on. Next, let’s sign the script.

Signing the test script

First you need to get a certificate object to use to sign the script. You use the Power-
Shell certificate provider to do this:

PS (20) > $cert = @(Get-ChildItem cert:\CurrentUser\My `
>> -codesigning)[0]
>>
PS (21) > $cert

 Directory: Microsoft.PowerShell.Security\Certificate::Curren
 tUser\My

Thumbprint Subject
---------- -------
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 CN=PowerShell User

This shows that you have a certificate object in $cert. Use the Set-Authenticode-
Signature cmdlet (remember, tab completion works on cmdlet names) to sign this
file:

PS (22) > Set-AuthenticodeSignature test-script.ps1 $cert

 Directory: C:\Temp

SignerCertificate Status Path
----------------- ------ ----
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 Valid test-sc...
910 CHAPTER 21 SECURITY, SECURITY, SECURITY

This cmdlet returns the signature information for the signed file. Now try to run it:

PS (23) > ./test-script

Do you want to run software from this untrusted publisher?
File C:\Temp\test-script.ps1 is published by CN=PowerShell User
and isn’t trusted on your system. Only run scripts from trusted
 publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run
[?] Help(default is "D"): a
Hello there

Notice that you’re prompted to confirm that this signing authority should be trusted.
Assuming you trust yourself, you answer that you should always trust the signing
authority you created. Now let’s run this script again:

PS (24) > ./test-script
Hello there

This time, you didn’t get prompted, because you’ve told the system that this certifi-
cate should always be trusted.

So what exactly happened to the script? It used to be one line long. Let’s look at
the beginning of the script. Use the Select-Object cmdlet to get the first 10 lines of
the file:

PS (25) > Get-Content Test-Script.ps1 | Select-Object -First 10
"Hello there"

SIG # Begin signature block
MIIEMwYJKoZIhvcNAQcCoIIEJDCCBCACAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQU0O2MiFZBx/X1iLwTml3Dg6o3
iOygggI9MIICOTCCAaagAwIBAgIQ0QlVf5hB+oZM3DApkhHZMTAJBgUrDgMCHQUA
MCwxKjAoBgNVBAMTIVBvd2VyU2hlbGwgTG9jYWwgQ2VydGlmaWNhdGUgUm9vdDAe
Fw0wNjA4MTMwMTM0MzFaFw0zOTEyMzEyMzU5NTlaMBoxGDAWBgNVBAMTD1Bvd2Vy
U2hlbGwgVXNlcjCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAtB75pWZTD5Jo

How long is the file? Let’s check:

PS (26) > (Get-Content Test-Script.ps1).count
27

Signing the file increased the size from 1 line to 27. As you can see, signing a file
adds a lot of ugly comments to the end of the file. You can use Get-Authenticode-
Signature to retrieve the signature information from the file:

PS (28) > Get-AuthenticodeSignature test-script.ps1 | Format-List

SignerCertificate : [Subject]
 CN=PowerShell User

 [Issuer]
 CN=PowerShell Local Certificate Root
SIGNING SCRIPTS 911

 [Serial Number]
 D109557F9841FA864CDC30299211D931

 [Not Before]
 8/12/2006 6:34:31 PM

 [Not After]
 12/31/2039 3:59:59 PM

 [Thumbprint]
 145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0
 687

TimeStamperCertificate :
Status : Valid
StatusMessage : Signature verified.
Path : C:\Temp\test-script.ps1

Among other things, this code shows you who signed the file (PowerShell User) and
who issued the certificate (PowerShell Local Certificate Root), both of which you’ve
just created. Now let’s see what happens if you tamper with this file.

Testing the integrity of the script

Let’s use an editor and duplicate the “Hello there” line in the script:

PS (29) > notepad test-script.ps1

So the file looks like

PS (30) > Get-Content test-script.ps1 | Select-Object -first 10
"Hello there"
"Hello there"

SIG # Begin signature block
MIIEMwYJKoZIhvcNAQcCoIIEJDCCBCACAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQU0O2MiFZBx/X1iLwTml3Dg6o3
iOygggI9MIICOTCCAaagAwIBAgIQ0QlVf5hB+oZM3DApkhHZMTAJBgUrDgMCHQUA
MCwxKjAoBgNVBAMTIVBvd2VyU2hlbGwgTG9jYWwgQ2VydGlmaWNhdGUgUm9vdDAe
Fw0wNjA4MTMwMTM0MzFaFw0zOTEyMzEyMzU5NTlaMBoxGDAWBgNVBAMTD1Bvd2Vy

Try to run the modified file:

PS (31) > ./test-script
File C:\Temp\test-script.ps1 cannot be loaded. The contents of file

C:\Temp\test-script.ps1 may have been tampered because the
hash of the file does not match the hash stored in the digital
signature. The script will not execute on the system. Please
see "get-help about_signing" for more details..

At line:1 char:13
+ ./test-script <<<<

It fails with an error telling you that the file has been tampered with. This shows how
signing is used to verify the integrity of the script. Let’s look at the last topic we’re
going to cover on signing scripts.
912 CHAPTER 21 SECURITY, SECURITY, SECURITY

21.4.5 Enabling strong private key protection

When you create a private certificate on your computer, it’s possible that malicious pro-
grams might be able to access the certificate and sign scripts on your behalf. The mali-
cious program could then create Trojan scripts that appear to be legitimately signed.

To address this vulnerability, you’ll use the Certificate Manager tool
(Certmgr.exe), another utility included in the .NET SDK and the Microsoft Plat-
form SDK. It’s also included with Internet Explorer 5 and later.

The Certificate Manager enables you to export the signing certificate to a PFX file.
Once you have the PFX available, you can use it to sign a document, but you’ll have
to interactively provide a password as part of the signing process. This interactive step
prevents a malicious program from quietly signing scripts. A user has to provide the
password.

In this section, we’ll go over the steps necessary to export a certificate, and then
you’ll use the exported file to re-sign the file you tampered with in section 21.4.3.

Exporting the certificate

Exporting a certificate using the Certificate Manager is a straightforward task. You’ll
take the certificate you created in the previous sections and export it to a file called
mycert.pfx.

Step 1: Start Certmgr.exe and select the certificate to export

First you start the Certificate Manager (which is a graphical tool). A window opens
on your desktop that looks something like figure 21.5.

Figure 21.5 Launching the Certificate Manager tool
SIGNING SCRIPTS 913

The Certificate Manager window will display one or more certificates. Select the cer-
tificate you created in section 21.4.2. This will be the one issued by the PowerShell
Local Certificate Root. When you’ve selected the certificate, click Export to start the
Certificate Export Wizard. Now you should see something that looks like figure 21.6.

Click Next. This will take you to a dialog with two option buttons. Select the
“Yes, export the private key” option and click Next.

Step 2: Specify the file format and password

The next step in the wizard will ask you to specify the export file format. Select the
Personal Information Exchange option. If it’s visible, be sure that the Enable Strong
Protection check box is selected (this should be the default).

At this point, the system will ask you to enter a password to use to protect the key
you’re exporting, as shown in figure 21.7.

Choose a password you can remember, enter it twice, and click Next.

Figure 21.6

Launching the

Certificate

Export Wizard

Figure 21.7 In this fig-

ure, you see the dialog to

set the password used to

secure the private key.
914 CHAPTER 21 SECURITY, SECURITY, SECURITY

Step 3: Specify the name for the PFX file

Now you enter the name of the file you want to create with a .pfx extension. Call it
mycert.pfx. Click Next, verify the information, and click Finish. The export is done.

Step 4: Verify that the PFX file was created

Verify that the file was created by entering the following command:

PS (1) > Certmgr.exe
CertMgr Succeeded
PS (2) > dir *.pfx

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/13/2006 5:38 PM 1768 mycert.pfx

And there it is: mycert.pfx as requested.

21.4.6 Using the PFX file to sign a file

You can use this file to get a signing certificate by using the Get-PfxCertificate
cmdlet:

PS (3) > $cert = Get-PfxCertificate mycert.pfx
Enter password: ********

PS (4) > $cert

Thumbprint Subject
---------- -------
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 CN=PowerShell User

Let’s use this certificate object to re-sign the file you tampered with earlier:

PS (5) > Set-AuthenticodeSignature test-script.ps1 $cert

 Directory: C:\Temp

SignerCertificate Status Path
----------------- ------ ----
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 Valid test-sc...

Next, make sure that the execution policy is set to AllSigned, and then run the script:

PS (6) > Set-ExecutionPolicy allsigned
PS (7) > ./test-script.ps1
Hello there
Hello there
PS (8) >

The script runs properly. There’s no prompt because you’ve already told the system
that you trust this signing authority.
SIGNING SCRIPTS 915

We’ve concluded our discussion of signing as well as our discussion on securing
PowerShell installations. In the next (and final) part of this chapter, we’re going to
shift our focus away from securing PowerShell and over to writing secure PowerShell
scripts.

21.5 WRITING SECURE SCRIPTS

As you’ve seen, the PowerShell team has been careful in designing the various security
features in the PowerShell runtime. In the end, though, the whole point of Power-
Shell is to allow people to create and run scripts that will automate system adminis-
tration tasks. As a consequence, vulnerable or badly written scripts could
inadvertently lead to substantial damage to the system. All the security features in the
world can’t defend you from badly written scripts, so we’re going to look at some of
the techniques you can use to make your code more secure.

In fact, we (the PowerShell team) have been described as obsessive in our security
focus. Here’s a quote from Microsoft security guru Michael Howard:

I want folks to realize that the PowerShell guys are very, VERY savvy
when it comes to security. In fact, they are borderline anal. Actually,
they’re not borderline at all.

21.6 USING THE SECURESTRING CLASS

At some point, you’ll want to write a script that acquires passwords or other sensitive
data such as credit card numbers. PowerShell, through .NET, provides a number of fea-
tures for dealing with sensitive data in a secure way. In this section, we’re going to dis-
cuss how to use those features to write scripts that can deal with sensitive information.

Most of the sensitive data you’ll be dealing with will be in the form of strings.
When a string is created in .NET, the runtime retains that string in memory so it can
efficiently reuse it. Even after you’re done with the data, the string will remain in
memory until it’s finally cleaned up by the garbage collector process from the .NET
Framework. So what’s the big deal—if an attacker can access the process’s memory,
we’re already compromised, right? That’s true if the information only stays in mem-
ory, but there are a number of ways that it could end up being persisted to the disk.
For one thing, Windows uses virtual memory. This means that blocks of memory are
periodically paged to disk. Once it’s on the disk, it potentially becomes available to
applications that can do raw accesses to the disk. Now, this may require the attacker to
steal your hard disk and use forensic tools to analyze it, but it’s possible and has hap-
pened before. Similarly, using Hibernate on a laptop will write an image of memory to
the disk. Finally, the string could wind up on the disk due to a crash dump, where an
image of the computer’s memory is dumped to the disk during a system crash.

How can you avoid these problems? When writing .NET programs, the way to
safely work with strings containing sensitive data is to use the System.Security.
SecureString class. This type is a container for text data that the .NET runtime stores
916 CHAPTER 21 SECURITY, SECURITY, SECURITY

in memory in an encrypted form. The most common way to get secure strings is using
the Get-Credential cmdlet or the [System.Management.Automation.PS-
Credential] type. This type also forms the basis for writing secure scripts in Power-
Shell using the SecureString cmdlets, which we’ll look at next.

21.6.1 Creating a SecureString object

When you write a script or function that requires sensitive data such as passwords, the
best practice is to designate that password parameter as a SecureString object in
order to help keep passwords confidential. Let’s look at a how you can create a secure
string. The simplest way is to use the -AsSecureString parameter on the Read-
Host cmdlet:

PS (1) > Read-Host -AsSecureString -Prompt "Password"
Password: ********
System.Security.SecureString

Let’s take a look at the members on the SecureString object using the Get-Member
cmdlet:

PS (2) > $ss = Read-Host -AsSecureString -Prompt "Password"
Password: ********
PS (3) > $ss | Get-Member

 TypeName: System.Security.SecureString

Name MemberType Definition
---- ---------- ----------
AppendChar Method System.Void AppendChar(Char c)
Clear Method System.Void Clear()
Copy Method System.Security.SecureString Copy()
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equals(Object obj)
get_Length Method System.Int32 get_Length()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
InsertAt Method System.Void InsertAt(Int32 index, Cha...
IsReadOnly Method System.Boolean IsReadOnly()
MakeReadOnly Method System.Void MakeReadOnly()
RemoveAt Method System.Void RemoveAt(Int32 index)
SetAt Method System.Void SetAt(Int32 index, Char c)
ToString Method System.String ToString()
Length Property System.Int32 Length {get;}

The only way you can convert an existing string to a secure string is by appending one
character at a time to the secure string. Let’s append another character to the string:

PS (4) > $ss.AppendChar("1")

Here’s a way to make a secure string out of a normal one. First, you create an instance
of the secure string class:

PS (9) > $ss = New-Object System.Security.SecureString
USING THE SECURESTRING CLASS 917

Then you send each character to the foreach cmdlet and append it to that secure
string. Normally strings in PowerShell don’t stream by default, but if you explicitly
get an enumerator, it’s possible to stream a string one character at a time:

PS (10) > "Hello there".GetEnumerator() | foreach {$ss.AppendChar($_)}

Now let’s look at the results:

PS (11) > $ss
System.Security.SecureString

Not very interesting, is it? But that’s the point. It’s secure—there’s no easy way to get
the data back. Let’s take one final precaution. You don’t want your secure string tam-
pered with, so make it read-only:

PS (12) > $ss.MakeReadOnly()
PS (13) > $ss.IsReadOnly()
True

If you try to modify it, you’ll get an error:

PS (14) > $ss.AppendChar('!')
Exception calling "AppendChar" with "1" argument(s): "Instance i
s read-only."
At line:1 char:15
+ $ss.AppendChar(<<<< '!')

Marking a secure string read-only once it’s complete is generally considered to be a
best practice. Doing it all by hand is a bit painful, so PowerShell includes some cmd-
lets to make this process much easier.

21.6.2 The SecureString cmdlets

Manually building secure strings is a bit tedious, so PowerShell has two cmdlets for
working with secure strings: ConvertTo-SecureString and ConvertFrom-Secure-
String. These cmdlets allow you to write data to disk in a reasonably secure fashion.

By default, the SecureString cmdlets use the Windows Data Protection API
(DPAPI) when they convert your SecureString to and from a plain-text representa-
tion. The DPAPI is the standard way on the Microsoft Windows platform for pro-
grams to protect sensitive data. The encryption key that the DPAPI uses is based on
Windows logon credentials. This means that you don’t have to specify a key to
encrypt or decrypt data—the system will generate one for you automatically based on
your logon credentials. This means that you can only decrypt your own data using
this mechanism. If you have to export or share encrypted data across multiple
machines or with additional users, then you have to create and manage a key for
those purposes.

There are many instances when you may want to automatically provide the
SecureString input to a cmdlet, rather than have the host prompt you for it. In
these situations, the ideal solution is to import a previously exported SecureString
918 CHAPTER 21 SECURITY, SECURITY, SECURITY

from disk (using ConvertTo-SecureString). This approach retains the confidenti-
ality of your data and still allows you to automate the input.

If the data is highly dynamic (for example, coming from a CSV file), then the best
approach is to use something like this:

$secureString = ConvertTo-SecureString "Kinda Secret" `
 -AsPlainText –Force

The cmdlet requires the -Force parameter to ensure you acknowledge the fact that
PowerShell can’t protect plain-text data, even after you’ve put it in a SecureString.

One of the areas where secure strings are particularly important is in credential
management. Credentials include passwords, and you want to minimize the amount
of time passwords are exposed in a readable form.

21.6.3 Working with credentials

To do any sort of administrative work on a computer, at some point you’re going to
need to get the credentials of the user account authorized to do the work. Obviously,
it’s bad practice to put passwords in scripts, so you should always prompt for pass-
words or credentials. In PowerShell, you do so using the Get-Credential cmdlet, as
shown in figure 21.8.

Running the Get-Credential cmdlet returns a credential object that you can
then use for operations that require a password. To do this, you need to store the cre-
dential object in a variable as shown:

PS (2) > $cred = Get-Credential

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential

Figure 21.8

When you use the

Get-Credential
cmdlet, it will open

a dialog box that

looks like this.
USING THE SECURESTRING CLASS 919

Now let’s display this credential object:

PS (3) > $cred

UserName Password
-------- --------
mymachine\myuserid System.Security.SecureString

The domain and username are stored as a regular string, but the password has been
stored as an instance of the type System.Security.SecureString. As discussed
previously, this allows the credential object to remain in memory without presenting
a significant security risk.

Let’s look at an example where you want to use the credential object. Let’s write a
function called Start-LocalUserManager that will start a process using different
credentials. This works approximately like the runas.exe command. You’ll use this
function to launch the Local User Administration dialog box. When you run the
script, you’ll see something that resembles figure 21.9.

In this example, enter the username and password for a user who hasn’t logged in
yet, so you’ll get an error:

PS (1) > Start-LocalUserManager

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential
Exception calling "Start" with "1" argument(s): "The user's pass
word must be changed before logging on the first time"
At line:12 char:36
+ [System.Diagnostics.Process]::Start(<<<< $StartInfo)
PS (2) >

Figure 21.9 Because it uses

the Get-Credential
cmdlet, when you run

Start-LocalUser-
Manager, you’ll see the

credential dialog box.
920 CHAPTER 21 SECURITY, SECURITY, SECURITY

Now try it again but with a valid user account. This time you see the Local User and
Groups management console appear, as shown in figure 21.10.

Let’s see how this Start-LocalUserManager function is implemented. The
source for this function is shown in listing 21.1.

NOTE This listing shows how the function would have to be imple-
mented in PowerShell v1. In PowerShell v2, it simply becomes a call to
the Start-Process cmdlet where most of the laborious construction
of the ProcessStartInfo object is handled by the cmdlet. The actual
conversion to the Start-Process implementation is left as an exercise
for the reader.

function Start-LocalUserManager
{
 $cred = Get-Credential
 $StartInfo = New-Object System.Diagnostics.ProcessStartInfo
 $StartInfo.UserName = $cred.Username
 $StartInfo.Password = $cred.Password
 $StartInfo.FileName = "$env:windir\system32\mmc.exe"
 $StartInfo.Arguments = "$env:windir\system32\lusrmgr.msc"
 $StartInfo.WorkingDirectory = "$env:windir\system32"
 $StartInfo.LoadUserProfile = $true
 $StartInfo.UseShellExecute = $false
 [System.Diagnostics.Process]::Start($StartInfo)
}

Figure 21.10 When you

start the Local User Manager

snap-in, you’ll see something

that looks like this.

Listing 21.1 The Start-LocalUserManager function
USING THE SECURESTRING CLASS 921

Because the function will prompt for credentials, you don’t need to give it any argu-
ments. The first thing you do is call Get-Credential to get the credential informa-
tion that you want the process to run with. Then you create a ProcessStartInfo
object that you’ll use to set the various properties you want the process to have when
it starts. The most important of these in this example are the UserName and Pass-
word properties. The Process object will safely decrypt the password SecureString
using the DPAPI when creating the process. Next you set the program you want to
run—the Microsoft Management Console (mmc.exe)—and give it the path to the
MMC console file that will load the local user admin MMC snap-in. You’re running as
a particular user, so you want the user profile to be run and you don’t want to use
ShellExecute to launch the process because then you wouldn’t be able to pass the
credentials to the underlying CreateProcess() call. Once you’ve finished setting all
the properties on the ProcessStartInfo object, you call the static Start() method
on [System.Diagnostics.Process] to start the process running.

Using the GetNetworkCredential() Method

Using secure strings to store passwords in the PSCredential object works well when
you’re calling an API that can handle passwords stored in secure strings. Unfortu-
nately, this isn’t always the case and sometimes you need to use the password in clear
text. You encountered this situation in section 18.6.4 while working with the Task
Scheduler COM API. As you saw in that example, the PSCredential object includes
a GetNetworkCredential() method that will return the username and password in
clear text. Let’s quickly review how this works. First you call Get-Credential to get
the credential object:

PS (1) > $cred = Get-Credential

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential

When you display this object, you can see the username and domain but not the
password:

PS (2) > $cred

UserName Password
-------- --------
smith\john System.Security.SecureString

Now let’s call the GetNetworkCredential() method and see what it shows:

PS (3) > $cred.GetNetworkCredential()

UserName Password Domain
-------- -------- ------
john Its_a_secret smith
922 CHAPTER 21 SECURITY, SECURITY, SECURITY

You can see everything in clear text, including the password. At this point, some peo-
ple might wonder why you bother with secure strings at all if it’s so easy to get the
data back. The thing to remember is that you typed in the password in the first place
so it isn’t telling you anything you don’t already know. As discussed in section 21.5.1,
the intent is to minimize the amount of time the password is exposed as clear text,
thereby minimizing the amount of time it might be captured during a crash dump or
hibernate.

You now have a good working knowledge of secure strings and credentials, but
these technologies by themselves don’t guarantee security. If an exploitable vulnera-
bility exists in the script itself, all your careful credential management will be useless.
Let’s look at some things you need to be particularly aware of when trying to write
secure scripts.

21.6.4 Avoiding Invoke-Expression

At the beginning of this chapter, we talked about the risks of using the Invoke-
Expression cmdlet and code injection attacks in general. If you can avoid using this
cmdlet, it’s a good idea for two reasons: first, not using it makes your code less vulner-
able, and second, Invoke-Expression has performance consequences because it
requires that the expression be recompiled every time it gets called. In most circum-
stances, it’s possible to rewrite your code using scriptblocks instead of Invoke-
Expression.

WARNING If you use the features described in section 13.2.5,
Invoke-Expression is one cmdlet that should always be omitted
from that session configuration. You should also be careful with any
code in a constrained session that uses Invoke-Expression and make
sure that a thorough security review of that code is done.

In this section, we’ll work through a real example where you take a piece of script
code using Invoke-Expression and rewrite it to use scriptblocks.

The original wheres script

The idea behind this script was to come up with a version of the Where-Object
cmdlet that had a simpler syntax. The function was created by one of the developers
on the PowerShell team. Instead of typing a command line that looked like this

PS (3) > dir | where {$_.extension -eq ".ps1"}

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/13/2006 5:44 PM 3250 test-script.ps1
USING THE SECURESTRING CLASS 923

he wanted to simply type

PS (1) > dir | wheres extension eq .ps1

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/13/2006 5:44 PM 3250 test-script.ps1

There’s certainly a lot less punctuation in the second command line, so it seems a
worthy goal. The original version of the command is shown in the following listing.

function wheres($property, $operator, $matchText)
{
 begin {
$expression = "`$_.$property -$operator `"$matchText`""
 }
 process {
 if(Invoke-Expression $expression)
 {
 $_
 }
 }
}

This function takes three parameters—the property on the inbound pipeline object
to check, the operation to perform, and the value to check against. In the begin
clause of the function, you precalculate as much of the expression as possible, expand-
ing the property name and the operator into $expression. This gets rid of the string
expansion step that would otherwise be performed for each pipeline object. Finally, in
the process clause of the function, Invoke-Expression is used to evaluate the
expression for the current pipeline object and emit the object if it matches.

This is a straightforward implementation of the function, but there’s one worri-
some aspect. Executing a command such as the following is fine

dir | wheres mode match d

but something like this

dir | wheres extension eq '.ps1"; Write-Host hi; "'

will both interfere with the results you expect and execute the extra code Write-Host
hi. If the extra code were something like del –Force –Recurse c:\, then it’d be
more than merely annoying.

Of course, the author of this script would never do anything like this. But some-
one else who’s just using the script might think it’s safe to pass untrusted arguments
to it. After all, looking at it from the outside, there are no obvious code injection vul-
nerabilities. It appears to accept a simple operator, nothing more. This is why you

Listing 21.2 The original wheres function
924 CHAPTER 21 SECURITY, SECURITY, SECURITY

need to be cautious with this kind of script—because of the cascading consequences
problem we discussed at the beginning of the chapter. This script appears on a blog,
gets copied into someone else’s application, which gets copied into a third individ-
ual’s web application, and now this script that was never intended to be used with
untrusted input is being used for exactly that in a network-facing application. Not a
good situation. Let’s see what you can do to make the script more robust and also run
faster at the same time.

A safer, faster wheres script

The problem with the old script was that it used Invoke-Expression to evaluate an
expression at runtime. You want to use scriptblocks to be a bit more static in your
approach. The solution is shown here.

function wheres
{
 begin {
 if ($args.count -ne 3)
 {
 throw "wheres: syntax <prop> <op> <val>"
 }
 $prop,$op,$y= $args
 $op_fn = $(
 switch ($op)
 {
 eq {{$x.$prop -eq $y}; break}
 ne {{$x.$prop -ne $y}; break}
 gt {{$x.$prop -gt $y}; break}
 ge {{$x.$prop -ge $y}; break}
 lt {{$x.$prop -lt $y}; break}
 le {{$x.$prop -le $y}; break}
 like {{$x.$prop -like $y}; break}
 notlike {{$x.$prop -notlike $y}; break}
 match {{$x.$prop -match $y}; break}
 notmatch {{$x.$prop -notmatch $y}; break}
 default {
 throw "wh: operator '$op' isn't defined"
 }
 }
)
 }
 process { $x=$_; if(. $op_fn) { $x }}
}

In this version of the function, you begin by validating the number of arguments B
and reporting an error if there aren't three arguments. You want to place a scriptblock
in the variable $op_fn, which you’ll use to implement the processing for that opera-
tor. You use a switch statement to select the right scriptblock to return. There’s one

Listing 21.3 The safe wheres function

Validate
arguments

b

Implement EQc

Throw error
on unknown
operator

d

Invoke operator
function

e

USING THE SECURESTRING CLASS 925

scriptblock for each operator; for example, the eq operator is shown in c. If the
operator isn’t one of the ones you’ve chosen to implement, you’ll throw an error d.

Once you’ve selected the scriptblock, you’ll invoke it e once for each inbound
pipeline object. Notice that you don’t pass any arguments to the scriptblock. Dynamic
scoping allows the scriptblock to pick up the arguments from the enclosing scope.

This second implementation is clearly more complex, but it does more error
checking, is more robust in general, and has no code injection vulnerabilities. It’s also
significantly faster than the Invoke-Expression version. (It also makes a good illus-
tration of the use of scriptblocks.)

There are many more examples where you can replace Invoke-Expression with
scriptblocks, but in the end, the approach is basically the same—decide whether you
really need to generate code at runtime or whether you can just select from a set of
precompiled alternatives. If the set of alternatives is large, you may want to use a
hashtable instead of a switch statement, but the principle remains the same.

This brings us to the end of our discussion of security and PowerShell. Securing
systems and writing secure code can be a subtle, twisty, and arcane topic. It can also
be alternately completely fascinating or as dull as toast.

21.7 SUMMARY

Let’s review what we covered in this chapter. We began with a rant (sorry—discus-
sion) on security and threat modeling. We discussed:

• What security is—mechanisms for operating a computer without the risk of
danger or loss

• That security isn’t equivalent to cryptography and its related technologies
(although these tools are used to build a secure system)

• Basic threat modeling and the STRIDE approach

• Definitions for the elements of a threat model: vulnerability, threat, asset, and
mitigation

In the next section, we covered securing the PowerShell installation itself. This
included discussions of how PowerShell is secure by default. As installed, PowerShell
limits its attack surface by

• Having no default file association; this prevents use of attachment invocation or
point-and-click social engineering attacks.

• Exposing no remote access endpoints, forcing a hopeful attacker to depend on
other tools.

• Having a default execution policy of Restricted, which prevents any scripts
from running.

• Not including the current directory in the command search path, preventing
working directory exploits.
926 CHAPTER 21 SECURITY, SECURITY, SECURITY

• Additional issues around managing the execution path.

• Execution policy—what it is and how you can examine the current execution
policy using Get-ExecutionPolicy. To allow signed scripts to run, use Set-
ExecutionPolicy AllSigned, and to allow any local scripts to run—the loos-
est reasonable policy—use Set-ExecutionPolicy RemoteSigned.

• Script signing—how it works and how to set up certificates, keys, and so on.

The final part of the chapter explored technologies and techniques you can use for
making your scripts more robust. The topics included

• The fact that you should always store sensitive information in memory using
the .NET SecureString class and that you can read data as a secure string from
the keyboard using the Read-Host cmdlet

• Working with credentials and using the Get-Credential cmdlet

• Approaches for avoiding the use of Invoke-Expression in scripts

Computer security is a complex, evolving field. It’s obviously important to keep
abreast of the latest tools and techniques, as well as monitor the current crop of
threats and exploits. Thinking through a problem can be facilitated by tools and
models, but in the end, there’s no replacement for common sense.

You’re done with your journey through the PowerShell world. It’s been a rather
long journey—the scope and range of what can be done with PowerShell can be both
dazzling and daunting at times. But always remember that PowerShell is a tool cre-
ated for you, the user. Don’t be afraid to experiment with it, play with it, and then
apply it. To quote Jeffrey Snover, the inventor of PowerShell:

All you need to do is to learn what you need to accomplish the task at
hand…and a bit more. Then do it again. And again. And again. Have
fun with it and push the envelope.
SUMMARY 927

928 CHAPTER 21 SECURITY, SECURITY, SECURITY

index
Symbols

-- symbol 41
./ prefix 45
.\ prefix 45
(see!) argument 228
@ symbol 37, 95
@(...). See array subexpressions
& operator 415
& symbol 37
character 58
% alias 684
+ symbol 59
+= operator 685
> operator 181
>> operator 181
$_ variable 37, 217–218, 224, 265, 572, 677
$? variable 564–565, 621, 794
$(...). See subexpressions
$count variable 379
$error variable 560–561

Numerics

2> operator 181
2>&1 operator 181
2>> operator 181
32-bit applications, 64-bit applications vs. 793
32-bit operating systems 499
64-bit applications, vs. 32-bit applications 793
64-bit operating systems 499

A

abstraction 8
access controls, and endpoints 533–535
access restriction 543
access to current tab 623
accessing COM objects 767
AccessMode module 388
accidental code injections 439
accidental execution 276
accumulated results, in variables 208
acronyms 37
-Action parameter 855
Action parameter 842
Action property, on PSBreakpoint object 654
action script block, in breakpoints 658
actions

asynchronous events 854
running upon module removal 389–391

Actions.Create() method 789
Active Directory Services Interface (ADSI) 75
active scope 652
ActiveScript engine 783
ActiveX Data Objects (ADO) 75
adaptation 761

extending objects 401
of existing member 427
synthetic members 402

adaptation layer, COM 762
adapter mechanism 77
add members 401
add property 405
929

Add() method 261, 746
add/remove software, appwiz.cpl command 597
add_Click() method 850, 855
addition operator 113–116
addition, with hash tables 115
Add-Member cmdlet 423, 425

addressing, remoting target 518–520
connecting to nondefault ports 518–519
DNS names and IP addresses 518
proxy servers 520
using URI 519

using to extend objects 402–408
adding AliasProperty members 404–405
adding NoteProperty members 405–406
adding ScriptMethod members 406–407
adding ScriptProperty members 407–408

Add-Type cmdlet 710, 723
compiling code with 440–446

defining new .NET class with C#
language 440–442

defining new enum types at
runtime 442–443

dynamic binary modules 443
defining new types with 729–739

creating Singleton member
definitions 730–734

interoperation with P/Invoke
signatures 734–735

-Path parameter set 737–739
-TypeDefinition parameter set 736–737

example 731
-IgnoreWarnings parameter 731
-Language parameter 730
-Path parameter set 737
singleton member definitions 730
-UsingNamespace parameter 730

Admin Script PowerShell IDE 752
Administrator privileges 517
Administrators group 517
administrators, in other domains

enabling remoting for 517–518
ADO (ActiveX Data Objects) 75
ADSI (Active Directory Services Interface) 75
-After parameter 601
agentless monitoring using remoting 462

aggregating events with GROUP
keyword 874–875

algorithms
comparison 128
module search 329–330

Alias attribute, creating parameter aliases
with 303–305

-Alias parameter 334
alias property 404
alias: drive 667
aliased members 405
aliases

and elastic syntax 47–50
listing definitions 667
predefined 48
why use parameter alias 49

AliasesToExport element 370
AliasProperty members, adding to

objects 404–405
-All flag 351
-AllMatches switch 692
Allow Automatic Configuration of Listeners

policy 453
-AllowClobber parameter 480
AllowEmptyCollection attribute 306
AllowEmptyString attribute 306
AllowNull attribute 306
AllowNullExample function 306
AllSigned execution policy 899
alternate layouts, in ISE 609
Alt-F4 shortcut, ISE 611
AMD64 processor 500
Anchor property 749
-and operator 149
anonymous code 658
anonymous filter 266
anonymous functions 398
APIs (application programming interfaces) 7

debugging with host 580–593
catching errors with strict mode 582–584
Set-StrictMode cmdlet 584–589
static analysis of scripts 589–593

interoperation with 69
AppActivate() method 778
AppDomain class 725
930 INDEX

appending error records 183
Application Data directory 668
Application event log 879
Application log 602
application output redirection, in ISE 617
Applications list, controlling access to 540
Applications property, From

$ExecutionContext.SessionState 539
applications. See also native commands

issues in ISE 616
managing with COM 779–783

looking up word definitions using Internet
Explorer 779–781

spell checking using Microsoft
Word 781–783

native executables and PowerShell paths 666
appwiz.cpl command 597
$args scalar 238
$args variable 241, 278, 289

passing arguments using 237–239
simplifying processing with multiple

assignment 240
$args.length 246
argument processing, by ForEach-Object

cmdlet 227–228
ArgumentList parameter 358
arguments 60, 174

handling variable numbers of 245–246
passing to scripts 278–280
passing using $args variable 237–239
printing 222
specifying to switch parameters 250–252
vs. parameters 39

-Arguments parameter 813
arithmetic operation 24
arithmetic operators 112–119

addition 113–116
multiplication 116–117
subtraction, division, and modulus 117–119

[array] class 170
array assignment 94
Array class 434
array concatenation 113
array literals 91
array operations

convert array to string 677
determining unique members 684
discarding empty elements 683
grouping by key property 686
indexing with negative values 685
number of occurrences 684

array operators 112, 162–173
comma 162–165
indexing and slicing 167–170
multidimensional 171–173
range 165–167

array slicing 197, 603
array subexpression operator 158
ArrayList class 261
arrays 91–96

0 origin 24
as reference types 93–94
collecting pipeline output as 91–92
concatenation of 25
empty arrays 94–96
indexing of 92
multiplication of 116
of characters 435

converting to string 406
string as 406

of indexes 172
polymorphism in 92–93
presentation in tracing 641
resizing 259
subexpressions 160–162

-as operator 152, 154
-As parameter 712
ASCII encoding 679
AsCustomObject parameter 417
AsCustomObject() method 382
-AsJob parameter 481, 489–490, 492, 802–803,

882
-AsSecureString parameter 917
assemblies 721–725

default 722
loading

dynamically 722–723
using Load() method 724
with Add-Type 723
with System.Reflection.Assembly

class 723–725
INDEX 931

pros and cons of dynamic linking 721
versioning and 721–722

assembly manifest 721
Assembly property 444
-AssemblyName parameter 759
assets

definition 893
threats, mitigation, and 893–897

authentication, authorization, and
roles 894–895

avoiding lawn gnome mitigation 893–894
blacklisting/whitelisting 894
code injection 896–897
input validation 895–896

assignable elements 122
assignable expressions 155
assignment expressions

as value expressions 123
syntax 120

assignment operators 119–124, 187
as value expressions 123–124
multiple 120–123

asynchronous events 853–855
.NET 855–860

managing subscriptions 859–860
writing timer event handler 856–859

eventing cmdlets 854–855
handling with scriptblocks 860–863

automatic variables 860
dynamic modules and event handler

state 862–863
subscriptions, registrations, and actions 854

attacks, defined 892
authentication

authorization, roles, and 894–895
connecting user 514–518

enabling remoting for administrators in other
domains 517–518

forwarding credentials in multihop
environments 515–517

target computer 511–514
to server 511

-Authentication parameter 803
Author element 367
authorization, authentication, roles, and 894–895

automatic type conversion 154
automatic variables 224, 437, 860
automatically generated help fields 315
automating applications 765
automation interfaces 761, 763
Automation model 765
AutoReset property 857
-AutoReset timer property 728
-AutoSize switch 65–66
AWK 224

B

background color, setting in ISE 625
background jobs 481–493

cmdlets 483–487
removing jobs 487
waiting for jobs to complete 486

commands 483
multiple 487–489
running in existing sessions 492–493
starting on remote computers 489–492

background processing, using ISE tabs 628
backquote character 52
backslash character 54
backtick character 52, 669
base class 423
bash shell 6, 38
bash, Windows 4
Basic type 514
bastion server 515
-Before parameter 601
begin blocks, functions with 266–267
begin clause 61, 397, 419
begin keyword 266
Begin() function 420
BeginInit() method 726
BeginInvoke() method 726
begin-processing clause 62
binary data operations 674
binary modules 353

creating 355–357
dynamic 443
nesting in script modules 357
vs. snap-in modules 354–355

binary operator 179, 225
932 INDEX

binary tree 163
binding

event action 857–858
objects, data and methods 400
parameters pipelines and 62–63

bitmap files
dumping 676
working with 677

BitsTransfer module 363
bitwise operators 148–150
blacklisting/whitelisting 894
block of code, trap statement scope 570
.BMP files. See bitmap files
boilerplate preamble 551
BOM (Byte order mark) 613
[bool] parameter 252–253
[bool] type 107
[bool] type accelerator 252
Boolean parameters 252–257
bootstrap remoting 453
bottom-tested variant, of while loop 204
bound variables 414
boundaries 543
Bourne shell 9
bp function 647
braces, mandatory in statement lists 201
branching 215
break keyword 571, 655
break statement 212–216, 220
breakpoint command 646–647
breakpoint ID 654
breakpoint line, highlight in ISE 649
breakpoints

conditional breakpoints 654
objects 653–656
setting

on commands 656–657
on variable assignment 657–658

browser cache path issues 668
browser windows

management module 770–777
adding graphical front end 773–774
defining control actions 775–776
XAML 774–777

managing using COM 767–770

building objects, in PowerShell 400
built-in $PSHOME variable 333
built-in commands 42
built-in type conversion 104
Button control 755
Button object 850, 855
by reference 94
bypass security boundary, using scriptblocks 541
bypass type adapter 824
byte order mark (BOM) 613

C

C# language 201, 261, 440–442, 570, 575
$c2 variable 417
caching security 905
calc process 822, 842, 869
calculated field 411
calculated module exports 346–347
calculated property 805
call (&) operator 286
call operator 537, 569

executing script block with 438
script blocks 396

CallExit function 280
calling functions 242
calling modules

defining modules vs. 384–387
accessing defining module 385–386

Call-JScript function 785
Call-VBScript function 784
-CancelTimeout parameter 526
candidate conversion 106
CanInvoke property 626–627
canonical aliases 673
captures 563
capturing error objects 555
capturing error records 556, 560
capturing errors 566
capturing script output 593
-case flag 218
-case option 218
case-insensitive 116
case-insensitive keywords 199
-casesensitive option 217
-CaseSensitive parameter 689
INDEX 933

case-sensitivity, comparison operators
and 127–128

cast notation 96, 185
casting 153

strings to arrays of characters 406
to void 156

catch keyword 575
categories, of COM objects 794
CategoryInfo property 557
cd alias, For Get-Location 665
-ceq operator 125
Certificate snap-in 908
certificates

exporting 913
self-signed 905–909
using to sign scripts 909–912

setting up test 909–910
signing test 910–912
testing integrity 912

Certmgr.exe (Certificate Manager tool) 913
chained cast 102
change-tolerant scripts 137
[char] class 677
char array 729
character classes 682
character encodings 674, 679
checksum function 680
child jobs

and nesting 489–490
with Invoke-Command cmdlet 490–492

ChildJob property 491
ChildJobs property 490
Church, Alonzo 394
CIM (Common Information Model)

namespaces 8, 807–810
CIM_Process class 799
CIM_Process.Terminate() method 799
class definition, removing 432
class keyword, implementing 431
-Class parameter 807, 818
class-based event registrations, Microsoft

WMI 867–870
using WIN32_ProcessTrace events 868–870
verifying that events fired 870

classes
defined 12, 429

Microsoft WMI, using Get-WmiObject cmdlet
to find 806–807

cleaning up breakpoints 656
Clear() method 636
Clear-EventLog cmdlet 597
Clear-Item cmdlet 673
Click event 746
Click() method 746, 757
clipboard, Windows 17
clippy function 268
CliXML format 632
Clixml format 717
clobbering output 184
Clone() method 90
Close() method 746
closures 414–417, 638
CLRVersion element 367–368
Cmd.exe 281
cmd.exe 4, 187

/c option 565
and PSPaths 666
and transcript files 596
command completion 20
command equivalents 673
convenience aliases 673
security 889

-Cmdlet parameter 334
cmdlet Verb-Noun syntax 47
CmdletBinding attribute 289, 296

$PSCmdlet variable 293
ConfirmImpact property 293
DefaultParameterSetName property 293
SupportsShouldProcess property 290–293

cmdlets 13, 42–43, 483
background jobs 483–487

removing jobs 487
waiting for jobs to complete 486

commands and 38–42
flow control using 223–231

ForEach-Object cmdlet 223–228
Where-Object 228–231

formatting and output 64–70
Microsoft WMI 801–824

common parameters 802–803
Get-WmiObject cmdlet 804–813
934 INDEX

cmdlets (continued)
invoke-WmiMethod cmdlet 819–822
remove-WmiObject cmdlet 822–824
Set-WmiInstance cmdlet 813–819

variable 188–193
getting and setting options 189–191
indirectly setting 188–189
names vs. values 192–193
using PSVariable objects as

references 191–192
verb-noun pairs 13
WS-Man 831–832

invoking methods with Invoke-WSManAc-
tion cmdlet 841–846

retrieving management data with Get-WSMa-
nInstance cmdlet 832–839

updating resources using Set-WSManInstance
cmdlet 840–841

WSMan implementation 509–511
establishing remote connection 510–511
testing connections 510

CmdletsToExport element 370
code

compiling with Add-Type cmdlet 440–446
defining new .NET class with C#

language 440–446
defining new enum types at

runtime 442–443
dynamic binary modules 443–446

example
basic expressions and variables 23–25
navigation and basic operations 22–23

code execution 893
code injection 896–897, 924
code injection attacks 439
Code reuse role 324
CodeMethod type 403
CodeProperty type 403
code-signing 907
coding exercise 890
collection comparisons 129
collection type 108
collections 24

of numbers 263
of objects 215
using comparison operators with 129–131

colon character, in variable names 186
color names 625
COM (Component Object Model) 760–796

adapter issues and limitations 793
automating Microsoft Windows with 764–777

browser window management
module 770–777

managing browser windows using
COM 767–770

Shell.Application class 765–766
classes, identifying and locating 762–764
in ISE 618
Interop assembly 794
issues with 793–796

64-bit vs. 32-bit applications 793
interop assemblies, wrappers, and

typelibs 793
threading model problems 793

managing applications with 779–783
looking up word definitions using Internet

Explorer 779–781
spell checking using Microsoft

Word 781–783
Microsoft Windows Task Scheduler 786–793

Schedule.Service class 786–787
tasks 787–793

objects 761–762
WScript.Shell class 777–779
WSH ScriptControl class 783–786

embedding JScript code 785–786
embedding VBScript code 784

comma operator 162–166, 197
command aliases, for DOS and UNIX 22
command completion 13, 20–21
command discovery 394
command editing, in console host 16
command history 6
command information 399
command input editor, ISE 608
command interpreter, vs. shell 6
command line debugger 638
command lines 6–7, 267
command mode 54, 59
command not found error, and private

commands 540
INDEX 935

command not found exception 422
command output, parsing using regular

expressions 136–137
command pane 608–609
-Command parameter 285
command path, managing 898
command resolution, in constrained sessions 548
command switches, using switch parameters to

define 248–252
command type 396
command visibility

controlling 536–539
in remoting 535

CommandInfo object 382, 395–396, 476, 536
CommandInfo, FunctionInfo subclass 399
command-line debugging 652–660

breakpoints
objects 653–656
setting 656–658

debugger limitations and issues 658–660
command-line editing 16
command-mode parsing 54–56
CommandPaneUp, ISE menu item 625
commands

anatomy of 38
and cmdlets 38–42
background jobs 483
break-down of 39
breakpoint 646–647
built-in 42
categories of 42–46

cmdlets 42–43
functions 43
native commands 44–46
scripts 44

considerations when running
remotely 493–501

executables 495–496
processor architecture 498–501
profiles and remoting 494–495
reading and writing to console 496–497
remote output vs. local output 497–498
remote session startup directory 494

converted 40
determining if errors in 564–566
executing in ISE 614–616

executing other in debug mode 651
first element of 39
invoking 394–396
native, issues with 616–617
no concurrent in session 468
offset in pipeline 559
prefixing 45
proxy, creating with steppable

pipelines 420–423
running in traditional shells 209
setting breakpoints on 656–657
with built-in remoting 448–449

comma-separated values 143
comment block 904
comment syntax 58–60
comments

comment-based help 316–318
tags used in 318–321

.COMPONENT help 320

.EXTERNALHELP help 320–321

.FORWARDHELPCATEGORY help 320

.FORWARDHELPTARGETNAME
help 320

.LINK help 320

.PARAMETER help 319

.REMOTEHELPRUNSPACE help 320
Common Information Model (CIM) 8, 709
-ComObject parameter 761
CompanyName element 367
comparison operators 124–131

and case-sensitivity 127–128
case sensitivity factor 124
design rational 125
left-hand rule 126
scalar 125–127

basic comparison rules 126
type conversions and comparisons 126–127

using with collections 129–131
compile time 436
compiled script 438
compile-time error 185
compiling code, with Add-Type cmdlet 440–446

defining new .NET class with C#
language 440–442

defining new enum types at runtime 442–443
dynamic binary modules 443–446
936 INDEX

complete statement 56
complied programs 722
.COMPONENT help tag 320
Composing solutions role 324
composite management applications, mash-

ups 324–325
compound assignment operators 120
compression, of properties in serialization 509
-ComputerName parameter 602, 805
COMtools.psm1 module 770–771
-Concatenate parameter 513
concatenated statements 80
concatenation, of arguments 240
concrete system resources 799
concurrency, adding to remoting

examples 455–457
concurrent connections

fan-in remoting 528
fan-out remoting 528
limiting 522

concurrent operation
using remoting 455
with jobs 487

concurrent sessions, in ISE 607
condition part, of if statement 202
condition test 206
conditional breakpoints 654
conditional matches 219
conditional statement 199–203
configuration script

boilerplate 551
updating 549

configuration updates, scope of change 549
-ConfigurationName parameter 530
configurations 530–535

creating custom 531–533
registering endpoint configuration 532–533
session configuration 531–532

setting security descriptors on 534–535
Configuring the environment role 324
-Confirm flag 292
ConfirmImpact property 293
$ConfirmPreference preference variable 293
connection patterns, remote services 527–530

fan-in 528–530
fan-out 527–528

connections
establishing remote 510–511
persistent, remoting sessions and 462–473
testing 510

Connect-WSMan cmdlet 509, 514
Connect-WSMan command 525
console

reading and writing to 496–497
threading differences between ISE and 618

console APIs 735
console applications, in ISE 616
console editing features 16
console host 14–16
console objects 616
Console.ReadLine API 496
Console.WriteLine API 496
[ConsoleColor] parameter 310
constant expression folding, in PowerShell 562
constant expressions 562
constant variables 184
constrained application environment, in

remoting 530
constrained endpoint 543
constraining

execution environments 543
sessions 535–543

controlling command visibility 536–539
setting language mode 539–543

construction elements, module manifests 370–375
loader elements 371–373
module component load order 374–375

Constructors type 106
containment operators 130–131
-contains operator 130–131
content elements, module manifests 375–376
context properties, searching with 692
context-sensitive keywords 199
continue keyword 571
continue statement 212–215, 220, 571
contract parameter 305
control actions, defining 775–776
control flow, in trap statement 572
control structures 393
control transfer, in trap statements 570
Controls member 751
convenience aliases 48
INDEX 937

conventions, used in examples 15
conversion and precision 73, 102
conversion error 185
conversion rule 113
conversions, of types 101–109

.NET-based custom 104–107
built-in 104
in parameter binding 107–109
overview 101–104

ConvertFrom-SecureString cmdlet 918
ConvertTo-SecureString cmdlet 918
ConvertTo-Xml cmdlet 711–714
copying elements 114
copying, into Windows clipboard 17
Copy-Item cmdlet 239, 673

-LiteralPath parameter 670
Copyright element 367
Core cmdlet noun 664
core cmdlets 664–665, 673
Count property 131, 238
$count variable 342, 379, 416

using with Get-Count and Reset-
Count 338–339

variables and aliases exported 345
counter module 343, 382
counter2 module 350, 353
counting loop 205
countUp function 350
Create() method 627, 776, 819, 828, 842
CreateElement() 695
CreateProcess() API 898, 922
credential dialog 621
credential information 452
-Credential parameter 511
credentials

and scheduled tasks 789–792
forwarding in multihop environments 515–517
passing securely 516

CredSSP (Credential Security Service
Provider) 509, 515–517

CredSSP type 515
critical operations 566
Critical type 599
cryptography 889
CSV file 188

Ctrl-Break 616
Ctrl-C 616
Ctrl-F5 637
Ctrl-N 611, 625
Ctrl-O 612
Ctrl-R 611
CUA (Common User Access) 17, 610
currency symbol 181
current directory 208
current execution line, displayed in debugger 649
Current property 264
current scope 280
current state 769
current working directory 111
CurrentDomain property 725
CurrentFile property, ISE object model 623
CurrentPowerShellTab property, ISE Object

model 623
custom drives 665
custom hosts 546
custom menu items

hotkey collisions 634
removing 636
updating 635

custom objects 393, 417–418
custom remoting endpoint 543
custom services 527–552

access controls and endpoints 533–535
configurations 530–531
constrained execution environments 543
constraining sessions 535–543

controlling command visibility 536–539
setting language mode 539–543

remote service connection patterns 527–530
fan-in 528–530
fan-out 527–528

CustomClass keywords 428–433
customizing ISE

setting font and font size 624
using object model 621

D

Danom virus 890–891
data abstraction 428
Data General 9
938 INDEX

data structure, example of 122
data, processing 25–30

problem-solving pattern 29–30
selecting properties from objects 27–28
sorting objects 25–27
with ForEach-Object cmdlet 28–29

DateTime objects 11, 128, 585, 805
DayOfWeek property 406
DCE/RPC (Distributed Computing Environment/

Remote Procedure Call) 802
DCOM protocol 802
(DDL) dynamic link library 42, 721
dead objects 803
Debug menu

Disable All Breakpoints item 649
Display Call Stack 649
Enable All Breakpoints item 649
List-Breakpoints item 649
Remove All Breakpoints item 649
Run/Continue item 648
Step Into item 648
Step Out item 648
Step Over item 648
Stop Debugger item 648
Toggle Breakpoint item 649

Debug mode 651
debug mode prompt 649
debug statements 259
debugger shortcut commands 651
debugging 63

command-line 652–660
breakpoints 653–658
debugger limitations and issues 658–660

problems in function output 259–262
scripts 638–647

nested prompts and Suspend
operation 643–647

Set-PSDebug cmdlet 638–643
v2 debugger 647–652
with host APIs 580–593

catching errors with strict mode 582–584
Set-StrictMode cmdlet 584–589
static analysis of scripts 589–593

[decimal] value 75
declaring parameters 241

declaring types 73
decrement operator 155
default assemblies 722
default clause 216
default file encoding 676
default presentation, overriding 558
default prompts, in remote sessions 470
default remoting port (HTTP) 518
default remoting port (HTTPS) 518
default session configuration, creating 534
Default type 514
default values, initializing function parameters

with 246–247
default, security by 897–898

disabling remoting 897
managing command path 898
no execution of scripts 897–898
notepad 897

DefaultParameterSetName property 293
Definition property 477, 540, 547
definitions

managing in session 267–269
of words, looking up using Internet

Explorer 779–781
delegation

and delegates 850–853
non-GUI synchronous event

example 851–853
Delete() method 825
deleting

functions 399
variables 583

-Delimiter parameter 678–679
denial-of-service (DoS) attacks 892
-Depth parameter 713
depth, default serialization 498
Descendants() method 710
Description element 367
Description property 388, 805
descriptors, security 534–535
Deserialized Property 508
design decision, contentious issues 125
desk.cpl command 598
Desktop Management Task Force 8
destructive conversion 102
INDEX 939

DeviceID property 840
DHCPEnabled property 805
diagnosing problems, using Eventlog 602
diagnostics error 562
diagnostics, tracing and logging 553
dialog boxes, WinForms 747–750
DialogResult property 749
Dictionaries type, serialization in 507
Digest type 515
digital signature 905
dir alias, Get-ChildItem 664
dir command

comparison between two files 11
new PowerShell console 14–15
-Path parameter 738
positional parameters 249
using pipelines 158

DirectoryInfo object 423, 427
Disable All Breakpoints debug menu item 649
Disable-PSBreakPoint cmdlet 653
Disable-PSSessionConfiguration cmdlet 531
Disable-WSManCredSSP cmdlet 509
discarding error messages 568
discarding output 183
Disconnect-WSMan cmdlet 509
Display Call Stack debug menu item 649
display settings, desk.cpl command 598
display, width of 65
DisplayName event 875
DisplayName property 626, 628
Distributed Computing Environment/Remote Pro-

cedure Call (DCE/RPC) 802
distributed object model 802
division 74
division by zero error 561
division operator 117–119
DLL (dynamic link library) 42, 721
DLR (Dynamic Language Runtime) 729
DMTF (Distributed Management Task

Force) 799
DNS (Domain Name Service) names, and IP

addresses 518
Do It button 744
doc comments 315
Dock property, on winforms objects 746

DockPanel control 775
documentation comments 315
documentation package, PowerShell 14
documenting 314–321

help
automatically generated fields 315
comment-based 316–318
creating manual content 315–316

tags used in comments 318–321
.COMPONENT help 320
.EXTERNALHELP help 320–321
.FORWARDHELPCATEGORY help 320
.FORWARDHELPTARGETNAME

help 320
.LINK help 320
.PARAMETER help 319
.REMOTEHELPRUNSPACE help tag 320

documents
analyzing word use in 683–684
test 703–704

dollar sign 186
domain controller 511
domain, extracting 137
domain-specific languages 428, 709
DoS (denial-of-service) attack 892
dot operator 173–177, 197
dot script 283
DotNetFrameworkVersion element 367–368
dot-sourcing 615

scripts and functions 283–284
[double] type 74
double assignment, Fibonacci example 121
double quotes 52, 437
double-clicking on script 897
double-colon operator 177–178, 197
double-quoted strings 78–79
do-while loop 204–205
DPAPI (Windows Data Protection API) 918
drives

and providers 665
creating custom 665
function: drive 672
PowerShell drive abstraction 665
variable: drive 672

DriveType property 840
940 INDEX

DSL (Domain-Specific Language) 686, 709
dynamic binary modules 445
dynamic code generation 658
Dynamic Language Runtime (DLR) 729
dynamic languages 73, 400, 428

debugging 643
security 895

Dynamic Link Libraries (DDL) 42, 721
dynamic linking, pros and cons of 721
dynamic modules 412–418

and event handler state 862–863
binary 443–446
closures 414–417
creating custom objects from 417–418
script 412–414

dynamic parameters, and dynamicParam
keyword 311–314
steps for adding 312–314
when to use 314

dynamic scoping 272–273, 430
defined 269
implementation of 415
passing arguments from enclosing scope 926
same name of variables 652

dynamic typing 72, 586
dynamically generating scriptblocks 642
dynamicParam block 312

E

-ea parameter 567
Eclipse minicomputer 9
edit.com program 45, 617
editor

ISE 610–614
files 612–613
syntax highlighting in ISE panes 614
tab expansion in editor pane 613–614

running current pane contents 614–615
editor buffer, ISE editor pane 631
editor keystrokes 16
editor pane

hiding in ISE 610
ISE (Integrated Scripting Environment) 18–20,

607
making changes in 631–632

EjectPC() method 766
elastic syntax 46, 239

aliases and 47–50
definition 48

Element() method 710
elements, adding to XML objects 695–697
elevated privileges, and remoting 468
elevation of privilege, defined 892
elseif clauses 201
elseif keyword 201–202
emits objects 257
empty arrays 94–96, 211
Enable All Breakpoints debug menu item 649
Enable Strong Protection box, Certificate Export

Wizard 914
Enabled timer property 728
Enable-PSBreakPoint cmdlet 653
Enable-PSRemoting cmdlet 450, 452, 531
Enable-PSSessionConfiguration cmdlet 531
Enable-PSTrace 334
Enable-WSManCredSSP cmdlet 509, 516
enabling V1 strict mode 583
encapsulating data and code 400
encoded pipeline 505
encoding

command arguments 505
serialization 505
used in strings 77–78

-Encoding parameter 311, 679
-encoding parameter 184
encryption

in remoting 514
public key, and one-way hashing 904–905

encryption key, security 918
end blocks, functions with 266–267
end clause 267, 397
End() function 420
end-of-parameters parameter 41
endpoints

access controls and 533–535
registering configurations 532–533
remoting configuration 532
unregistering 533
verifying existence 533

end-processing clause 62
INDEX 941

engine events
generating in functions and scripts 876–877
predefined 875–876
registrations 875–877

EnterNestedPrompt() method 646
enterprise, enabling remoting in 452–454
Enter-PSSession cmdlet 450, 469, 518, 619, 621
Enter-PSSession command 34
EntryType filter 599
EntryWritten event 879
enum types

defining new at runtime 442–443
serialization in 506

enumerable collection array 114
-Enumerate parameter 837
enumerating collection, update issues 635
enumerating, hash tables 87–88
enumeration types 683
enumerations 814

filtering results 837–838
singleton resources vs. 836–837

EnumerationTimeoutms setting 525
enumerators 636
en-US bubdirectory 363
$ENV: environment provider 376
$ENV: MYAPPDIR variable 376
$ENV: PATH 329
$ENV: PROCESSOR_ARCHITECTURE 376
$ENV: PSModulePath directory 362, 368
$ENV: PSModulePath variable 329
$ENV drive 619
env namespace 186
$ENV:HOMEPATH environment 494
$ENV:PATH environment variable 898
$ENV:PATHEXT variable 898
$ENV:PROCESSOR_ARCHITECTURE

variable 499
$env:PSExecutionPolicyPreference

environment 903
environment variables 186, 197, 619
environmental forces, definition 6
-eq operator 124, 127
$error[0] 562
error action policy 566, 578
error action preference 566–567, 571

error buffer
circular bounded buffer 560
controlling size 560
operations 561

error codes
$LASTEXITCODE variable 565
use in PowerShell 554

error messages 244, 568
error objects 182, 259, 564
error processing subsystem 554
error record exception property 559
error records 554

as formatted text 556
as strings 556
displaying all properties 558

error stream 259
error subsystem, architecture of 554
$error variable 559–564
$error.Clear() method 560
-ErrorAction parameter 567–569
-ErrorActionpreference parameter 569
$ErrorActionPreference variable 567, 569, 571
ErrorDetails Property 557
ERRORLEVEL variable 281
ErrorRecord 554, 572
errors 553–605

capturing error objects 560
capturing session output 593–596
catching 431
debugging with host APIs 580–593

catching errors with strict mode 582–584
Set-StrictMode cmdlet 584–589
static analysis of scripts 589–593

event log 597–605
EventLog cmdlets 597–602
viewing 603–605

getting detailed information about 559
handling 554–569

$error variable and -ErrorVariable
parameter 560–564

controlling actions taken on errors 566–569
determining if commands had

errors 564–566
error records and error stream 555–560

object references 563
redirecting 181–182
942 INDEX

errors (continued)
runtime behavior 566
that terminate execution 569–580

throw statement 578–580
trap statement 570–575
try/catch/finally statement 575–578

types of 554, 599
-ErrorVariable parameter 560, 562–564
escape character 53, 669
Escape processing. See quoting
escape sequence processing 54
evaluates 228
evaluation order, in foreach loop 209
event log 597–605

accessing from PowerShell 603
EventLog cmdlets 597–602
viewing 603–605

event log entries
event categories in PowerShell log 603
PowerShell state transitions 603
properties 604
types 603

event log tasks
clearing and event log 597
creating new event log 597
listing available logs 598
setting log size limits 597
writing new event log entry 597

$Event variable 861
Event viewer, and Show-Event cmdlet 597
$event.Entry.Message 880
$Event.SourceArgs 861
event-based script 849
EventHandler variables 745
EventIdentifier 865
eventing cmdlets 854–855
EventLog cmdlets 597–602
EventLog events 879–882
EventLog object 879
events 847–887

asynchronous 853, 855
.NET events 855–860
event handling with scriptblocks 860–863
eventing cmdlets 854–855
subscriptions, registrations, and actions 854

engine
event registrations 875–877
generating events in functions and

scripts 876–877
predefined 875–876

forwarding, remoting and 877–882
handling 848–849
Microsoft WMI 866–875
Microsoft WMI intrinsic classes 871–874
queued, and Wait-Event cmdlet 863–866
synchronous 849–853

delegates and delegation 850–853
in GUIs 850

workings of 882–887
Events member 751
EventSubscriber cmdlet 861
$EventSubscriber variable 861
EventWatcher1 879
exact matches 219
example code 22–35

basic expressions and variables 23–25
flow control statements 30–31
navigation and basic operations 22–23
processing data 25–30

problem-solving pattern 29–30
selecting properties from objects 27–28
sorting objects 25–27
with ForEach-Object cmdlet 28–29

remoting and Universal Execution Model 32
scripts and functions 31–32

examplemodule.dll 356
Exception property 558
exceptions. See also errors

accessing in trap block 572
C# and VB.Net 554
catching all exceptions 570
related to error records 572
rethrowing 571
terminating error 570
throwing 574

Exchange server 505
executables 495–496
executing code, at runtime 436
execution

errors that terminate 569–580
throw statement 578–580
INDEX 943

execution (continued)
trap statement 570–575
try/catch/finally statement 575–578

of scripts, none by default 897–898
policy, enabling scripts with 898–903

execution context, and remoting 466
execution environments, constrained 543
execution policy 910, 915

and implicit remoting 473
for scripts 276–278

execution stopped error 568
$ExecutionContext variable 437, 539
-ExecutionPolicy parameter 901
ExecutionTimeLimit property 789
executive job 490
exit code 565
exit command 34

in remoting 470
issued in constrained sessions 550

exit scripts 280
exit statement, exiting scripts and 280–281, 645
exit with code 0 565
Exit() API 643
exiting constrained sessions, with Exit-PSSession

function 550
Exit-PSSession cmdlet 450
Exit-PSSession function 550
expandable strings 78
ExpandString() method 437–438
Explicit Cast Operator type 107
explore objects 423
Explore() method 766
Explorer, as a shell 6
Export-Clixml cmdlet 711, 714–718
Exported member term 326
ExportedCommand property 353
ExportedCommands 350, 381
ExportedFunctions member 332, 381
exporting certificates 913
Export-ModuleMember 413
Export-ModuleMember cmdlet 325–326,

343–347
controlling module member visibility with

calculated module exports 346–347

controlling export 343–346
exports 334

accessing using PSModule Info object 381–382
calculated module 346–347
elements 337
of functions, controlling 343–344
of variables and aliases, controlling 344–346

Expression Blend 610
expression member, with Select-Object 411
expression mode 54
expression oriented syntax, with try/catch

statements 578
expression-mode parsing 54–56
expression-oriented language 589
expressions 231

basic 23–25
operators in. See operators in expressions
using try/catch/finally statement in 578

extended type system 64
extending

ISE 622–638
$psISE variable 622–623
custom menus 633–638
Options property 624–625
tabs and files 625–629
text panes 629–633

objects 423
PowerShell language 428–436

adding CustomClass keywords 428–433
little languages 428
type extension 433–436

runtime 445
extensibility points, in ISE 622
EXtensible Application Markup Language. See

XAML
Extensible Stylesheet Language Transformations.

See XSLT language 710
External command lookups 548
external commands

error handling 565
in sessions 538

external executables 44
.EXTERNALHELP <XML HELP FILE PATH>

help tag 320
944 INDEX

F

-f operator 103, 179–180, 197
F5 execute current text buffer 615
F8 execute selected text 615
factorial function 262
FailFast() method 853, 880
Failure Audit type 599
$false variable 131, 184
fan-in remoting 528–530
fan-out remoting 527–528
Fibonacci sequence 121
fidelity 497
fields 66, 682
file association 897
file encodings 675–676
file length 188
File menu, ISE 620
file names, matching 132
file not found error 562
file operations 663

concatenating multiple files 675
display file contents 675
formatting and output subsystem 686
reading 674
renaming 673
searching file hierarchy 691
writing binary data 679
writing pre-formatted data 679
writing to files 679

-file option 222
-File parameter 285
file paths 667, 669
File property 352
file search tool

defining appearance 754–756
specifying behavior 756–758

file system
listing directories 664
working with 22

file system provider 187, 667
FileInfo object 175
FileList manifest element 375
-FilePath option 461
-FilePath parameter 494
files 625–629

adding file checker menu item 637
creating new 613
default association, notepad 897
loading and saving 697–701
opening 612–613
processing 672–681
processing with switch statement 221–222
saving list of open 632–633
searching with Select-String cmdlet 688–693

getting all matches in line 692–693
-list and -quiet parameters 690–691
trees of files 691
with context properties 692

specifying format and password 914
FileSystemWatcher object 864
FileVersionInfo property 33
filter keyword 265, 267
-Filter parameter 810–812
filtering

enumeration results 837–838
where cmdlet 33

Filtering output, using Get-Member cmdlet 557
filters 398

and functions 265–266
filtering EventLog entries 599

finally keyword 575
FindName() method 776
findstr command 688
firewall exception, for WinRM Service 453
fl command 48
flattened results 226
floating point 24
flow control 198, 234–235

adding new 428
conditional statement 200–203
labeled loops and break and continue

statements 212–215
looping statements 203–212

do-while loop 204–205
for loop 205–207
foreach loop 207–212
while loop 203–204

performance 233–235
statements as values 231–233
switch statement 215
INDEX 945

flow control (continued)
processing files with 221–222
using $switch loop enumerator in 222
using regular expressions with 217–221
using wildcard patterns with 216–217

using cmdlets 223–231
ForEach-Object 223–228
Where-Object 228–231

flushing changes 828–829
Folder object 789
folder structure, of modules 362–363
foo imports 326
foo variable 817
for loop 30, 205–207
-Force flag 359
Force option 388
-Force parameter 341, 380, 513

in process of remoting access 451
overwriting existing definition 439
removing jobs 487
using with SecureString cmdlets 919
viewing hidden files with 668

foreach block 877
foreach cmdlet 526
foreach keyword 207, 225
foreach loop 207–212, 875

and $null value 211–212
debugging 639
defined 30
displaying hash tables 88
evaluation order in 209
removing items from collection 635
using $foreach loop enumerator in 209–211
using range operator 167

$foreach loop enumerator, using in foreach
loop 209–211

foreach statement 30, 87, 205, 207, 209, 234,
635–636

$foreach variable 209, 263, 701
$foreach.MoveNext() method 210
ForEach-Object cmdlet 223–228, 393–394, 398,

684, 849
argument processing by 227–228
as anonymous filter 265
comparing order of execution with foreach

loop 209

comparing with foreach statement 31
definition and example 30
processing with 28–29
recognized as command or statement 207
using alias 702
using return statement with 227

Foreach-Object cmdlet 169
foreground color

setting in ISE 625
forensic tools 916
formal arguments 246
formal parameters, declaring for

functions 241–257
adding type constraints to 243–245
handling mandatory 248
handling variable numbers of arguments 246
initializing with default values 246–247
mixing named and positional 242–243
switch parameters 248–257

format operator 179–181
format specifier element 180
format string 179
Format-Custom formatter 66
Format-List cmdlet 332, 341, 350

using to display Registry 671
using to see error record 558
using to see log 600
using with Get-WSManInstance 832

Format-List command 64–65
formats, specifying for files 914
FormatsToProcess element 370, 373
FormatsToProcess manifest element 373
Format-Table cmdlet 411
Format-Table command 34, 64
formatting output 179, 686

in interactive remoting 471
in non-interactive remoting 472

formatting strings 179
Format-Wide cmdlet 66
Format-XmlDocument function 837
-Forward parameter 877
.FORWARDHELPCATEGORY <CATEGORY>

help tag 320
.FORWARDHELPTARGETNAME <COM-

MAND-NAME> help tag 320
946 INDEX

forwarding events, remoting and 877–882
fragments, of script code 569
frameworks, for WPF 758–759
freespace 29
FullName property 425, 724
full-screen applications 616
full-screen editor 617
fully qualified path 666
FullyQualifiedErrorId property 558
function body 238
function calls, tracing 639
function definition, changing 399
function definitions 268, 546
function drive 268, 274, 398, 439–440
function keyword 44, 316, 397, 399
-Function parameter 334
function provider 399, 547
function visibility, constrained sessions 537
function: drive 399, 672
FunctionInfo object 399
functions 31–32, 43, 236–274

body of 32
called like methods 586–587
calling 242
declaring formal parameters for 241–257

adding type constraints to 243–245
handling mandatory 248
handling variable numbers of

arguments 245–246
initializing with default values 246–247
mixing named and positional 242–243
switch parameters 248–257

defining at runtime 398–400
definition 397
dot-sourcing scripts and 283–284
fundamentals of 237–240

$args variable 237–240
ql and qs functions 239–240

generating events in 876–877
initializing parameters 580
managing definitions in session 267–269
parameterizing 237
returning values from 257–263

debugging problems in function
output 259–262

return statement 262–263
using in pipeline 263–267

filters and functions 265–266
functions with begin, process, and end

blocks 266–267
variable scoping in 269–274

declaring variables 270–272
modifiers 272–274

VBScript 784
function-scoped variable 282
FunctionsToExport element 370

G

GAC. See global assembly cache
gateway server 515
General Impression, Size, and Shape (GISS) 37
generating elements 209
generating script 279
generic types 98–99, 739–740
Get command 841
GET() method 825
Get/Update/Set pattern 253–257
GetAssemblies() method 725
Get-AuthenticodeSignature cmdlet, security 911
Get-Bios command 477
Get-Bios function 476
Get-BrowserWindow function 770, 772–773
Get-Character function 253, 255
Get-ChildItem cmdlet 395, 402, 664, 691
Get-ChildItem command 47
Get-Command 332, 339, 342, 353, 384, 545
Get-CommandString function 758
GetConsoleWindow() method 734
Get-Content cmdlet 221, 673–678

performance caveats 680–681
-ReadCount parameter, and Where-Object

cmdlet 229–231
reading files 697
sending data to pipeline 122
sending data to variables 143
using with binary files 188

Get-Content command 47
Get-Count 338–339, 342–343, 345
Get-Count function 379–380, 383–384
Get-Credential cmdlet 475, 917, 919
INDEX 947

Get-Date cmdlet 81, 182, 247, 395, 593
Get-Date command 11, 395
GetEnumerator() method 87, 720
Get-Event cmdlet 854
Get-EventLog cmdlet 597–598, 601, 603

filtering entries 602
-InstanceID parameter 602
-Message parameter 602
-Source parameter 602

Get-EventSubscriber cmdlet 854, 856, 859
GetExportedTypes() method 725
Get-HealthModel command 544
Get-Help cmdlet 701
Get-Help command 22, 325
Get-Help Online about_execution_policies 31
Get-HexDump function example 676–677
Get-Item cmdlet 512, 564, 567
Get-Item command, retrieving RootSDDL 534
Get-ItemProperty cmdlet 672
Get-Job cmdlet 483–485, 882
GetLength() function 784
Get-Location cmdlet 665, 673
Get-MagicNumber function example 677–679
Get-MailboxStatistics command 29
Get-Member cmdlet 175, 557, 623, 653, 765, 857

examining objects 400
getting information of object using 13
static members 401

GetMembers() method, listing object
members 119

Get-Module cmdlet 333, 359
description of 325
finding modules 327–329
getting information about loaded module 331,

350–351
GetNetworkCredential() method 790
GetNewClosure() method 415
Get-OkCancel() function 747
Get-PageFaultRate command 531
Get-PfxCertificate cmdlet 915
Get-Process command 29, 40
Get-ProgID function 763
Get-PSBreakPoint cmdlet 653
Get-PSCallStack cmdlet 653
Get-PSDrive command 457

Get-PSProvider cmdlet 664
Get-PSSession cmdlet 472
Get-PSSession command 472
Get-PSSessionConfiguration cmdlet 531
Get-Service cmdlet 711
Get-Spelling.ps1 script 781
GetTempFileName() method 881
getter method 407
GetType() method 73, 123, 142
GetTypes() method 726
Get-Variable cmdlet 651
Get-Variable function 379
Get-WmiObject cmdlet 804–813

-Filter parameter 810–812
Microsoft WMI objects

selecting instances using filters and
queries 810

selecting using -Query parameter 812–813
navigating CIM namespaces 807–810
using to find Microsoft WMI classes 806–807

Get-WmiObject command 29
Get-WordDefinition function 779
Get-WSManCredSSP cmdlet 509
Get-WSManInstance cmdlet

retrieving management data with 832–839
filtering enumeration results 837–838
getting Win32_OperatingSystem

resource 834–836
selecting instances 838–839
singleton resources vs.

enumerations 836–837
targeting WS-Man resources using URIs 834

gigabytes 83
GISS (General Impression, Size, and Shape) 37
$global 387
global assembly cache 722
global context 186
global environment, importing nested modules into

with -Global flag 352–353
-Global flag, importing nested modules into global

environment with 352–353
global functions 430–431
global level 335
global modifier 273
-Global parameter 353
948 INDEX

global scope 436
$global:name scope modifier 281
globalization support, in ISE 607
goto statement 212
grammar 38
graphical debugger 648–652

executing other commands in debug mode 651
hovering over variables to see values 652

graphical environment 622
graphical programming 445
Graphical User Interfaces. See GUIs 743
green play button 18
grep command 688
GROUP clause 874
GROUP keyword, aggregating events

with 874–875
Group Policy, enable remoting using 452
GUI builder tools 752
GUI debugger 653
-Gui flag 774
-Gui option 773
-Gui parameter 773
GUID (globally unique ID) 762

serialization in 506
used as Job Instance ID 484

GUIs (graphical user interfaces) 4, 743–759
creating winforms modules 750–753
defining in XAML 774–775
synchronous events in 850
WinForms library 744–750

simple dialog boxes 747–750
WPF 753–759

advantages of 758
file search tool 754
frameworks for 758–759
preconditions 753

H

Handle property 839
handlers, event

state 862–863
timer 856–859

handles 226, 395
handling

events 848–849, 860–863

remote EventLog events, example 879–882
hanging applications, in ISE 616
has-a relationship 13
hash algorithm, MD5 889
hash table argument 244
hashing

one-way, public key encryption and 904–905
hashtable operators 112
hashtables 85–91

as reference types 90–91
counting unique words with 684–686
empty 429
enumerating 87–88
extending 435
modifying 88–89
sorting 87–88
use with Select-Object 411

health model function 544
Hello world program 3
help

automatically generated fields 315
comment-based 316–318
creating manual content 315–316
tags

.COMPONENT help 320

.EXTERNALHELP help 320

.FORWARDHELPCATEGORY help 320

.FORWARDHELPTARGETNAME
help 320

.LINK help 320

.PARAMETER help 319

.REMOTEHELPRUNSPACE help 320
help files, operating on 683
help subsystem, PowerShell 23
help topics, about_Assignment_operators 685
help viewer 611
helper function 430
HelpMessage property 302–303
here-strings 77, 80–82, 279, 638

loading XAML from 776–777
hex digits 114
hexadecimals 84–85, 180
hi function 470
hi member 425
hiding editor pane
INDEX 949

Ctrl-R 611
in ISE 610

highlighting syntax, in ISE panes 614
History tab 792
HitCount property, on breakpoints 654
hklm: registry drive 671
home directories, of providers 667
Home directory 667
$HOME variable 494
host APIs, debugging with 580–593, 595

catching errors with strict mode 582–584
Set-StrictMode cmdlet 584–589
static analysis of scripts 589–593

host application interfaces 643
host application, PowerShell 14
$host member 581
host programs 466
$host variable 467, 580, 646
host version 581
hosting fan-in remoting, IIS (Internet Information

Services) 529
$hostName parameter 308
hotkey sequences

defining in ISE 634
ISE pane positions 610

hovering over variables 652
Howard, Michael 892
HTML tags 741
HTTP (Hypertext Transport Protocol) 504
HTTPS (Hypertext Transfer Protocol Secure) 512
HTTPS (Secure HTTP) 504
hygienic dynamic scoping 269

I

I/O redirection 68, 183
IComparable interface 127
-IdleTimeout parameter 526
IE (Internet Explorer) 668
IEEE Specification 1003.2, POSIX Shell 9
IEnumerable interface 210, 720
-ieq operator 125
IETF (Internet Engineering Taskforce) 504
if statement 200, 358, 376, 774
IgnoreCase option 146
-IgnoreWarnings parameter 731

IIS (Internet Information Services) 529
IList interface 507
IList type 108
-Impersonation parameter 803
implementation decision, concatenation

hashtables 115
implicit behavior, overriding 127
Implicit Cast Operator type 106
implicit remoting 473–481, 535

and execution policy 473
connection sequence 474
generating temporary modules 480
in constrained sessions 545
in InitialSessionState 546
local proxy functions 473
message flow 476

Import-Clixml cmdlet 633, 714–718
Imported member term 326
importing SecureString 918
Import-Module cmdlet 331, 353–354, 358, 414

and nested modules 350
description of 325
loading modules 331, 356
module loading another 326
using -ArgumentList parameter 358
using -Global flag 352

Import-Module function 368, 372, 380
Import-PSSession cmdlet 474, 551
Import-PSSession, with constrained sessions 546
imports 334
increment operator 80, 155, 204
$increment variable 338, 345, 379, 384, 416
indenting text, in editor pane 612
index operation 396
indexing 167–170

of arrays 92
with variables 173

indirect method invocation 178–179
indirect property name retrievals 176
information disclosure attack 896
Information type 599
infrastructure script 461
inheritance hierarchy 424
inheritances 433
Initialize-ComplexConstrained-

HMConfiguration.ps1 548
950 INDEX

Initialize-ConstrainedHMConfiguration.ps1 543
initializer expressions 247–248, 580
initializing multiple variables 123
injection code 896–897
inline documentation 60
in-memory buffering 187
in-memory sessions, local 619
inner loops 214
InnerException property 559
InnerText() method 695
in-process execution 619
input redirection 182
input validation 895–896
$input variable 263, 265, 455
input, processing 264
$input.current.$p expression 264
-InputObject parameter 39, 51
InputObject parameter 813
installation directory path 434
installutil.exe program 354
instance members 177, 819
_InstanceCreationEvent class 871
InstanceDeletionEvent class 871
InstanceID filter 599
-InstanceID parameter, on Get-Eventlog 602
InstanceID property 600
InstanceModificationEvent class 872
InstanceOperationEvent class 872
instances

creating 429, 432
extending 401, 434
setting properties of 816–819
using Microsoft WMI paths to target 814–816

instantiating objects 727
integer 74, 127
integrated debugger, ISE 648
Integrated Scripting Environment 14

automating 20
command entry window 17
Ctrl-C behavior 17
Ctrl-C in 17
editor window 17
F8 key in 18
help within 23
is scriptable 20
multiple session tabs 18

opening multiple files 18
output window 17
syntax highlighting 18
three parts of 17
three parts of the 17
using F1 key 23
Visual Studio comparison 20

interactive command interpreter, security 897
interactive environment 226
interactive errors 562
interactive InitialSessionState 546
interactive mode 643
interactive operation, constrained sessions 545
interactive remoting 619

with custom configuration 549
interactive sessions 450, 469–472, 621

multiple concurrent sessions 471
interactive token, creating from credentials 515
intercepting expressions 124
interfaces, defined 12
interleave user commands 607
internal command lookups 548
internal commands 541
Internet Explorer, looking up word definitions

using 779–781
Internet Information Services 529
Internet, .NET framework and 740–743

processing RSS feeds 742–743
retrieving web pages 740–742

InternetExplorer.Application.1 ProgID. 763
Interop assemblies, COM and 761–796
Interop library 762
interpreter 199, 439, 639
interpreter reentrancy 643
Interval property 857
Interval timer property 728
intervening characters 136
invalid file name, security 896
invocation intrinsics 445
InvocationInfo property 558–559
Invoke method 178
Invoke() method 382–383, 627, 852
Invoke-Command cmdlet 32, 449, 518, 881–882

child jobs with 490–492
description of 450
syntax for 449
INDEX 951

Invoke-Expression cmdlet 104, 142, 377,
436–437, 643, 924
avoiding 923–927
security 895

Invoke-Gui piece 774
InvokeScript() method 437–438
invoke-WmiMethod cmdlet 819–822
Invoke-WSManAction cmdlet, invoking methods

with 841–846
invoking commands, indirectly 395
invoking script blocks 393
IP (Internet Protocol) addresses, DNS names

and 518
IP address 518
IPAddress property 805
ipconfig command 898
-is operator 152–154, 404
IsChecked property 757
ISE (Integrated Scripting Environment) 17–20,

260, 606–660
controlling pane layout 607–610

command pane 608–609
ISE toolbar 609–610

editor 610–614
files 612–613
syntax highlighting in ISE panes 614
tab expansion in editor pane 613–614

editor pane 18–20
executing commands in 614–616

running current editor pane
contents 614–615

selected text 615–616
extending 622–638

$psISE variable 622–623
custom menus 633–638
Options property 624–625
tabs and files 625–629
text panes 629–633

key bindings 610
running scripts in 616–618

issues with native commands 616–617
threading differences between console and

ISE 618
using multiple tabs 618–622

local in-memory session 619
remote session 619–622

View Menu 610
ISE menu item 634
ISE object model

adding new session tab 631
hierarchy of 623
reloading saved tabs 633
saving list of open 632
setting editor buffer contents 632

ISE panes 608
-isnot operator 152, 154
ISO/IEC recommendations 84
isolated execution environment. See AppDomain
isolation, between sessions 619
IT industry 8
Item() property 768
ItemNotFoundException 558
iterating value 211
iteration 215

J

jagged arrays 171, 197
JavaScript 401, 783
$jb variable 486
job objects 486, 859
jobs

background 481–493
cmdlets 483–487
commands 483
multiple 487–489
running in existing sessions 492–493
starting on remote computers 489–492

child
and nesting 489–490
with Invoke-Command cmdlet 490–492

removing jobs 487
waiting to complete 486

join 177
join method 177
-join operator 139–143, 406
Join() methods 683
joining strings 177
Join-Path cmdlet 376
JScript code, embedding in script 785–786
JScript language 785
jumping 214
952 INDEX

K

Kerberos 514
Kerberos type 515
key codes, reading from PowerShell 581
key-binding, ISE 610
keyboard shortcuts, in debugger 648
keys

in Registry 671
private protection, enabling strong 913–915
public encryption, and one-way

hashing 904–905
keys property 86
key-value pairs 85
keywords 199, 430, 433, 589
Kidder, Tracey 9
kilobytes 83
Kleene, Stephen Cole 394
Korn shell 9, 38

L

labeled loops, and break and continue
statements 212–215

lambda calculus 394
lambda expressions 394
language development 9–11
language elements 428
language mode

sequence of operations 544
setting 539–543

language restrictions, in module manifests 376–377
LanguageMode property 539, 541
last mile problem 8
$LAST variable 421–422
$last variable 421
$LASTEXITCODE variable 564–565
LastWriteTime property 11
lawn gnome mitigation, avoiding 893–894
layout settings, ISE panes 610
leading zeros, numeric comparison 126
LeBlanc, David 892
left aligned 180
left operand 118
left-hand rule operators 113
legacy commands 44
legitimately signed scripts 913

Leibniz, Gottfried Wilhelm 5
length of file object 221
length property 164, 170, 173
level of abstraction 8
levels of indirection 175
lexical analyzer 50
lexical element 81
lexical scoping 269
lexical, ambiguity with type literals 178
lfunc function 281
libraries

of functions 283
simple 283, 747–750
WinForms 744–750

lightweight data record 86
-like operator 132–133, 215, 217
Limit-EventLog cmdlet 598
lines, getting all matches in 692–693
.LINK help tag 320
linking, pros and cons of dynamic 721
list comprehensions feature 159
list of functions, function drive 398
-List parameter 690–691, 804
List type, serialization in 507
$list variable 194
-ListAvailable parameter 328
List-Breakpoints debug menu item 649
LiteralPath parameter 670–671
literals 96–101

accessing static members with 99–101
generic types 98–99
script block 397–398
type aliases 96–98

little languages 428
live objects 508, 803
live shell session 613
load order, of module components 374–375
Load() method 724
loader manifest elements, module

manifests 371–373
ModuleToProcess manifest element 371–372
NestedModules manifest element 372
RequiredAssemblies manifest element 372
ScriptsToProcess manifest element 372–373
TypesToProcess and FormatsToProcess mani-

fest elements 373
INDEX 953

loading
by module name 331–333
files 697–701
removing loaded modules 335–337
tracing with -Verbose flag 333–334

LoadWithPartialName() method 723
local certificate authority, role in remoting 512
local certificate store, defined 905
local in-memory sessions 619
local output, remote output vs. 497–498
local proxy functions 473
Local Security Policy MMC snap in 521
local session 619
Local User Administration dialog 920
LocalAccountTokenFilterPolicy 517, 521
Location property 354
LocationName property 772
logical complement 229
logical disk object 830
logical operators 148–150
logical type containment 720
lookup word definition 779
loop 80, 639
loop counter 206–207
loop keyword 428
loop processing 220
loop statement 233
looping construct, adding new 428
looping statements 203–212

do-while loop 204–205
for loop 205–207
foreach loop 207–212

and $null value 211–212
evaluation order in 209
using $foreach loop enumerator in 209–211

while loop 203–204

M

machines, monitoring
multiple machines 458
single machine 457–458

magic number, determining binary file types 677
MakeCert.exe program 906
malware, defined 890
MAML (Microsoft Assistance Markup Language)

format 316
management model, Windows 35
management objects 7, 797–846

Microsoft WMI 798–801
cmdlets 801–824
infrastructure 799–801
object adapter 824–830
putting modified objects back 828–830

WS-Man 830–846
management, of types 72–77
managing error records 560
managing resource consumption, with quotas 523
mandatory arguments 223, 248
mandatory parameters

handling 248
in functions using throw statement 580

Mandatory property 248, 297
manifests 721
manipulate script blocks 400
manipulating code 400
manual documentation, in help files 315–316
.map() operator 209
Margin property 756
mash-ups, composite management

applications 324–325
Match class, System.Text.Success property 688
match group 135
Match object, Value property 688
-match operator 134–137, 215, 218, 687, 772

matching using named captures 135–136
parsing command output using regular

expressions 136–137
Match() method 687
matched value 216
$matches variable 134, 218
matches, getting all in line 692–693
MatchEvaluator class 851–852
MatchEvaluator method 852
MatchInfo class 692
MatchInfo object 691
matching process 216
matching quote 52
math operations, advanced 727
MaxEnvelopeSizeKB setting 523
maximum integer value 578
954 INDEX

$MaximumErrorCount variable 560
MaximumReceivedDataSizePerCommandMB

parameter 523
MaximumReceivedObjectSizeMB parameter 523
$MaximumVariableCount variable 523
MaxPacketRetrievalTimeSeconds setting 525
MaxProviderRequests setting 523
MaxShellsPerUser controls 511
MaxTimeoutms setting 524
MD5 hash algorithm 889
Measure-Command cmdlet 465
Measure-Object cmdlet 710
megabytes 83
member collection 425
member types 400
member types, Add-Member cmdlet 403
-MemberDefinition property, On Add-Type

cmdlet 730
members, creating Singleton definitions 730–734
memory consumption 560
menus, custom 633–638

adding file checker item 637
submenu for Snippets 637–638

merging streams 183
Message filter 599
-Message parameter 602
-MessageData parameter 855, 863
MessageData property 863
metadata. See also module manifests 288, 391
metaprogramming 392–446

building script code at runtime 436–440
$ExecutionContext variable 437
creating elements in function drive 439–440
ExpandString() method 437–438
Invoke-Expression cmdlet 436–437
InvokeScript() method 438
script blocks 438–439

compiling code with Add-Type
cmdlet 440–446

defining new .NET class with C#
language 440–442

defining new enum types at
runtime 442–443

dynamic binary modules 443–446
dynamic modules 412–418

closures 414–417
creating custom objects from 417–418
script 412–414

extending PowerShell language 428–436
adding CustomClass keywords 428–433
little languages 428
type extension 433–436

objects 400–410
adding note properties with New-Object

cmdlet 409–410
public members 400–402
using Add-Member cmdlet to

extend 402–408
script blocks 393–400

defining functions at runtime 398–400
invoking commands 394–396
literals 397–398

Select-Object cmdlet 410–412
steppable pipelines 418–423

creating proxy command with 420–423
type system 423–428

adding properties to 425–427
shadowing existing properties 427–428

method call arguments 176
method invocations 176, 178–179
method operators 173–179

dot 174–177
indirect method invocation 178–179
static methods and double-colon

operator 177–178
methods

defined 11
functions called like 586–587
invoking with Invoke-WSManAction

cmdlet 841–846
static, calling 819–822

Methods type 403
Microsoft Assistance Markup Language (MAML)

format 316
Microsoft Baseline Configuration Analyzer 462
Microsoft Communications Protocol Program 505
Microsoft Developers Network. See MSDN 424
Microsoft Exchange 29
Microsoft Management Console. See MMC
Microsoft security response 890
INDEX 955

Microsoft study on improving offerings 7
Microsoft Update 14
Microsoft Windows

automating with COM (Component Object
Model) 764–777

browser windows 767–777
Shell.Application class 765–766

connection issues 520–522
Task Scheduler 786–793

Schedule.Service class 786–787
tasks 787–793

Vista, connection issues 521–522
XP with SP3, connection issues 520–521

Microsoft WMI (Windows Management
Instrumentation) 8, 75, 522, 797, 866–875
cmdlets 801–824

common parameters 802–803
Get-WmiObject 804–813
invoke-WmiMethod 819–822
remove-WmiObject 822–824
Set-WmiInstance 813–819

documentation 807
event registrations

class-based 867–870
query-based 871–875

example of 29–30
infrastructure 799–801
methods 824
namespace hierarchy 814
object adapter 824–830
putting modified objects back 828–830
samples and resources, adapting 830
type accelerator 828

Microsoft Word, spell checking using 781–783
Microsoft.PowerShell endpoint 533
Microsoft.PowerShell, session configuration 524
$mInfo variable 388
minicomputer, Eclipse 9
minute property 412
mitigation

defined 893
serialization 505
threats, assets, and 893–897

authentication, authorization, and
roles 894–895

avoiding lawn gnome mitigation 893–894
blacklisting/whitelisting 894
code injection 896–897
input validation 895–896

mkdir command 67
MkDir function 673
mkdir function 268
MMC (Microsoft Management Console) 32, 521,

597, 908, 922
modeling

security 891–897
threat modeling 891–892
threats, assets, and mitigations 893–897

models, defined 891
Model-View-Controller (MVC) pattern 187
modernized languages 418
modifiers 272–274, 428
modifying hashtables 88–89
module boundary 541
module exports 535
module identity 368
Module manifest term 326
module manifests 361–391

construction elements 370–375
loader manifest elements 371–373
module component load order 374–375

content elements 375–376
controlling when modules can be

unloaded 388–389
defining module vs. calling module 384–387

accessing calling module 385–386
accessing defining module 385–386

language restrictions in 376–377
module folder structure 362–363
production elements 366–370

module identity 368–370
runtime dependencies 368–370

PSModuleInfo object 378–382
accessing module exports using 381–382
invocation in module context 378–381
methods 382–384

running an action when module is
removed 389–391

setting module properties from inside script
module 388

structure of 363–366
956 INDEX

Module member term 326
Module property 351, 383
module scope 349
Module type term 326
ModuleList element 375
ModuleName property 351–352
module-qualified command name 548
modules 7, 322–360

accessing exports using PSModule Info
object 381–382

basics of 325–327
single-instance objects 326–327
terminology 326

binary 353
creating 355–357
nesting in script modules 357–360
vs. snap-in modules 354–355

browser window management 770–777
adding graphical front end 773–774
defining control actions 775–776
XAML 774–777

component load order 374–375
controlling unloading of 388–389
dynamic

and event handler state 862–863
closures 414–417
creating custom objects from 417–418
script 412–414

dynamic binary 443–446
finding on system 327–330

imports and exports 334
loading module 331–334
module search algorithm 329–330

identity 368–370
invocation of PSModuleInfo object in context

of 378–381
removing loaded 335–337
role of 323–325
running actions when removed 389–391
setting properties from inside script module 388
winforms 750–753
writing script 337–353

controlling member visibility with Export-
ModuleMember cmdlet 343–347

installing module 347

nested modules 350–353
review of scripts 338–340
scopes in script modules 348–350
turning into module 340–343

ModuleToProcess element 370–372, 374
ModuleVersion element 367–368
modulus operator 117–119
Monad project 5
Monadology, The (Leibniz) 5
monitor size, and ISE 609
monitoring, using remoting 457
Move-Item cmdlet 673
MoveNext() method 210, 223, 264
MoveToNextAttribute() method 701
MSDN (Microsoft Developers Network) 68, 424

blogs home page 741
documentation 762

MSH/Cibyz worm 891
[MS-PSRP] remoting protocol 504
MSRPC (Microsoft Remote Procedure Call) 802
MS-WSMV (Web Services Management Protocol

Extensions for Windows Vista) 504
MTA (multithreaded apartment) 618, 793
multicore processors 618
multidimensional arrays 171–173, 197
multihop environments, forwarding credentials

in 515–517
multiline comments 59–60
multiline option 147–148
multimachine monitoring 457–462

multiple machines 458
parameterizing solution 459–462
resource management using throttling 458–459
single machine 457–458

multiple assignment 187, 240
multiple jobs

application of 488
performance considerations 489

multiple machines 622
multiplication operator 116–117
multiplier suffixes, for numeric types 83–84
multiplying numbers 113, 116
multiscope catch 579
multiscope trap 579
multivalued arguments 243
INDEX 957

MVC (Model-View-Controller) pattern 187
$MyInvocation.MyCommand.Module 385

N

nadd function 244
name member, with Select-Object 411
name of host, obtaining 581
Name property 175, 425, 491, 756, 815
named captures, matching using 135–136
named parameters 242–243
names, of variables

syntax for 186–188
vs. variable values 192–193

NAMESPACE class 808
namespace collisions 535
-Namespace parameter 730, 807
namespace providers 800
namespace qualifiers 272
namespace, notation variables 186
namespaces 665, 720
name-value pair 193
native commands 44–46, 565

issues with 616–617
Windows 39

navigation 22–23
-ne operator 124
negative indexing 170
Negotiate type 515
nest prompt characters 56
nested data structures 197
nested function 387
nested interactive session 644
nested loops 214
Nested module term 326, 350
nested modules 350–353

binary in script 357–360
importing into global environment with -Global

flag 352–353
nested pipelines 643
nested prompts, and Suspend operation 643–647

breakpoint command 646–647
suspending script while in step mode 644–645

nested session 646
nested shell operation sequence 643
nested statement 235

NestedModules element 370, 372
nested-prompt level 646
$NestedPromptLevel variable 645
nested-shell level 647
nesting, child jobs and 489–490
.NET assembly, loading 781
.NET class

defining new with C# language 440–442
.NET events 855–860

managing subscriptions 859–860
writing timer event handler 856–859

creating timer object 856
enabling 858–859
setting parameters 857

.NET exceptions 579

.NET framework 719–759
and Internet 740–743

processing RSS feeds 742–743
retrieving web pages 740–742

assemblies 721–725
default 722
loading 722–725
pros and cons of dynamic linking 721
versioning and 721–722

basics 720–721
GUIs 743–759

creating winforms modules 750–753
WinForms library 744–750
WPF 753–759

types
creating instances of 727–729
defining new with Add-Type

cmdlet 729–739
finding 725–727
generic 739–740

.NET interop wrapper 794

.NET libraries. See Assemblies

.NET object model
leveraging 10–11
self-describing 10

.NET/COM Interop library 761

.NET-based custom type conversion 104–107
netbooks 610
network programming 740
network tokens 515
958 INDEX

new interactive session 646
new language features 433
New Remote PowerShell Tab 620
new tasks, XML representation of 791
NewBoundScriptBlock() method 382–384, 416
NewBoundScriptBlockScriptblock() method 862
New-Control function 751
New-Event cmdlet 854
New-EventLog cmdlet 597
new_instance function 430–431
New-Item cmdlet 439, 672–673
newline character 56–57, 678
New-Module cmdlet 325, 413–414
New-ModuleManifest cmdlet 325, 363, 366
-NewName parameter 108
New-Object cmdlet 172, 425, 761

adding note properties to objects with 409–410
examples of 729
limitations of 728
-Property parameter 727–728

New-PSSession cmdlet 450, 465, 468–469, 518,
879

New-PSSessionOption cmdlet 519, 523, 526
NewScriptBlock() method 437–438
NewTask() method 788
New-WSManSessionOption cmdlet 509
NextMatch() method 688
No to All 642
-noclobber parameter 184
NoLanguage mode 550
non-filesystem providers 672
noninteractive remoting 450
non-numeric string 114
nonprintable characters 676
nonstructured exit 212
non-terminating errors 554, 566, 569
non-zero value 566
non-zero-length strings 253
-NoProfile option 494
normal flow of control 849
-notcontains operator 130
note member 433
note properties

adding to objects with New-Object
cmdlet 409–410

setting 408
Notepad function 666
notepad, default file association 897
Notepad.exe command 666
NoteProperty members, adding to

objects 405–406
NoteProperty PSPath property 425
-NoTypeInformation parameter 713
nouns 428
NTLM authentication 518
$null variable 583, 684–685

casting string to int 153
reference to uninitialized variable 184
using in integer expressions 570

numbers, conversion to string 25
numeric calculations 73
numeric comparison 126
numeric context 129
numeric conversion rules 127
numeric expressions, and $null 583
numeric types 82–85

hexadecimals 84–85
multiplier suffixes for 83–84
specifying 83

$numProcesses parameter 460

O

[object] type 354
object adapter

Microsoft WMI 824–830
type accelerators 825–828

object model
.Net 10
customizing ISE 621

object normalization 402
object streaming model 554
Object tab 713
ObjectNotFound category 559
object-oriented languages 245, 401
objects 128, 400

adding note properties with New-Object
cmdlet 409–410

creating custom from modules 417–418
defined 11
managing windows through 7–8
INDEX 959

objects (continued)
public members 400–402
rendering as XML 711–718

ConvertTo-Xml cmdlet 711–714
Import-Clixml and Export-Clixml

cmdlets 714–718
representing in protocol stack 505–509
reviewing OOP 11–13
selecting properties from 27–28
sorting 25–27
type of 12
using Add-Member cmdlet to extend 402–408

adding AliasProperty members 404–405
adding NoteProperty members 405–406
adding ScriptMethod members 406–407
adding ScriptProperty members 407–408

using XML as 693–694
XML, adding elements to 695–697

-Off parameter, on Set-PSDebug 582
$OFS variable 103, 238, 387, 677–678
one-dimensional arrays 171
one-way hashing, public key encryption

and 904–905
OnRemove handler 480
OnRemove property 390
OOP (object-oriented programming) 11–13
op_ class 112
op_Addition () method 112
op_Division() method 119
Open file command, psEdit 612
open tabs, listing In ISE 626
opening multiple files, in ISE 612
-OpenTimeout parameter 526
operand 114
operating environment, object-based 8
operating on binary data 149
operations

basic 22–23
setting timeouts on 524–527

Operations Manager, examining OpsMgr event log
entries 600

-OperationTimeout parameter 526
-OperationTimeout value 526
operator semantics 150
operators 151–197, 589

array 162–173
comma operator 162–165
indexing and slicing 167–170
multidimensional 171–173
range operator 165–167, 170–171

for working with types 152–154
format 179–181
grouping 157–162
property and method 173–179

dot operator 174–177
indirect method invocation 178–179
static methods and double-colon

operator 177–178
redirection 181–184
unary 154–157

operators in expressions 110–150
arithmetic 112–119

addition operator 113–116
multiplication operator 116–117
subtraction, division, and modulus

operators 117–119
assignment 119–124

as value expressions 123–124
multiple 120–121

comparison 124–131
and case-sensitivity 127–128
scalar 125–127
using with collections 129–131

logical and bitwise 148–150
pattern matching and text

manipulation 131–148
-join operator 139–143
-match operator 134–137
regular expressions 133–134
-replace operator 137–139
-split operator 143–148
wildcard patterns and -like operator 132–133

Option Explicit, in Visual Basic 582
Options property 624–625
orchestrating information 461
original tables 115
origin-zero arrays 92
OS information 595
out-default 67
Out-Default cmdlet 421, 555
960 INDEX

Out-Default function 421
outer loops 214
OuterXML property 835
Out-File cmdlet 68, 183, 679
Out-GridView command 69–70
Out-Host cmdlet 69
Outlook Express 899
Out-Null outputter 67
Out-Printer cmdlet 68
output 64–70
Output Field Separator ($OFS) variable 103, 238,

387, 677–678
output messages 568
output objects 555, 568
output pane

accessing contents 629
ISE 609
saving contents 629–631

output redirection 22, 111, 181–182
output stream 675
-OutputAssembly parameter 738
outputter cmdlets 67–70
OutputType attribute 293–295
Out-String cmdlet 69
OverloadDefinitions property 682
overriding method 423
overwriting output 184

P

P/Invoke 733
P/Invoke signatures, interoperation with Add-Type

cmdlet 734–735
PadLeft() method 677
panes

controlling layout 607–610
command pane 608–609
ISE toolbar 609–610

editor, expansion in 613–614
ISE, syntax highlighting in 614
text 629–633

making changes in editor pane 631–632
saving list of open files 632–633
saving output pane contents 629–631

param block 416, 773
param keyword 31, 273

param statement 242, 279–280, 397
.PARAMETER <PARAMETER-NAME> help

tag 319
[Parameter()] attributes 355
[Parameter] attribute 42
parameter 41
parameter aliases 49
Parameter attributes, specifying 296–303

HelpMessage property 302–303
Mandatory property 297
ParameterSetName property 298–299
Position property 297–298
ValueFromPipeline property 300
ValueFromPipelineByPropertyName

property 300–301
ValueFromRemainingArguments

property 301–302
parameter binding 39

pipelines and 62–63
remoting 509
type conversion in 107–109

parameter initializers, terminating errors in 580
parameter sets

-Path 737–739
-TypeDefinition 736–737

parameterized properties 768
ParameterizedProperty type 403
parameterizing functions 237
parameters 60

adding 459–462
creating aliases with Alias attribute 303–305
declaring 42, 241
for scriptblock 108–109
formal, declaring for functions 241–257
Microsoft WMI common 802–803

-AsJob and ThrottleLimit 803
processing 248
setting, for timer event handler 857
validation attributes of 305–311

AllowEmptyCollection 306
AllowEmptyString 306
AllowNull 306
ValidateCount 307–308
ValidateLength 308
ValidateNotNull 307
INDEX 961

parameters (continued)
ValidateNotNullOrEmpty 307
ValidatePattern 308–309
ValidateRange 309
ValidateScript 310–311
ValidateSet 310

vs. arguments 39
ParameterSetName property 298–299
parent job 490
parentheses 157, 176
Parse() method 106
parsing 36, 562

command output using regular
expressions 136–137

comment syntax 58–60
multiline 59–60

expression-mode and command-mode 54–56
quoting 51–54, 669
statement termination 56–58

parsing modes 56, 243
partial type name 724
-PassThru parameter 365, 379, 405
Password field 790
password parameter 917
Password property 922
passwords

in remoting 511
specifying for files 914

path components 667
path issues, relative paths 666
-Path parameter 296, 675, 737–739, 814
-path parameter 249
__PATH property 814, 821, 826
Path property 480
path resolution 666
path translation 666
path-based pattern language 703
PATHEXT environment variable 898
paths

Microsoft WMI, using to target
instances 814–816

processing 664–672
containing wildcards 667–668
LiteralPath parameter 670–671

providers and core cmdlets 664–665
PSDrives 665–667
Registry provider 671–672
suppressing wildcard processing 668–669

provider-specific path 666
special characters 667

pattern matching 215, 219
and text manipulation 131–148

-join operator 139–143
-match operator 134–137
regular expressions 133–134
-replace operator 137–139
-split operator 143–148
wildcard patterns and -like operator 132–133

operations 150
suppressing 670

$Pattern parameter 772
peer-to-peer networks 891
performance

caveats for Get-Content cmdlet 680–681
flow control 233–235
in remoting 465

Perl 37, 889
PERL scripting language 133, 582
persistent connections, remoting sessions

and 462–473
additional session attributes 466–468
interactive sessions 469–472
managing sessions 472–473
New-PSSession cmdlet 468–469

Personal Information Exchange, Certificate Export
Wizard 914

petabytes 83
.pfx files

signing scripts using 915–916
specifying name for 915
verifying creation of 915

PHP 38
physical type containment 720
Pi constant 101
$PID variable 468
pipe operator 60
pipeline object flows 555–556
pipeline output, as array 91–92
962 INDEX

pipelines 60–63, 199, 202, 263
and parameter binding 62–63
and streaming behavior 61–62
index of commands in 559
number of commands in 559
processing documents in 701–702
steppable 418–423
using functions in 263–267

filters and functions 265–266
functions with begin, process, and end

blocks 266–267
PKI (Public Key Infrastructure) 905
Platform Invoke. See P/Invoke
plus operator 93
plus-equals operator 93
point class 429
Point type 748
polymorphic behavior 196, 244
polymorphic methods 112
polymorphism, in arrays 92–93
Popup() method 777
-Port parameter 518
ports, connecting to nondefault 518–519
Position property 297–298
positional parameters 242–243, 249
PositionMessage property 559
POSIX 38
postincrement operator 80
PowerPoint 614
PowerShell

aligning with C# syntax 38
and overloading 245
and WSMan shells 511
as management tool 554
based on objects 11
case-insensitivity 21
categories of commands 39
command structure 13
console host 467
core types 505
creation of 8
details on supported platforms 14
downloading and installing 13
exact vs. partial match 49
expressions in 23
extending language 428–436

adding CustomClass keywords 428–433
little languages 428
type extension 433–436

grammar 201
help subsystem 23
host application 14
installation directory 689
IntelliSense in 21
lookup algorithm 272
namespace capabilities in 267
parameter binding 509
-Property parameter 28
provider infrastructure 187
registry keys 671
remoting host process, wsmprovhost.exe 528
remoting schema 505
script file extensions 614
scripts in 565
secondary prompt in 28
setting the exit code 281
string handling 25
support for .NET decimal type 24
syntax for script blocks 393
terminology similar to other shells 38
type system 423
use of full .NET Framework 10
using interactively 202
using wildcard characters with help 23
VBScript and Jscript 785
viewing constraint variables 523

PowerShell API 546, 619
PowerShell Development Environments 752
PowerShell drive abstraction. See PSDrive
PowerShell foundations 36–70

aliases and elastic syntax 47–50
core concepts 38–46
formatting and output 64–70
language 37–38
parsing 50–60

comment syntax 58–60
expression-mode and command-mode 54–56
quoting 51–54
statement termination 56–58

pipelines 60–63
and parameter binding 62–63
and streaming behavior 61–62
INDEX 963

PowerShell Heresy 60
PowerShell Hosts 467
PowerShell installation directory, $PSHOME

variable 702
PowerShell interpreter, function of 39
PowerShell Job type, infrastructure extension

point 482
PowerShell language 589
PowerShell Local Certificate Root 912
PowerShell provider model 664
PowerShell quick start guide 13–21

command completion 20–21
console host 14–16
ISE 17–20
obtaining program 14
starting program 14

PowerShell SDK (software development kit) 546
PowerShell session, termination 604
PowerShell sessions 618
PowerShell tokenizer API 637
PowerShell.exe 605

launching from ISE 611
running from ISE 609
-sta parameter 753
-WindowStyle parameter 734

powershell.exe console host 463
PowerShellHostName element 367, 467
PowerShellHostVersion element 367, 467
PowerShellTabs property 625
PowerShellVersion element 367, 369
precision and conversion 73, 102
predefined engine events 875–876
predicate expressions 707, 810
preference setting 569
prefix operators 94
prescriptive error messages 587
PresentationCore, WPF required assemblies 753
PresentationFramework, WPF required

assemblies 753
PrimalForms PowerShell IDE 752
primary key 814
printf-debugging 260
private aliases, in constrained sessions 547
private certificate, creating 913
private function, calling 537

private key protection, enabling strong 913–915
.pfx file 915
exporting certificate 913
specifying file format and password 914
starting CERTMGR.EXE and selecting certifi-

cate to export 913–914
PrivateData element 375, 385–386
PrivateData field 385
probing 722
problem-solving pattern 29–30
process blocks, functions with 266–267
Process clause 228
process clause 61, 267, 397–398
Process Id, using $PID variable 468
process keyword 254
Process object 508
process streaming 62
process use, in ISE 619
ProcessID property 799
ProcessId property 843
processing 663–718

data 25–30
problem-solving pattern 29–30
selecting properties from objects 27–28
sorting objects 25–27
with ForEach-Object cmdlet 28–29

files 672–681
paths 664–672

containing wildcards 667–668
LiteralPath parameter 670–671
providers and core cmdlets 664–665
PSDrives 665–667
Registry provider 671–672
suppressing wildcard processing 668–669

unstructured text 681–693
counting unique words with

hashtables 684–686
manipulating text with regular

expressions 686–688
searching files with Select-String

cmdlet 688–693
System.String class 681–684

XML structured text 693–718
adding elements to objects 695–697
loading and saving files 697–701
964 INDEX

processing (continued)
processing documents in pipelines 701–702
processing with XPath 702–709
rendering objects as 711–718
using document elements as objects 693–694
XLinq library 709–710

Process-Message cmdlet 49
ProcessName property 305
process-object clause 62
processor architecture 498–501
ProcessorArchitecture element 367
ProcessStartInfo object 922
production elements

module manifests 366–370
module identity 368–370
runtime dependencies 368–370

ProductVersion property 33
$PROFILE variable 494
profiles, and remoting 494–495
ProgID 762

Apple iTunes 763
Microsoft Word 763

Program Files 376
programming constructs 198
programming languages 393
Progress Record, serialization in 506
prompt function, ISE 609
prompt line element, ISE 608
prompting

for target computer 620
using Read-Host cmdlet 581

prompts 15
nested, and Suspend operation 643–647
while stepping 642

properties
adding to type system 425–427
attempts to read nonexistent 585–586
compression of in serialization 509
defined 11
in registry 672
parameterized 768
selecting from objects 27–28
shadowing existing 427–428

Properties member 424
property bags 497–498, 506, 508

property checks 586
property dereference operator 173
property names, viewing 557
property notation 86
property operators 173–179

dot 174–177
indirect method invocation 178–179
static methods and double-colon

operator 177–178
-Property parameter 727–728, 751, 761
PropertySet type 403
protocol layers 504
protocol stack

remoting 503–509
representing objects and types in 505–509

prototypes 401
provider abstraction 672
provider capabilities 665
provider cmdlets, with WSMan 510
provider infrastructure 402, 667
provider model 664
Provider paths, PSPath 665
providers

and core cmdlets 664–665
home directories 667
WSMan implementation 509–511

establishing remote connection 510–511
testing connections 510

provider-specific path 665
proxy commands

creating with steppable pipelines 420–423
restricting features with 547

proxy functions
implicit remoting 546
setting up, in constrained sessions 547

proxy servers, addressing remoting target using 520
ProxyAccessType setting 520
ProxyAuthentication setting 520
ProxyCredential setting 520
PS* properties 402
.ps1 extension 44
.ps1xml extension 434
PSBase member 427
PSBase property 824
$PSBoundParameters variable 254, 312
INDEX 965

PSBreakpoint object 654
$PSCmdlet variable 290, 293, 386–387
$PSCmdlet.SessionState.Module 386
$PSCmdlet.ThrowTerminatingError()

method 293
PSComputerName property 34
PSCredential object 790
PSCustomObject type 411
PSCustomType object 433
PSDiagnostics module 334, 363
PSDrives (PowerShell drives) 665–667
psEdit command 612
PSEventSubscriber objects 859, 861
$PSHOME variable 64, 689, 702
$PSHome variable 434
$PSHome/modules directory 362
$PSHome/types.ps1xml 717
PSIsContainer property 402
$psISE variable 621–623, 629
PSModuleInfo objects 378, 381–382, 388–390,

535
accessing module exports using 381–382
invocation in module context 378–381
methods

Invoke() 382–383
NewboundScriptblock() 383–384

PSModuleObject 378
$PSModuleRoot 358
PSObject class 423

PSBase member 695
synthetic object root 404

PSObject layer 76
PSObject property 423
PSParser class 589
PSPath, provider paths 665
PSScriptMethod object 430
PSScriptProperty 427
$PSScriptRoot variable 358
PSSession attributes 466
PSSession object, and runspaces 619
PSSessionConfiguration cmdlet 531
$PSSessionConfigurationName variable 530
$PSSessionOption variable 519–520, 523, 526
PSSessions type 463
PSTypeConverter type 106

$psUnsupportedConsoleApplications variable 617
PSVariable objects, using as references 191–192
public decryption key 904
public fields 400
public key cryptography 722
public key encryption 904–905
Public Key Infrastructure (PKI) 905
public keys, use in type names 724
public members 400–402
public methods 400
public properties 400
pure function 262
pure synthetic objects 411, 433
Put() method 828–829
-PutType parameter 814
Python 180

comparison to Visual Basic 39
regular expressions 133
security 889

Python interpreter 271
Python lambdas 397

Q

ql function 239–240
qs function 239–240
qualifiers 815
Qualifiers attribute 815
-Query parameter, selecting Microsoft WMI objects

using 812–813
query-based event registrations, Microsoft

WMI 871–875
aggregating events with GROUP

keyword 874–875
Microsoft WMI intrinsic event classes 871–874
WITHIN keyword 871

Queue type, serialization in 507
queued events

and Wait-Event cmdlet 863–866
-quiet parameter 690–691
quotas, managing resource consumption

with 523–524
quotation marks 41
quote list (ql) 239
quote removal 669
quoting 51–54, 669
966 INDEX

R

range operator 165, 167, 170–171
rank 172
RBAC (role-based access control) 894
read method 581
Read mode, variable breakpoints 657
-ReadCount parameter 229–231, 677, 697
read-evaluate-print loop 6
Read-Host cmdlet 581, 917
reading

files 674–679
Get-Content cmdlet 674–676, 680–681
Get-HexDump function example 676–677
Get-MagicNumber function

example 677–679
writing files 679

key strokes 581
ReadLine() method 581
ReadOnly option 190
Really Simple Syndication. See RSS
Receive-Job cmdlet 483–484, 492
recording errors 560
-Recurse parameter 809
-recurse parameter 249
-Recurse switch 41
recursive definition 262
recursive directory listing 249
red stop button 18
redefine functions 645
redirection 276, 278, 568

error stream 555
into variables 556
merging output and error streams 556
redirecting error stream 560
stream merge operator 556

redirection operator 24, 125, 181–184, 187, 555
reducing attack surface 893
reference types

array as 93–94
hash tables as 90–91

references, using PSVariable objects as 191–192
[regex] alias 97
[regex] class 687, 851
[regex] type 687
-regex flag 218

Regex.Replace(String, MatchEvaluator) 852
Register-EngineEvent cmdlet 854–855, 878
Register-ObjectEvent cmdlet 854–855, 858–860,

879
Register-PSSessionConfiguration cmdlet 523, 532
RegisterTaskDefinition() method 789–790, 792
Register-WmiEvent cmdlet 854–855, 873
RegistrationInfo property 788
registrations

asynchronous events 854
engine events 875–877
Microsoft WMI events

class-based 867–870
query-based 871–875

Registry entry, for
LocalAccountTokenFilterPolicy 517

Registry provider 665, 667, 671–672
regular expressions 132–134, 218

alternation operator 687
creating from strings 687
default match 135
extracting text with 136
manipulating text with 686–688

splitting strings 687
tokenizing 687–688

Match method 687
matching any character 137
matching the beginning of a string 137
parsing command output using 136–137
quantifier specifications 687
submatches 134
using with switch statement 217–221

rehydrated, serialization 505
relative path resolution 667
remainder modulus 120
remote computers, starting background jobs

on 489–492
remote connection, starting in ISE 620
remote debugging, tracing script execution 658
remote output, vs. local output 497–498
remote session startup directory 494
remote sessions 619–622
Remote tab architecture 622
.REMOTEHELPRUNSPACE <PSSESSION-

VARIABLE> help tag 320
INDEX 967

remoteserver application 546
RemoteSigned policy 337, 899
remoting 32, 46, 447–502

additional setup steps for workgroup
environments 451

and event forwarding 877–882
applying 454–462

basic remoting examples 454–455
multimachine monitoring 457–462

commands with built-in 448–449
configuration elements 530
configuration startup script 532
considerations when running

commands 493–501
executables 495–496
processor architecture 498–501
profiles and remoting 494–495
reading and writing to console 496–497
remote output vs. local output 497–498
remote session startup directory 494

cross-domain issues 517
custom services 502, 527–552

access controls and endpoints 533–535
configurations 530–531
constrained execution environments 543
constraining sessions 535–543
remote service connection patterns 527–530

disabling 897
enabling 450–451
EventLog access 602
implicit 473–481
infrastructure 503–527

addressing remoting target 518–520
authenticating 511–518
managing resource consumption 522–527
Microsoft Windows connection

issues 520–522
remoting protocol stack 503–509
WSMan implementation cmdlets and

providers 509–511
interactively 34
performance issues 465
persistent connections 463, 465
requirement for elevated sessions 517
resource management 472

sessions and persistent connections 462–473
additional session attributes 466–468
interactive sessions 469–472
managing sessions 472–473
New-PSSession cmdlet 468–469

subsystem 449–450
target machine 33
timeouts 526
transient connections 463

remoting infrastructure
buffering 457
connection heartbeat 473
support for throttling 522

remoting protocols
[MS-PSRP] 504
complete protocol stack 504
DCOM 448
HTTPS 504
Web Services for Management (WSMan) 504

Remove All Breakpoints debug menu item 649
Remove()method 635
Remove-Event cmdlet 854, 865
Remove-Item cmdlet 670, 672–673
Remove-Item command 268
Remove-Job cmdlet 483, 487
Remove-Module cmdlet 325, 335, 339, 388
Remove-PSBreakPoint cmdlet 653
Remove-PSSession cmdlet 472
Remove-WmiObject cmdlet 822–824
removing class definition 432
removing items, hash tables 88
Rename-Item cmdlet 673
renaming functions 399
rendering objects 69
REPL. See read-evaluate-print loop
-replace operator 134, 137–139, 632, 687, 732,

881
Replace() method 851–852
replacement strings, in event log entries 604
repudiation, defined 892
RequiredAssemblies element 370, 372, 375, 722
RequiredAssemblies field 372
RequiredAssemblies module 373
RequiredModules element 367, 370, 372
RequiredServices property 713
968 INDEX

Reset() member 210
Reset-Count command 338, 342
resizing arrays 259
resource consumption, managing 522–527
resource leaks, handles and garbage collection 701
resource management, using throttling 458–459
resources

singleton, vs. enumerations 836–837
updating using Set-WSManInstance

cmdlet 840–841
restricted execution policy 899
restricted language, in constrained sessions 539
RestrictedLanguage Mode 542
restrictions, in sessions 541
$result variable 259
resuming execution, after exceptions 574
return statement 227, 262–263, 280
returning function objects, ScriptControl 785
reusable configuration script, for custom remoting

configurations 544
reverse arrays 406
Reverse member 170
reverse method 140, 406
reversed in place, arrays 406
rich error objects 554
right aligned 180
right operand 126, 153
role-based access control (RBAC) 894
roles, authentication, authorization, and 894–895
root directory 111
Root module term 326
rootcimv2 namespace 800
RootSDDL security descriptor, remoting access

control 534
RPC server not available error 802
RSS (Really Simple Syndication) 4
RSS feeds, processing 742–743
Ruby language 400
Run() method 778
Run/Continue debug menu item 648
runas.exe command 920
running elevated 277
running scripts from ISE, F5 key 649
RunspaceId 862
runspaces, defined 619

runtime checks, in scripts 582
runtime dependencies, module manifests 368–370
runtime type casts 153
runtime type conversion error 185

S

sample taxonomy, of classes and subclasses 12
sandboxing, defined 897
saving, files 697–701
scalability

in scripting 459
scalar arguments 238
scalar comparisons 125–127

basic rules for 126
type conversions and comparisons 126–127

scalar object 96, 210
scalar value 95, 125, 210–211
scale() method 433
Scaling fan-in remoting, Issues 528
Schedule.Service class 786–787
scientific notation 75
scopes

and scripts 281–284
dot-sourcing scripts and functions 283–284
simple libraries 283

in script modules 348–350
managing with script blocks 572

scoping
behavior, F5 vs. F8 615
execution policy 900–903
rules 269, 281
variable, in functions 269–274

script authoring, control of errors 569
script block construction 398
script block execution, in debug actions 654
script blocks

as event handlers 746
defines a function 399

script calls, calling another script 562
script checking 582
script code

building at runtime 436–440
$ExecutionContext variable 437
creating elements in function drive 439–440
ExpandString() method 437–438
INDEX 969

script code (continued)
Invoke-Expression cmdlet 436–437
InvokeScript() method 438
script blocks 438–439

fragments of 569
script commands 39
$script counter variable 863
script editor 18
script line number, getting 559
script modules

dynamic 412–414
nesting binary modules in 357–360
setting module properties from inside 388
writing 337–353

controlling member visibility with Export-
ModuleMember cmdlet 343–347

installing module 347
nested modules 350–353
review of scripts 338–340
scopes in script modules 348–350
turning into module 340–343

script name, getting 559
Script Property

getter method 407
setter method implementation 408
setter script block 407

script scope 281
script tracing 639, 641
script versioning 49
[ScriptBlock]::Create() method 642
ScriptBlock 506
[scriptblock] alias 97
[scriptblock] type accelerator 439
scriptblock parameter 685
scriptblocks 223, 226, 228, 393–400, 438–439

creating new scopes 572
defining functions at runtime 398–400
invoking commands 394–396
literals 397–398
parameters for 108–109
security 923
targeted execution in ISE 627
using with remoting 454
using with -split operator 148

scripting debugger 653

scripting languages 553
features of 7
security 890
vs. shell, advantages 7

ScriptMethod members, adding to
objects 406–407

ScriptMethod type 403
ScriptProperty members, adding to

objects 407–408
ScriptProperty type 403
scripts 31–32, 44, 275–321

advanced functions and 276–287
documenting 314–321
dynamic parameters and dynamicParam

keyword 311–314
exiting scripts and exit statement 280–281
managing scripts 284–285
passing arguments to scripts 278–280
running scripts from other

applications 285–287
scopes and scripts 281–284
writing 287–311

applying strict mode V2 to 588–589
blocks, handling asynchronous events

with 860–863
calling from another script 562
controlling access to 541
debugging 638–647

nested prompts and Suspend
operation 643–647

Set-PSDebug cmdlet 638–643
enabling with execution policy 898–903

controlling and scoping 900–903
settings 899–900

execution policy 276–278
exit code 566
flow control in. See flow control
generating events in 876–877
hello world file 31
review of 338–340
running from cmd.exe 286
running in ISE 616–618

issues with native commands 616–617
threading differences between console and

ISE 618
970 INDEX

scripts (continued)
signing 904–916

authorities 905
certificates 905
enabling strong private key

protection 913–915
public key encryption and one-way

hashing 904–905
using .pfx files 915–916

static analysis of 589–593
suspending while in step mode 644–645
using certificates to sign 909–912

setting up test script 909–910
signing test script 910–912
testing integrity of script 912

wheres
original 923–925
safer and faster version 925–927

writing secure 916–927
avoiding Invoke-Expression cmdlet 923–927
credentials 919–923
SecureString 916–919

Scripts property, From
$ExecutionContext.SessionState 539

scripts, no execution of
by default 897–898

script-scoped 282
ScriptsToProcess element 370, 372–373
ScriptToProcess 372
SDDL (Security Descriptor Definition

Language) 534
search algorithm, modules 329–330
search tools, file 754

defining appearance 754–756
specifying behavior 756–758

searcher object 825
Search-Help function 702
searching

files, with Select-String cmdlet 688–693
with context properties 692

secpol.msc 521
secure by default principle 450
secure computer 889
secure environment 891
Secure Hash Algorithm version 1 (SHA-1) 907
secure hashing algorithm 889, 904

secure remoted service, creating 551
secure scripts 888

credentials 919–923
SecureString

class 916–917
cmdlets 918–919
object 917–918

Secure String, serialization in 506
securing PowerShell installations 916
security 888–927

by default 897–898
disabling remoting 897
managing command path 898
no execution of scripts 897–898
notepad 897

introduction to 889–891
Danom virus 890–891
MSH/Cibyz worm 891

modeling 891–897
threat 891–892
threats, assets, and mitigations 893–897

modeling concepts 888
scripts

enabling with execution policy 898–903
signing 904–916
writing secure 916–927

Security Descriptor Definition Language
(SDDL) 534

security descriptors, setting on
configurations 534–535

security implications
Enable-PSRemoting cmdlet 451
TrustedHosts list 452

security model 893
Security Options, secpol.msc 521
security response, Microsoft 890
select command 34
select elements 410
selected text, executing in ISE 615–616
selecting, instances 838–839
Select-Members filter 726
Select-Object cmdlet 378, 423, 679

defined 27
getting first lines of file with 911
selecting range of objects 410–412
using -Property parameter 28
INDEX 971

-SelectorSet parameter 838, 840
Select-String cmdlet 741

-Quiet switch 690
searching files 688

Select-Xml cmdlet 703–709
self-describing, .Net object model 10
Self-Remoting Commands

Clear-EventLog 448
Get-Counter 448
Get-EventLog 448
Get-HotFix 448
Get-Process 448
Get-Service 448
Get-WinEvent 448
Limit-EventLog 448
New-EventLog 448
Remove-EventLog 449
Restart-Computer 449
Set-Service 449
Show-EventLog 449
Stop-Computer 449
Test-Connection 449
Write-EventLog 449

self-signed certificate 909
semicolon character 56, 201, 204, 257
Sender field 877
$Sender variable 861
$Sender.Event 861
sending keystrokes 765
SendKeys() method 778
sensitive data, security 916
separator 280
serialization

core types 506
default depth 498, 713
IList interface 507
in systems management 505
object fidelity 716
of collections 507
shredding objects 716
using property bags 506

<SerializationDepth> element 717
serialized objects 46
servers, proxy 520
service architecture 527

Service subnode, of WSMan drive 525
ServiceName property 305
Services, ServiceController objects 712
servicing. See Application servicing
session boundary 541
session isolation, in remoting 530
-Session parameter 492–493
-SessionOption parameter 520
sessions 463

and hosts 467
capturing output 593–596
configurations 531–532
constraining 535–543

controlling command visibility 536–539
setting language mode 539–543

interactive 469–472
isolation 467
local in-memory 619
managing 472–473
managing definitions in 267–269
remoting 619–622

additional attributes 466–468
and persistent connections 462, 468–473

running background jobs in existing 492–493
Set-Alias command 48
Set-AuthenticodeSignature cmdlet 910
Set-Content cmdlet 188, 673
Set-CountIncrement 384
Set-ExecutionPolicy cmdlet 277–278
setIncrement function 338, 345
Set-Item cmdlet 673

in constrained sessions 542
setting TrustedHosts list 513

Set-Location cmdlet 673
Set-PSBreakPoint cmdlet 653
Set-PSDebug cmdlet 582, 638–643

-Off parameter 582
statement execution 642–643

Set-PSDebug, -Trace parameter 582
Set-PSSessionConfiguration command 533
Set-Service cmdlet 453
Set-StrictMode cmdlet 584–589

applying strict mode V2 to scripts 588–589
attempts to read nonexistent

properties 585–586
972 INDEX

Set-StrictMode cmdlet (continued)
empty variable references in strings 587–588
functions called like methods 586–587
uninitialized variable use in string

expansions 584–585
settable property 405
setting breakpoints, on lines in script 654
setting token colors, syntax highlighting 625
setting window styles 734
Set-Variable cmdlet 379, 387, 651
Set-Variable command 379
Set-WmiInstance cmdlet 813–819

setting instance properties 816–819
using Microsoft WMI paths to target

instances 814–816
Set-WSManInstance cmdlet, updating resources

using 840–841
SHA-1 (Secure Hash Algorithm version 1) 907
shadowing existing properties 427–428
shared libraries 721
shell environments 62
shell function commands 39
shell language 9
Shell.Application class 765–766
Shell.Application object 772
Shell.Automation class 795
ShellExecute API 922
shells

as command-line interpreter 6
reasons for new model 7–8

managing windows through objects 7–8
scripting languages vs. 6–7
text-based 10

Shift-F10, displaying context menu 612
ShouldProcess() method 290
-Show switch 773
$showCmdlet module 358
ShowDialog() method 747, 749, 776
Show-ErrorDetails function 559
Show-EventLog cmdlet 597
ShowSecurityDescriptorUI parameter 535
ShowToolBar, ISE menu item 625
ShowWindow() API 772
ShowWindow() method 734
shredding objects 506, 716

shutdown command 495
side-by-side mode, ISE 610
side-effects, of for statement 206
signature information, security 911
signatures, decrypting 904
signing

authorities 905
scripts 904–916

certificates 905
enabling strong private key

protection 913–915
public key encryption and one-way

hashing 904–905
using .pfx files 915–916

simple assignment 89
simple matching 145
Simple Object Access Protocol (SOAP) 504
simplematch option 145
single precision 74
single quotes 53, 437
single-instance objects, modules 326–327
singleline mode 147
single-quoted, strings 78–79
single-threaded apartment. See STA 618
Singleton member, creating definitions 730–734
singleton resources, vs. enumerations 836–837
Skip3 functions 681
slicing 167–171

arrays 169–170
multidimensional arrays 172
using range operator 170

sliding window 803
snap-in modules, binary modules vs. 354–355
snap-in, MMC extension 32
Snippets menu

extending ISE 637
submenu for 637–638

Snover, Jeffrey, PowerShell architect 118
SOAP (Simple Object Access Protocol) 504
software development kit (SDK), PowerShell 546
sorting

hash tables 87–88
in descending order 26
objects 25–27
UNIX sort command 26
INDEX 973

Sort-Object cmdlet 25, 27, 87, 684
Soul of a New Machine (Kidder) 9
Source filter 599
-Source parameter, on Get-Eventlog 602
$SourceArgs variable 861
$SourceEventArgs variable 861
SourceIdentifier 856, 859–860, 865, 878
special behaviors operators 112
special characters, using backtick 54
special variable 209
special-purpose applications, using remoting 530
special-purpose endpoint 537
spell checking, using Microsoft Word 781–783
Spelling dialog box 783
spelling errors 782
splatting 839

in proxy functions 478
specifying remote connection settings 519
variables 193–197

-split operator 143–148, 631, 638, 681
options for 145–148
using scriptblocks with 148

Split() method 681–682, 687
SplitStringOptions parameters 682–683
splitting strings, with regular expressions 687
spoofing, defined 892
SQL injection attacks 896
SQL query 896
square brackets 174
ssh. See Invoke-Command cmdlet
STA (single-threaded apartment) 618, 793
-sta parameter 618, 753
Stack type, serialization in 507
StackPanel layout control 755
standard classes, WMI 807
Start() method 859
Start-Job cmdlet 483, 803
Start-Job method 882–883
Start-LocalUserManager command 920
Start-LocalUserManager function 921
Start-Process cmdlet 734, 743, 869, 921
Start-Program function 666
Start-Sleep cmdlet 456, 526, 627, 875
StartTime property 128

Start-Transcript cmdlet 593
startup directories, remote session 494
startup script, remoting 532
state, event handler 862–863
statement termination 56–58
<statementList> section 204
statements

as values 231–233
flow-control 223, 231

static analysis, of scripts 589–593
static checks, in scripts 582
-Static flag 99
static members 170

accessing 177
accessing with literal 99–101

static methods 177–178
calling 819–822
reference operator 177

static reverse method 406
static script checks 591
static typing 72
status line, ISE 608
status variables 564
stderr 259
Step Into debug menu item 648
step mode, suspending scripts while in 644–645
Step Out debug menu item 648
Step Over debug menu item 648
-Step parameter 642
Step-Over debug command 650
steppable pipelines 418–423

creating proxy command with 420–423
in proxy functions 478

stepping mode 645
stepping script 644
stepping through scripts 638
Stop Debugger debug menu item 648
Stop-Job cmdlet 483
Stop-Job method 883
Stop-Process 869
Stop-Transcript cmdlet 593–594
stream combiner 183
-Stream parameter 69
streaming behavior 43, 61–62
974 INDEX

strict mode 638
applying V2 to scripts 588–589
catching errors with 582–584

undefined variables 583–584
V1 582

In PERL 582
version 2 584, 588–589

-Strict parameter 762, 794
-Strict switch 761
STRIDE model 892
[string] class 681, 686
[string].Join method 177
string constructor 729
string context 129
string expansion 238

empty delimited variables 587
suppressing 437
uninitialized variable error 585

string multiplication 116
string operations

convert array to string 677
extracting fields from string 682
formatting hexadecimal numbers 677
joining strings 683
padding strings 677
parsing arithmetic expressions 687
splitting and joining strings 681
splitting into words 684
splitting on Whitespace character class 682
splitting strings 678
tokenizing strings 687

String operations, casting to regular
expressions 687

strings 58, 77–82
adding together 25
concatenation of 25, 113, 240, 683
empty variable references in 587–588
encoding used in 77–78
executing 437
here-strings 80–82
joining 177
single and double-quoted 78–79
splitting, with regular expressions 687
subexpression expansion in

complex 79–80
considerations for 80

strong naming 722
strongly typed languages 185
structured error handling 554
structured programming 213
structured text, processing 693–718
subclassing 401
subdirectories, and dir command 41
subexpression expansion, in strings 79

complex 79–80
considerations for 80

subexpression operator 196
subexpressions 57, 202, 206, 247

array 160–162
function of 157
with throw statement 580

subkeys, in registry 671
submatches 134
Submenus collection, ISE object model 635
SubscriptionId property 860
subscriptions

.NET events 859–860
listing 859
removing 859–860

asynchronous events 854
subshell 645
Substring method 176
subsystem remoting 449–450
subtraction operation 120
subtraction operator 117–119
Success Audit type 599
Success property 688
Sum() method 264, 434–435, 732
SumMethod.ps1xml file 435
superclasses 867
-SupportEvent 856
SupportEvent switch 856
SupportsShouldProcess property 290–293
Suspend operation, nested prompts and 643–647
Suspended shell feature 645
suspending sessions 643
swapping files 188
swapping two variables 120
[switch] alias 97
[switch] type 249
$switch loop enumerator, using in switch

statement 222
INDEX 975

switch parameters 41
using to define command switches 248–252
vs. Boolean parameters 252–257

switch statement 30, 148, 199, 250, 781, 925
processing files with 221–222
using $switch loop enumerator in 222
using regular expressions with 217–221
using wildcard patterns with 216–217

switch value 216
$switch variable 222, 263, 701
$switch.movenext() method 222
SwitchParameter type 107
synchronous events 849–853

delegates and delegation 850–853
in GUIs 850

.SYNOPSIS tag 317
syntactic analysis 50
syntactically complete statement 57
syntax

for programmer-style activities 176
of foreach statement 207

syntax checking custom menu item 637
syntax errors 201, 592
syntax highlighting

in ISE panes 614
setting token colors 625

synthetic member objects 402, 404, 411, 427, 430
synthetic properties 76, 402
system dialogs 621
system drives 672
system health monitoring, remoting example 462
System. ComObject type 767
System.Array, extending 435
System.Collections namespace 720
System.Collections.ArrayList class 261
System.Collections.ArrayList type 507, 560
System.Collections.ArrayList.Add() method 720
System.Collections.Generic.List 739
System.Collections.Hashtable type 86
System.Collections.IDictionary interface 85, 507
System.Collections.IEnumerator interface 210
System.Console APIs 496
System.DateTime class 119
System.Datetime type 118
System.Delegate class 746, 850–851

System.Diagnostics.EntryWrittenEventArgs 880
System.Diagnostics.Process class 128
System.Drawing assembly 748
System.EventHandler class 746, 850–851
System.GUID class 762
System.Int32 type 96
[System.IO.DirectoryInfo] object 585
[System.IO.FileInfo] object 585
System.IO.FileInfo objects 208
[System.IO.FileInfo] type 586
System.IO.FileSystemWatcher class 864
System.IO.StringReader instance 776
System.Management.Automation namespace 96
System.Management.Automation.CommandInfo

type 394
System.Management.Automation.PSCustomOb-

ject type 409, 411
System.Management.Automation.PSEvent-

Args 861
System.Management.Automation.PSObject 404
[System.Management.ManagementPath]

object 830
[System.Math] class 100
[System.Math] type 727
[System.Net.WebClient] type 740
System.Object, root of object hierarchy 404
System.Reflection.Assembly class, loading assem-

blies with 723–725
System.Security.SecureString class 916
System.Security.SecureString type 920
System.String class 100, 681–684

analyzing word use in documents 683–684
SplitStringOptions parameters 682–683
testing types 404

System.Text.RegularExpressions.Match class 687
System.Text.RegularExpressions.Regex class 687
System.Timers namespace 726
System.Timers.ElapsedEventHandler class 726
System.Timers.Timer class 856
System.Version 368
System.Windows.Forms namespace 723
System.Windows.Window namespace 756
System.XML.XmlDocument class 694
System.Xml.XmlReader class 698
SystemRoot environment variable 186
SysWoW64 directory 499
976 INDEX

T

$t variable 408
tab behavior, ISE 612
tab completion 910

auto-correcting of capitalization 21
in editor pane 613
in ISE 617
on partial cmdlet names 20
on properties 21
on properties in variables 20
on variables 20
on wildcards 20
user extendable 21
within file system 20

Tab key
for tab completion 13
using 20

TabExpansion function 21
tablet computers 610
tabs 625–629

Editortabs 18
expansion in editor pane 613–614
using multiple 618–622

local in-memory session 619
remote session 619–622

working with in ISE 629
tags, used in comments 318–321
tampering with data, defined 892
target computer, prompting for 620
target object 561
TargetObject property 558, 564
Task Scheduler window 792
Task Scheduler, Microsoft Windows. See Microsoft

Windows, Task Scheduler
tasks

creating new 788–789
credentials and scheduled 789–792
listing running 787
viewing life cycle of 792–793

taskschd.msc 792
tb function 252
TCL/TK (Tool Command Language/Tool

Kit) 743
Technet website 674
telecommunications 8

telnet. See Invoke-Command cmdlet
$tempFile 881
temporary file 187
terabytes 83
terminate partial operation 569
Terminate() method 290, 823, 827, 842
terminating errors 554, 566, 569

exception 570
generating in script 578
rethrowing 571

terminating, PowerShell session 604
terminator characters 56
terminology 38
test document 703–704
test(1) command 125
Test-ModuleContext module 386
Test-ModuleManifest cmdlet 325, 365, 377
Test-Path cmdlet 184
TestProperty variable 817
tests, scripts

integrity of 912
setting up 909–910
signing 910–912

Test-Script function 590
$testv module 387
$testv variable 386–387
Test-WSMan cmdlet 509
text

inserting in ISE editor buffer 630
processing 663, 693
processing unstructured 681–693

counting unique words with
hashtables 684–686

manipulating text with regular
expressions 686–688

searching files with Select-String
cmdlet 688–693

System.String class 681–684
selected, executing in ISE 615–616
XML structured, processing 693–718

text manipulation, pattern matching and 131–148
-join operator 139–143
-match operator 134–137
regular expressions 133–134
-replace operator 137–139
INDEX 977

text manipulation, pattern matching and (continued)
-split operator 143–148
wildcard patterns and -like operator 132–133

text panes 629–633
making changes in editor pane 631–632
saving list of open files 632–633
saving output contents 629–631

Text property 630, 757
text-based shells 10
TextBox controls 757
$this member 407
$this variable 407, 745
this.MyInvocation.MyCommand.Module 385
this.SessionState.Module 386
Thompson, Ken 133
threading model

defined 618
problems in COM 793

threat modeling 891–892
threat to systems, defined 892
threats, assets, mitigation, and 893–897

authentication, authorization, and
roles 894–895

avoiding lawn gnome mitigation 893–894
blacklisting/whitelisting 894
code injection 896–897
input validation 895–896

-ThrottleLimit parameter 522, 803
throttling, resource management using 458–459
throw keyword 702
throw statement 248, 578–580
timeout interval 526
-Timeout parameter 863
timeouts, setting on operations 524–527
<TIMER>message 877
timer event handler, writing 856–859

binding event action 857–858
creating timer object 856
enabling 858–859
setting parameters 857

$timer.Stop() method 858
TlntSvr process 870, 872
Toggle Breakpoint debug menu item 649
Tokenize() method 589
tokenizer analyzer 50

Tokenizer API 589, 591
tokenizing text 687–688
tokens 50, 589, 591
Tool Command Language/Tool Kit (TCL/

TK) 743
toolbar object 625
toolkit, for building custom solutions 8
top-level execution thread 646
top-level match 135
top-level properties, in ISE object model 623
ToString() method 418, 429, 433, 438, 508, 572,

641, 679
ToUpper() method 427
trace message format 641
trace mode 639
-Trace parameter, on Set-Debug cmdlet 582
Trace-Command cmdlet 63
tracing function calls 640
traditional dynamic scoping 270
tradnum function 258
transcript facility, in ISE 629
transcript file 595
transcript implementation 593
transcript of script traces 641
transcripts, session output captured with 595–596
transformation 408
transitional aliases 48
transport mechanism, remoting 503
trap statement 570–575

control transfer 572
flow chart 573
flow of control 573

trees of files 691
triggered clause 219
Trojan Horse attack, defined 898
$true variable 184
trust relationship, in remoting 511
trusted certificate authority, role in remoting 512
trusted third party organizations 905
TrustedHosts element 514
TrustedHosts list

authenticating target computer using 512–514
try keyword 575
try to pop GUI 496
try/catch statement 570, 575, 772
978 INDEX

try/catch/finally statement 578
try/finally statement 881
type accelerators

Microsoft WMI 825–828
[WMI] type accelerator 826–827
[WMICLASS] type accelerator 827–828
[WMISEARCHER] type accelerator 825

WMI 828
type aliases 96–98
type already exists error 738
type command 47
type configuration files 434
type constrained variables 586
type constraints

adding to parameters 243–245
multiplication and arrays 117

type conversion error 114
type conversion operators 112
type conversions 245

and comparisons 126–127
in multiple assignment 123
tracing mechanism 127
with XML documents 694

type files, loaded at startup 434
type inferencing 73
type library 795
type literal 153, 177
type metadata 505
-Type parameter 557
type parameters 739
Type property 372
type qualifiers, multiple assignment operators

with 121–123
type references, assembly manifest 721
type resolution 97

in complied programs 722
static linking 721

type system 423–428
adding properties to 425–427
shadowing existing properties 427–428
updating definitions 435

type-constrained function 244
type-constrained variable 96, 115
TypeConverter type 106
-TypeDefinition parameter set 736–737

typeless languages 72
typeless parameters 101, 243
typelibs, problems in COM 793–796
TypeNames member 424
TypeNames property 497
typeof() operator 178
types 72–109

arrays 91–96
as reference types 93–94
collecting pipeline output as 91–92
empty arrays 94–96
indexing of 92
polymorphism in 92–93

conversions of 101–109
.NET-based custom 104–107
built-in 104
in parameter binding 107–109
overview 101–104

creating instances of 727–729
defining 429
defining new with Add-Type cmdlet 729–739

creating Singleton member
definitions 730–734

interoperation with P/Invoke
signatures 734–735

-Path parameter set 737–739
-TypeDefinition parameter set 736–737

enum, defining new at runtime 442–443
explicit operations 152
extending 433–436
finding 725–727
generic 739–740
hash tables 85–91

as reference types 90–91
enumerating 87–88
modifying 88–89
sorting 87–88

implicit operations 152
literals 96–101

accessing static members with 99–101
generic types 98–99
type aliases 96–98

management of 72–77
numeric 82–85

hexadecimals 84–85
INDEX 979

multiplier suffixes for 83–84
specifying 83

operators for working with 152–154
representing in protocol stack 505–509
strings 77–82

complex subexpressions in 79–80
encoding used in 77–78
expansion considerations for 80
here-strings 80–82
single and double-quoted 78–79
subexpression expansion in 79

types files, default installed 434
$typeSpec variable 881
TypesToProcess element 370, 373

U

UAC (User Access Control) 903
UAC (User Account Control) 517
unary comma operator 728
unary operators 154–157
unauthorized scripts 893
unconstrained function 244
undefined command 592
undefined variable 208
underlying store, WMI 828
Unicode 78
unified namespaces 184
Uniform Resource Identifiers. See URIs 519
uninitialized variables 184, 583
Universal Execution Model 32
UNIX command equivalents 673
UNIX environment 428
UNIX shell, convenience aliases 673
unqualified operators, case insensitive by

default 125
unraveling collections 210
Unregister-Event cmdlet 854, 860
Unregister-PSSessionConfiguration cmdlet 531
unrestricted execution policy 900
unsigned scripts 909
unstructured text, processing 681–693

counting unique words with
hashtables 684–686

manipulating text with regular
expressions 686–688

searching files with Select-String
cmdlet 688–693

System.String class 681–684
Unsubscribe-Event 859
unsupported application list

in ISE 617
untrusted directory 898
Update-Character function 255
Update-TypeData cmdlet 435, 880–881
updating

TrustedHosts list 513
updating, ISE menu items 635
URIs (Uniform Resource Identifiers)

addressing remoting target using 519
targeting WS-Man resources using 834

usability testing 619
User Access Control (UAC) 903
User Account Control (UAC) 517
User filter 599
user portability aliases 673
user profile, in remote sessions 470
UserName property 922
users

authenticating 514–518
enabling remoting for administrators in other

domains 517–518
forwarding credentials in multihop

environments 515–517
usesCount module 351–352
usesCount.psm1 module 350
usesCount2 353
using debugger, example 649
-UsingNamespace parameter 730
UTC time 788
$utils variable 738

V

v2 debugger, graphical 648–652
executing other commands in debug mode 651
hovering over variables to see values 652

ValidateCount attribute 307–308
ValidateLength attribute 308
ValidateNotNull attribute 307
ValidateNotNullOrEmpty attribute 307
ValidatePattern attribute 308–309
980 INDEX

ValidateRange attribute 309
ValidateScript attribute 310–311
ValidateSet attribute 310
validating security 925
validation 408, 895–896
value expressions 123–124, 232
Value member 425
-Value parameter 190
ValueFromPipeline attributes 312
ValueFromPipeline property 300
ValueFromPipeline=true notation 42
ValueFromPipelineByPropertyName

property 300–301, 305
ValueFromRemainingArguments

property 301–302
values

in Registry 671
of variables, variable names vs. 192–193
returning from functions 257–263

debugging problems in function
output 259–262

return statement 262–263
statements as 231–233

-ValueSet parameter 841, 843
$var variable 272
variable assignment, tracing 640
variable breakpoints, breaking on read or write 657
variable checks 586
variable initializer expression 248
variable interpolation 437
variable name notation 186
variable namespace 111, 197
variable operations 672
-Variable parameter 334
variable provider 583
variable reference 52
variable scoping, in functions 269–274

declaring variables 270–272
modifiers 272–274

variable syntax 399
variable type attribute 185
variable: drive 672
variables 184–197

automatic 860
basic 23–25

cmdlets 188–193
getting and setting variable options 189–191
indirectly setting variable 188–189
using PSVariable objects as

references 191–192
variable names vs. variable values 192–193

declaring 184, 270–272
empty references in strings 587–588
expanding 438
hovering over to see values 652
indexing with 173
initializing 29
name syntax 186–188
saving expressions in 24
setting breakpoints on assignment 657–658
splatting 193–197
swapping 120
undefined 583–584
uninitialized use in string expansions 584–585
viewing values of 652
visibility in remoting 535
visibility of 269

VariablesToExport element 370
VariableValue property 817
variant arrays 92
VBScript 570

embedding code in script 784
regular expressions 133
WMI 807
WScript.Shell class 777

verb-noun pairs 13
-Verbose flag 333–334, 860
version file 33
version of host, obtaining 581
-Version parameter 584
Version property 369
versioning

and assemblies 721–722
managing software changes 721

View menu, ISE 610
virtual memory 916
virtual method 423
VirtualMemorySize property 508
viruses, Danom 890–891
visibility of variable 208, 269
INDEX 981

Visibility property 536, 539
Visual Basic 39, 570, 582
Visual Studio 610, 648, 652, 749
Visual Studio debugger 648
Visual Studio SDK directory 906
VM property 508
VMS system 103
voidable statements 156
VolumeName property 840
vPro technologies 798
vulnerability 894
vulnerability, defined 892

W

W3C (World Wide Web Consortium) 504
Wait-Event cmdlet 854, 863–866, 877
Warning type 599
web pages, retrieving 740–742
Web Services-Management. See WS-Man 830
well formed string 137
-WhatIf parameter 108
where alias 128
Where-Object cmdlet 223, 225, 228–231,

393–394, 849, 923
wheres function

original version 924
safe version 925

wheres script
original 923–925
safer and faster version 925–927

while loop 30, 203–204, 258
while statement 201, 203
whipupitude quotient 38
whitelisting, blacklisting and 894
whitespace 65, 201
Whitespace character class, splitting on 682
widening

defined 74
rules 116, 126

Width property 755
Wiktionary website 779
-wildcard option 217
wildcard patterns

and -like operator 132–133
character ranges 132

matching a single character 132
matching string of characters 132
using with switch statement 216–217

wildcards 487, 612
in TrustedHosts list 514
limitations constraining scripts and

applications 540
processing paths containing 667–668
suppressing processing of 668–669

Win32 applications, In ISE 616
Win32_AddRemovePrograms class 806
Win32_Environment class 815–816
win32_logicaldisk 29
Win32_LogicalDisk class 840
Win32_NetworkAdapterConfiguration class 805
Win32_OperatingSystem resource 834–836
Win32_Process class 819, 824, 836, 842
Win32_ProcessStartTrace 868, 872
Win32_ProcessStopTrace 872
Win32_ProcessTrace 868, 872
WIN32_ProcessTrace events 868–870
Win32_Service class 872
WindowName property 772
Windows 7, enabling remoting 453
Windows calculator application 778
Windows commands, native 39
Windows Console APIs, and remoting 495
Windows dialog box 747
Windows Forms application 750
Windows Forms library 4
Windows GUI application 778
Windows Management Instrumentation. See Mi-

crosoft WMI 8
Windows management surface 7
Windows Presentation Foundation. See WPF 753
Windows server applications 798
Windows Vista

enabling remoting 453
Windows XP

enabling remoting 453
supporting IIS-hosted remoting 530

windows, managing through objects 7–8
Windows, Microsoft. See Microsoft Windows
Windows.Forms 4
Windows() method 767, 772
982 INDEX

-WindowStyle parameter 734
WindowsUpdate.log file 221
WinForms 4
winforms assembly 723, 745
WinForms library 744–750

simple dialog boxes 747–750
winforms modules 750–753
WinRM (Windows Remote Management) 452

changing configurations 533
restarting service 533

winrm help uris command 837
WinRM listener 452
WITHIN keyword 871
[WMI] type accelerator 826–827
WMI (Windows Management Instrumentation),

Microsoft. See Microsoft WMI
WMI Query Language (WQL) 810
WMI/CIM namespace 808
WMIC (WMI command-line) 799
[WMICLASS] type accelerator 827–828
WmiObject 870
[WMISEARCHER] type accelerator 825
wof function 358
Word, Microsoft. See Microsoft Word
Word.Application object 783, 794
words

analyzing use in documents 683–684
counting unique with hashtables 684–686

worker function 431
workgroup environments, additional setup steps for

remoting in 451
World Wide Web Consortium (W3C) 504
worms, MSH/Cibyz 891
WPF (Windows Presentation

Foundation) 753–759
advantages of 758
file search tool

defining appearance 754–756
specifying behavior 756–758

frameworks for 758–759
preconditions 753

WPF XAML GUI builders 758
WPIA namespace 732
WPIA.ConsoleUtils class 737
WPIA.Utils class 737

WPIAForms module 750, 752
WQL (WMI Query Language) 810
wrapper functions, role in constrained sessions 538
wrappers, problems in COM 793–796
wrapping objects, object adaptation 423
Write 657
write method 581
Write-EventLog cmdlet 597
Write-Host cmdlet 195, 580–581, 596, 641, 654
Write-InputObject 356
Write-Output cmdlet 39, 51, 212
writing

error objects 564
files

Get-Content cmdlet 674–676, 680–681
Get-HexDump function example 676–677
Get-MagicNumber function

example 677–679
secure code 926
secure scripts 916–927

avoiding Invoke-Expression cmdlet 923–927
credentials 919–923
SecureString 916–919

timer event handler 856–859
binding event action 857–858
creating timer object 856
enabling 858–859
setting parameters 857

Writing Secure Code (Howard and LeBlanc) 892
WScript.Shell class 777–779
WSH ScriptControl class 783–786

embedding JScript code 785–786
embedding VBScript code 784

WS-Man (Web Services-Management) 797,
830–846
cmdlets 831–832

and providers 509–511
invoking methods with Invoke-

WSManAction 841–846
retrieving management data with Get-

WSManInstance 832–839
updating resources using Set-

WSManInstance 840–841
Remoting protocol 504

WSMan configuration, TrustedHosts 511
INDEX 983

WSMan drive 509, 524
WSMan provider 451
WSMan shell 511
WS-Man Specification 831
WSMan-based transport 493
wsmprovhost process 467
wsmprovhost.exe, PowerShell remoting host

process 528

X

x parameter 195
$x variable 271, 416
x86 processor 500
XAML (Extensible Application Markup Language)

defining GUI in 774–775
loading from here-string 776–777

XAML loader 758
XamlReader class 776
XDocument objects, loading from file 710
XLinq

Language Integrated Queries for XML 709
loading XDocument objects from file 710
XDocument class 710

[xml] alias 97
XML (Extensible Markup Language)

.NET framework classes 702
adding attributes to node 696
adding child nodes 696
bookstore inventory example 703
format-XmlDocument example 700
item property on XML object 696
loading XML documents 698
objects, adding elements to 695–697
rendering objects as 711–718

ConvertTo-Xml cmdlet 711–714
Import-Clixml and Export-Clixml

cmdlets 714–718
representation of new tasks 791
Root property on XML object 696
saving document to file 695

Select-Xml cmdlet 703
structured text, processing 693–718
System.XML.XmlDocument class 694
System.Xml.XmlReader class 698
using as objects 693–694
XML document structure 712
XmlNode class 695

XML attributes 697
XML configuration files 434
XML data 401
XML Document class 695
XML DOM (Document Object Model) 698
XML object adapter 694
XML Path Language. See XPat 702
XML processing 663
Xml property 790
XML provider 664
XmlDocument class 693–694
XmlDocument object 697
XmlDocument, properties and navigation 694
XmlNode object 697
XMLReader class, loading and saving files

using 698–701
XPath (XML Path Language)

attribute syntax 708
example patterns 703
predicate expression syntax 707
processing XML structured text with 702–709

basics of 703
select-Xml cmdlet 704–709
test document 703–704

used in pipeline 706
XPath operators 708
XSLT (Extensible Stylesheet Language Transforma-

tions) language 710

Z

Zbikowski, Mark 678
zone of influence 888
zsh shell 6, 38
984 INDEX

Bruce Payette

T
his expanded, revised, and updated Second Edition preserves
the original’s crystal-clear introduction to PowerShell and
adds extensive coverage of v2 features such as advanced

functions, modules, and remoting. It includes full chapters on
these topics and also covers new language elements and opera-
tors, events, Web Services for Management, and the PowerShell
Integrated Scripting Environment.

Th e First Edition’s coverage of batch scripting and string process-
ing, COM, WMI, and .NET have all been signifi cantly revised and
expanded. Th e book includes many popular usage scenarios and
is rich in interesting examples that will spark your imagination.
Th is is the defi nitive book on PowerShell v2!

What’s Inside
Batch scripting, string processing, fi les, and XML

PowerShell remoting
Application of COM and WMI

Network and GUI programming
Writing modules and scripts

Written for developers and administrators with intermediate
level scripting knowledge. No prior experience with PowerShell
is required.

Bruce Payette is a founding member of the PowerShell team at
Microsoft . He is co-designer and principal author of the Power-
Shell language.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/WindowsPowerShellinActionSecondEdition

$59.99 / Can $68.99 [INCLUDING eBOOK]

Windows PowerShell IN ACTION
SECOND EDITION

WINDOWS ADMINISTRATION

“First he wrote the language,
 then he wrote the book.”
 —Jeff rey Snover, Microsoft

“Not just a reference.
 It’s worth reading
 cover to cover.”
 —Jason Zions, Microsoft

“Unleashes the power in
 PowerShell.”
 —Sam Abraham, SISCO

“Even better than
 the original.”
 —Tomas Restrepo
 winterdom.com

“Still the defi nitive reference.”
 —Keith Hill
 Agilent Technologies

M A N N I N G

SEE INSERT

Praise for the
Second Edition

	WindowsPowerShell
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions
	Source code downloads
	Author Online
	About the author
	About the title

	about the cover illustration
	PART 1 Learning PowerShell
	1 Welcome to PowerShell
	1.1 What is PowerShell?
	1.1.1 Shells, command lines, and scripting languages
	1.1.2 Why a new shell? Why now?
	1.1.3 The last mile problem

	1.2 Soul of a new language
	1.2.1 Learning from history
	1.2.2 Leveraging .NET

	1.3 Brushing up on objects
	1.3.1 Reviewing object-oriented programming
	1.3.2 Objects in PowerShell

	1.4 Up and running with PowerShell
	1.4.1 PowerShell
	1.4.2 Starting PowerShell
	1.4.3 The PowerShell console host
	1.4.4 The PowerShell Integrated Scripting Environment
	1.4.5 Command completion

	1.5 Dude! Where’s my code?
	1.5.1 Navigation and basic operations
	1.5.2 Basic expressions and variables
	1.5.3 Processing data
	1.5.4 Flow-control statements
	1.5.5 Scripts and functions
	1.5.6 Remoting and the Universal Execution Model

	1.6 Summary

	2 Foundations of PowerShell
	2.1 Getting a sense of the PowerShell language
	2.2 The core concepts
	2.2.1 Command concepts and terminology
	2.2.2 Commands and cmdlets
	2.2.3 Command categories

	2.3 Aliases and elastic syntax
	2.4 Parsing and PowerShell
	2.4.1 How PowerShell parses
	2.4.2 Quoting
	2.4.3 Expression-mode and command-mode parsing
	2.4.4 Statement termination
	2.4.5 Comment syntax in PowerShell

	2.5 How the pipeline works
	2.5.1 Pipelines and streaming behavior
	2.5.2 Parameters and parameter binding

	2.6 Formatting and output
	2.6.1 The formatting cmdlets
	2.6.2 The outputter cmdlets

	2.7 Summary

	3 Working with types
	3.1 Type management in the wild, wild West
	3.1.1 PowerShell: a type-promiscuous language
	3.1.2 The type system and type adaptation

	3.2 Basic types and literals
	3.2.1 String literals
	3.2.2 Numbers and numeric literals

	3.3 Collections: dictionaries and hashtables
	3.3.1 Creating and inspecting hashtables
	3.3.2 Modifying and manipulating hashtables
	3.3.3 Hashtables as reference types

	3.4 Collections: arrays and sequences
	3.4.1 Collecting pipeline output as an array
	3.4.2 Array indexing
	3.4.3 Polymorphism in arrays
	3.4.4 Arrays as reference types
	3.4.5 Singleton arrays and empty arrays

	3.5 Type literals
	3.5.1 Type name aliases
	3.5.2 Generic type literals
	3.5.3 Accessing static members with type literals

	3.6 Type conversions
	3.6.1 How type conversion works
	3.6.2 PowerShell’s type-conversion algorithm
	3.6.3 Special type conversions in parameter binding

	3.7 Summary

	4 Operators and expressions
	4.1 Arithmetic operators
	4.1.1 The addition operator
	4.1.2 The multiplication operator
	4.1.3 Subtraction, division, and the modulus operator

	4.2 The assignment operators
	4.2.1 Multiple assignments
	4.2.2 Multiple assignments with type qualifiers
	4.2.3 Assignment operations as value expressions

	4.3 Comparison operators
	4.3.1 Scalar comparisons
	4.3.2 Comparisons and case sensitivity
	4.3.3 Using comparison operators with collections

	4.4 Pattern matching and text manipulation
	4.4.1 Wildcard patterns and the -like operator
	4.4.2 Regular expressions
	4.4.3 The -match operator
	4.4.4 The -replace operator
	4.4.5 The -join operator
	4.4.6 The -split operator

	4.5 Logical and bitwise operators
	4.6 Summary

	5 Advanced operators and variables
	5.1 Operators for working with types
	5.2 The unary operators
	5.3 Grouping and subexpressions
	5.3.1 Subexpressions $(...)
	5.3.2 Array subexpressions @(...)

	5.4 Array operators
	5.4.1 The comma operator
	5.4.2 The range operator
	5.4.3 Array indexing and slicing
	5.4.4 Using the range operator with arrays
	5.4.5 Working with multidimensional arrays

	5.5 Property and method operators
	5.5.1 The dot operator
	5.5.2 Static methods and the double-colon operator
	5.5.3 Indirect method invocation

	5.6 The format operator
	5.7 Redirection and the redirection operators
	5.8 Working with variables
	5.8.1 Creating variables
	5.8.2 Variable name syntax
	5.8.3 Working with the variable cmdlets
	5.8.4 Splatting a variable

	5.9 Summary

	6 Flow control in scripts
	6.1 The conditional statement
	6.2 Looping statements
	6.2.1 The while loop
	6.2.2 The do-while loop
	6.2.3 The for loop
	6.2.4 The foreach loop

	6.3 Labels, break, and continue
	6.4 The switch statement
	6.4.1 Basic use of the switch statement
	6.4.2 Using wildcard patterns with the switch statement
	6.4.3 Using regular expressions with the switch statement
	6.4.4 Processing files with the switch statement
	6.4.5 Using the $switch loop enumerator in the switch statement

	6.5 Flow control using cmdlets
	6.5.1 The ForEach-Object cmdlet
	6.5.2 The Where-Object cmdlet

	6.6 Statements as values
	6.7 A word about performance
	6.8 Summary

	7 PowerShell functions
	7.1 Fundamentals of PowerShell functions
	7.1.1 Passing arguments using $args
	7.1.2 Example functions: ql and qs
	7.1.3 Simplifying $args processing with multiple assignment

	7.2 Declaring formal parameters for a function
	7.2.1 Mixing named and positional parameters
	7.2.2 Adding type constraints to parameters
	7.2.3 Handling variable numbers of arguments
	7.2.4 Initializing function parameters with default values
	7.2.5 Handling mandatory parameters, v1-style
	7.2.6 Using switch parameters to define command switches
	7.2.7 Switch parameters vs. Boolean parameters

	7.3 Returning values from functions
	7.3.1 Debugging problems in function output
	7.3.2 The return statement

	7.4 Using simple functions in a pipeline
	7.4.1 Filters and functions
	7.4.2 Functions with begin, process, and end blocks

	7.5 Managing function definitions in a session
	7.6 Variable scoping in functions
	7.6.1 Declaring variables
	7.6.2 Using variable scope modifiers

	7.7 Summary

	8 Advanced functions and scripts
	8.1 PowerShell scripts
	8.1.1 Script execution policy
	8.1.2 Passing arguments to scripts
	8.1.3 Exiting scripts and the exit statement
	8.1.4 Scopes and scripts
	8.1.5 Managing your scripts
	8.1.6 Running PowerShell scripts from other applications

	8.2 Writing advanced functions and scripts
	8.2.1 Specifying script and function attributes
	8.2.2 The CmdletBinding attribute
	8.2.3 The OutputType attribute
	8.2.4 Specifying parameter attributes
	8.2.5 Creating parameter aliases with the Alias attribute
	8.2.6 Parameter validation attributes

	8.3 Dynamic parameters and dynamicParam
	8.3.1 Steps for adding a dynamic parameter
	8.3.2 When should dynamic parameters be used?

	8.4 Documenting functions and scripts
	8.4.1 Automatically generated help fields
	8.4.2 Creating manual help content
	8.4.3 Comment-based help
	8.4.4 Tags used in documentation comments

	8.5 Summary

	9 Using and authoring modules
	9.1 The role of a module system
	9.1.1 Module roles in PowerShell
	9.1.2 Module mashups: composing an application

	9.2 Module basics
	9.2.1 Module terminology
	9.2.2 Modules are single-instance objects

	9.3 Working with modules
	9.3.1 Finding modules on the system
	9.3.2 Loading a module
	9.3.3 Removing a loaded module

	9.4 Writing script modules
	9.4.1 A quick review of scripts
	9.4.2 Turning a script into a module
	9.4.3 Controlling member visibility with Export-ModuleMember
	9.4.4 Installing a module
	9.4.5 How scopes work in script modules
	9.4.6 Nested modules

	9.5 Binary modules
	9.5.1 Binary modules vs. snap-ins
	9.5.2 Creating a binary module
	9.5.3 Nesting binary modules in script modules

	9.6 Summary

	10 Module manifests and metadata
	10.1 Module folder structure
	10.2 Module manifest structure
	10.3 Production manifest elements
	10.3.1 Module identity
	10.3.2 Runtime dependencies

	10.4 Construction manifest elements
	10.4.1 The loader manifest elements
	10.4.2 Module component load order

	10.5 Content manifest elements
	10.6 Language restrictions in a manifest
	10.7 Advanced module operations
	10.7.1 The PSModuleInfo object
	10.7.2 Using the PSModuleInfo methods
	10.7.3 The defining module versus the calling module
	10.7.4 Setting module properties from inside a script module
	10.7.5 Controlling when modules can be unloaded
	10.7.6 Running an action when a module is removed

	10.8 Summary

	11 Metaprogramming with scriptblocks and dynamic code
	11.1 Scriptblock basics
	11.1.1 Invoking commands
	11.1.2 The scriptblock literal
	11.1.3 Defining functions at runtime

	11.2 Building and manipulating objects
	11.2.1 Looking at members
	11.2.2 Using Add-Member to extend objects
	11.2.3 Adding note properties with New-Object

	11.3 Using the Select-Object cmdlet
	11.4 Dynamic modules
	11.4.1 Dynamic script modules
	11.4.2 Closures in PowerShell
	11.4.3 Creating custom objects from modules

	11.5 Steppable pipelines
	11.5.1 How steppable pipelines work
	11.5.2 Creating a proxy command with steppable pipelines

	11.6 A closer look at the type-system plumbing
	11.6.1 Adding a property
	11.6.2 Shadowing an existing property

	11.7 Extending the PowerShell language
	11.7.1 Little languages
	11.7.2 Adding a CustomClass keyword to PowerShell
	11.7.3 Type extension

	11.8 Building script code at runtime
	11.8.1 The Invoke-Expression cmdlet
	11.8.2 The ExecutionContext variable
	11.8.3 The ExpandString() method
	11.8.4 The InvokeScript() method
	11.8.5 Mechanisms for creating scriptblocks
	11.8.6 Creating functions using the function: drive

	11.9 Compiling code with Add-Type
	11.9.1 Defining a new .NET class: C#
	11.9.2 Defining a new enum at runtime
	11.9.3 Dynamic binary modules

	11.10 Summary

	12 Remoting and background jobs
	12.1 Getting started with remoting
	12.1.1 Commands with built-in remoting
	12.1.2 The PowerShell remoting subsystem
	12.1.3 Enabling remoting
	12.1.4 Additional setup steps for workgroup environments
	12.1.5 Enabling remoting in the enterprise

	12.2 Applying PowerShell remoting
	12.2.1 Basic remoting examples
	12.2.2 Adding concurrency to the examples
	12.2.3 Solving a real problem: multimachine monitoring

	12.3 Sessions and persistent connections
	12.3.1 Additional session attributes
	12.3.2 Using the New-PSSession cmdlet
	12.3.3 Interactive sessions
	12.3.4 Managing PowerShell sessions

	12.4 Implicit remoting
	12.4.1 Using implicit remoting
	12.4.2 How implicit remoting works

	12.5 Background jobs in PowerShell
	12.5.1 The job commands
	12.5.2 Working with the job cmdlets
	12.5.3 Working with multiple jobs
	12.5.4 Starting jobs on remote computers
	12.5.5 Running jobs in existing sessions

	12.6 Considerations when running commands remotely
	12.6.1 Remote session startup directory
	12.6.2 Profiles and remoting
	12.6.3 Issues running executables remotely
	12.6.4 Reading and writing to the console
	12.6.5 Remote output vs. local output
	12.6.6 Processor architecture issues

	12.7 Summary

	13 Remoting: configuring applications and services
	13.1 Remoting infrastructure in depth
	13.1.1 The PowerShell remoting protocol stack
	13.1.2 Using the WSMan cmdlets and providers
	13.1.3 Authenticating the target computer
	13.1.4 Authenticating the connecting user
	13.1.5 Addressing the remoting target
	13.1.6 Windows version-specific connection issues
	13.1.7 Managing resource consumption

	13.2 Building custom remoting services
	13.2.1 Remote service connection patterns
	13.2.2 Working with custom configurations
	13.2.3 Creating a custom configuration
	13.2.4 Access controls and endpoints
	13.2.5 Constraining a PowerShell session
	13.2.6 Creating a constrained execution environment

	13.3 Summary

	14 Errors and exceptions
	14.1 Error handling
	14.1.1 ErrorRecords and the error stream
	14.1.2 The $error variable and –ErrorVariable parameter
	14.1.3 Determining if a command had an error
	14.1.4 Controlling the actions taken on an error

	14.2 Dealing with errors that terminate execution
	14.2.1 The trap statement
	14.2.2 The try/catch/finally statement
	14.2.3 The throw statement

	14.3 Debugging with the host APIs
	14.3.1 Catching errors with strict mode
	14.3.2 The Set-StrictMode cmdlet in PowerShell v2
	14.3.3 Static analysis of scripts

	14.4 Capturing session output
	14.4.1 Starting the transcript
	14.4.2 What gets captured in the transcript

	14.5 PowerShell and the event log
	14.5.1 The EventLog cmdlets
	14.5.2 Examining the PowerShell event log

	14.6 Summary

	15 The PowerShell ISE and debugger
	15.1 The PowerShell ISE
	15.1.1 Controlling the ISE pane layout
	15.1.2 Using the ISE editor
	15.1.3 Executing commands in the ISE
	15.1.4 Considerations when running scripts in the ISE

	15.2 Using multiple PowerShell tabs
	15.2.1 Local in-memory session tabs
	15.2.2 Remote session tabs in PowerShell ISE

	15.3 Extending the ISE
	15.3.1 The $psISE variable
	15.3.2 Using the Options property
	15.3.3 Managing tabs and files
	15.3.4 Working with text panes
	15.3.5 Adding a custom menu

	15.4 PowerShell script debugging features
	15.4.1 The Set-PSDebug cmdlet
	15.4.2 Nested prompts and the Suspend operation

	15.5 The PowerShell v2 debugger
	15.5.1 The graphical debugger

	15.6 Command-line debugging
	15.6.1 Working with breakpoint objects
	15.6.2 Setting breakpoints on commands
	15.6.3 Setting breakpoints on variable assignment
	15.6.4 Debugger limitations and issues

	15.7 Summary

	PART 2 Using PowerShell
	16 Working with files, text, and XML
	16.1 PowerShell and paths
	16.1.1 Providers and the core cmdlets
	16.1.2 Working with PSDrives
	16.1.3 Working with paths that contain wildcards
	16.1.4 Suppressing wildcard processing in paths
	16.1.5 The -LiteralPath parameter
	16.1.6 The Registry provider

	16.2 File processing
	16.2.1 Reading and writing files
	16.2.2 Writing files
	16.2.3 All together now—reading and writing
	16.2.4 Performance caveats with Get-Content

	16.3 Processing unstructured text
	16.3.1 Using System.String to work with text
	16.3.2 Using hashtables to count unique words
	16.3.3 Using regular expressions to manipulate text
	16.3.4 Searching files with the Select-String cmdlet

	16.4 XML structured text processing
	16.4.1 Using XML as objects
	16.4.2 Adding elements to an XML object
	16.4.3 Loading and saving XML files
	16.4.4 Processing XML documents in a pipeline
	16.4.5 Processing XML with XPath
	16.4.6 A hint of XLinq
	16.4.7 Rendering objects as XML

	16.5 Summary

	17 Extending your reach with .NET
	17.1 Using .NET from PowerShell
	17.1.1 .NET basics
	17.1.2 Working with assemblies
	17.1.3 Finding types
	17.1.4 Creating instances of types
	17.1.5 Defining new types with Add-Type
	17.1.6 Working with generic types

	17.2 PowerShell and the internet
	17.2.1 Retrieving a web page
	17.2.2 Processing an RSS feed

	17.3 PowerShell and graphical user interfaces
	17.3.1 PowerShell and WinForms
	17.3.2 Creating a winforms module
	17.3.3 PowerShell and Windows Presentation Foundation

	17.4 Summary

	18 Working with COM
	18.1 Working with COM in PowerShell
	18.1.1 Creating COM objects
	18.1.2 Identifying and locating COM classes

	18.2 Automating Windows with COM
	18.2.1 Exploring with the Shell.Application class
	18.2.2 Managing browser windows using COM
	18.2.3 A browser window management module

	18.3 Working with the WScript.Shell class
	18.4 Using COM to manage applications
	18.4.1 Looking up a word using Internet Explorer
	18.4.2 Using Microsoft Word to do spell checking

	18.5 The WSH ScriptControl class
	18.5.1 Embedding VBScript code in a PowerShell script
	18.5.2 Embedding JScript code in a PowerShell script

	18.6 Working with the Windows Task Scheduler
	18.6.1 Getting started with the Schedule.Service class
	18.6.2 Listing running tasks
	18.6.3 Creating a new scheduled task
	18.6.4 Credentials and scheduled tasks
	18.6.5 Viewing the life cycle of a task

	18.7 Issues with COM
	18.7.1 64-bit vs. 32-bit issues
	18.7.2 Threading model problems
	18.7.3 Interop assemblies, wrappers, and typelibs

	18.8 Summary

	19 Management objects: WMI and WS-MAN
	19.1 Working with WMI in PowerShell
	19.1.1 Exploring WMI
	19.1.2 The WMI infrastructure

	19.2 The WMI cmdlets
	19.2.1 The WMI cmdlet common parameters
	19.2.2 The Get-WmiObject cmdlet
	19.2.3 The Set-WmiInstance cmdlet
	19.2.4 The Invoke-WmiMethod cmdlet
	19.2.5 The Remove-WmiObject cmdlet

	19.3 The WMI object adapter
	19.3.1 The WMI type accelerators
	19.3.2 Putting modified WMI objects back

	19.4 Exploring WS-Man
	19.4.1 The WS-Man cmdlets
	19.4.2 Using Get-WSManInstance to retrieve management data
	19.4.3 Updating resources using Set-WSManInstance
	19.4.4 Invoking methods with Invoke-WSManAction

	19.5 Summary

	20 Responding in real time with eventing
	20.1 Foundations of event handling
	20.2 Synchronous events
	20.2.1 Synchronous eventing in GUIs
	20.2.2 Delegates and delegation

	20.3 Asynchronous events
	20.3.1 Subscriptions, registrations, and actions
	20.3.2 The eventing cmdlets

	20.4 Working with asynchronous .NET events
	20.4.1 Writing a timer event handler
	20.4.2 Managing event subscriptions

	20.5 Asynchronous event handling with scriptblocks
	20.5.1 Automatic variables in the event handler
	20.5.2 Dynamic modules and event handler state

	20.6 Queued events and the Wait-Event cmdlet
	20.7 Working with WMI events
	20.7.1 WMI event basics
	20.7.2 Class-based WMI event registration
	20.7.3 Query-based WMI event registrations

	20.8 Engine events
	20.8.1 Predefined engine events
	20.8.2 Generating events in functions and scripts

	20.9 Remoting and event forwarding
	20.9.1 Handling remote EventLog events
	20.9.2 Serialization issues with remote events

	20.10 How eventing works
	20.11 Summary

	21 Security, security, security
	21.1 Introduction to security
	21.1.1 What security is and what it isn’t
	21.1.2 Security: perception and reality

	21.2 Security modeling
	21.2.1 Introduction to threat modeling
	21.2.2 Classifying threats using the STRIDE model
	21.2.3 Security basics: threats, assets, and mitigations

	21.3 Securing the PowerShell environment
	21.3.1 Secure by default
	21.3.2 Enabling scripting with execution policy

	21.4 Signing scripts
	21.4.1 How public key encryption and one-way hashing work
	21.4.2 Signing authorities and certificates
	21.4.3 Self-signed certificates
	21.4.4 Using a certificate to sign a script
	21.4.5 Enabling strong private key protection
	21.4.6 Using the PFX file to sign a file

	21.5 Writing secure scripts
	21.6 Using the SecureString class
	21.6.1 Creating a SecureString object
	21.6.2 The SecureString cmdlets
	21.6.3 Working with credentials
	21.6.4 Avoiding Invoke-Expression

	21.7 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	WindowsPS-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

